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Ice nucleating particles (INPs) play a crucial role in freezing water droplets by acting as heterogeneous ice

nuclei, influencing cloud phase state and climate dynamics. INPs from marine aerosol particles are

particularly relevant. Saturated fatty alcohols and acids have been identified in sea spray aerosols (SSA). In

this study, we employ a micro-Raman spectrometer integrated with an environmental cell to control

relative humidity and temperature and measure the ice nucleation activity of individual lipid particles,

including fatty alcohols and fatty acids of varying chain lengths. For fatty acids, we observe little IN

activity for these lipid particles as they freeze close to the temperature found for homogeneous freezing.

For fatty alcohols, we demonstrate that freezing temperatures depend on the carbon chain length, with

longer chains leading to warmer ice nucleating temperatures. Although this result qualitatively agrees

with existing literature, we observe that the ice nucleating temperatures of these lipid particles differ

from the freezing temperatures measured for fatty alcohol monolayers at the air/water interface for large

water droplets. To better understand these differences, we further investigate the effects of droplet size

as well as phase state by theoretically determining the wet viscosity on freezing. Our results, taken

together, suggest that for fatty alcohol particles, freezing occurs at the lipid particle/water interface.

Overall, our findings highlight the influence of lipid chain length, droplet size, and phase state on ice

nucleation for lipid particles.
Environmental signicance

Ice particles are essential for cloud formation, precipitation, and inuencing the Earth's radiative balance. Oceans, covering nearly three-quarters of the Earth's
surface, produce sea spray aerosols (SSA) that serve as signicant ice nucleating particles (INPs). Despite their importance, the ice nucleation ability of key
organic carbon species in SSA, such as fatty alcohols and fatty acids, need to be further understood. We measured ice nucleation temperatures of droplets
containing marine-relevant lipid particles, including fatty alcohols and fatty acids. Our results reveal that droplet size, lipid chain length, and lipid phase state
(liquid, semisolid, or solid) can impact ice nucleation.
Introduction

Around 67% of Earth's surface is covered by clouds, which
inuence the Earth's radiative budget and climate system
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through the changes in cloud albedo, precipitation, cloud
coverage, and lifetime.1,2 Ice clouds (consisting of ice crystals)
and mixed-phase clouds (comprising ice crystals and water
droplets) are prevalent in the upper atmosphere at higher alti-
tudes, particularly in regions characterized by colder tempera-
tures within the Earth's atmosphere.1 The presence of aerosol
particles, their composition, water content, and air temperature
can affect the microphysical properties of these clouds.1 The
formation of ice crystals within both ice-phase andmixed-phase
clouds is facilitated by ice nucleating particles (INPs).1 INPs are
a distinctive subgroup of aerosols, which can still have
a signicant impact on cold cloud microphysical processes
despite their low concentrations, sourced from a diverse range
of origins and compositions, such as dust, minerals, combus-
tion byproducts, and SSA.3–6 Only one in 105 to 106 atmospheric
aerosol particles can act as INPs.7 The creation of ice andmixed-
phase clouds are directly inuenced by alterations in ice
nucleation pathways, subsequently affecting precipitation,
Environ. Sci.: Atmos., 2024, 4, 1239–1254 | 1239
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cloud coverage, and optical depth.1,8,9 Owing to this intricate
nature, the aerosol components involved in aerosol–cloud
interactions continue to pose one of the most signicant
uncertainties in climate models.10 While considerable research
has been conducted on ice nucleation, ongoing efforts are being
made to discern the chemical and physical characteristics that
govern the activity of marine and biologically relevant ice-
nucleating particles.11–16 Specically, an ongoing endeavor to
identify the ice-nucleating particles originating from marine
organisms that have the most signicant impact on cloud
formation in distant marine areas.3,17,18

Ice formation in the earth's atmosphere occurs broadly via
homogeneous and heterogeneous freezing processes. Homog-
enous ice nucleation occurs when a water droplet is supercooled
below −38 °C, and ice crystals are formed without foreign
particles. Heterogeneous ice nucleation involves foreign entities
with surfaces that can facilitate the freezing of water droplets
into ice crystals at warmer temperatures.19 Heterogeneous ice
nucleation can mainly occur through two pathways: deposition
freezing and immersion freezing. Deposition freezing, crucial in
forming ice clouds, occurs when humidity increases, subse-
quent to a decrease in temperature.20 Immersion freezing
initiates with an initial rise in relative humidity (RH), resulting
in water condensation, followed by a temperature decrease,
inducing the formation of a supercooled droplet and eventually
undergoing a phase transition to form ice, as shown in Fig. 1.
Immersion freezing is a crucial factor in forming mixed-phase
clouds, wherein ice-nucleating particles are anticipated to
prompt droplet formation before freezing occurs.4–6,21–25

The Earth's surface is predominantly covered by oceans,
particularly in the Southern Hemisphere, where INPs exert the
greatest inuence.3,4,17,18,26–28 At the boundary between the
atmosphere and the ocean, primary SSA is created as bubbles
Fig. 1 (a) Conceptual schematic diagram depicting immersion ice
nucleation in the atmosphere. (b) Microscopy images including scale
bars, illustrating the stages of immersion ice nucleation from one
experiment, including dry deposited particles (particle 1 = 3.1 mm,
particle 2= 4.7 mm, particle 3 = 3.8 mm, particle 4= 7.9 mm), formation
of wet droplets by increasing relative humidity, and ice crystal
formation by decreasing the temperature. Particle 5 was initially not
observed, as it was smaller than the resolution of the 10× objective.
However, it appears in the image when the larger droplet forms and
then when it becomes ice.

1240 | Environ. Sci.: Atmos., 2024, 4, 1239–1254
from breaking waves burst.14,29,30 SSA represents the major
annual contributor of aerosol ux by mass into the
atmosphere.10,31–33 Additionally, SSA is recognized as a signi-
cant source of INPs. The signicance of SSA particles in forming
atmospheric ice clouds is thoroughly documented.3,15,18,30,34–38

Modeling results indicate that biogenic organic matter exerts
a worldwide inuence on forming atmospheric ice clouds
through immersion ice nucleation.3,4,15 There is also direct
evidence from mesocosm studies indicating that atmospheric
INPs originate from organic material.17,37,39 To enhance our
comprehension of the radiative impacts of primary SSA parti-
cles, it is important to investigate their chemical and physical
attributes and INP potential. With this objective in sight, several
studies have focused on delineating the chemical composition
of overall aerosols across diverse marine settings.31–33,40–42

Primary SSA comprises a blend of inorganic salts, particulate
biological elements such as intact bacteria and viruses, and
organic matter.14,31,43,44 Field investigations indicate that the
predominant organic matter content in sub-micrometer aero-
sols is water-insoluble mainly, while in larger super-micrometer
aerosols, it is predominantly water-soluble.7,40,45–50 Field-
collected SSA particles subjected to spectroscopic measure-
ments have revealed that the oxygen-rich organic segment of
these particles contains molecules displaying spectral charac-
teristics typical of saccharides.51,52 Additionally, signatures
indicative of carboxylic acids and alkanes have also been iden-
tied.47,52,53 Cochran et al.52 employed micro-Raman spectros-
copy to analyze the vibrational spectra of individual SSA
particles freshly produced through wave breaking in controlled
ocean-like conditions within a wave ume. They identied long-
chain saturated fatty acids (C12–C18) and short-chain saturated
fatty acid (C5–C10) particle types within SSA samples. Fatty acids
and fatty alcohols are recognized as products of the biogenic
degradation of cell membranes. Fatty alcohols have been
detected both in the sea surface microlayer54,55 and in marine
aerosols across remote areas, likely originating from terrestrial
sources that also contribute particles to the ocean surface.56,57

Most of the research on the freezing efficiency of fatty alco-
hols and acids has examined monolayers within large water
droplets, typically around 1000 mm or larger. In this study, our
focus lies in the immersion ice nucleation of individual
substrate-deposited micron-sized lipid particles composed of
either fatty alcohols (nonanol, decanol, dodecanol, tetradeca-
nol, hexadecanol and octadecanol) or fatty acids (nonanoic acid,
dodecanoic acid, hexadecanoic acid and octadecanoic acid),
using confocal Raman spectroscopy. Furthermore, the physi-
cochemical properties of the lipid particles, such as viscosity,
may alter ice nucleation ability by affecting the extent to which
the particles participate in heterogeneous freezing processes.
For example, particles with glassy or solid-like phase states
participate in homogeneous and heterogeneous freezing
processes, freezing more efficiently (i.e., at warmer tempera-
tures) than liquid particles.58–62 Overall, this study endeavors to
understand the impact of lipid molecular size (chain length),
particle size, water solubility, and viscosity at the freezing
temperature on the ice-nucleating ability of marine-type
particles.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Materials and methods
Materials, chemicals, and sample preparation

All chemicals were purchased directly from manufacturers and
used without further purication. Chemicals include sodium
chloride (NaCl, $99%, Fisher Scientic) and Pseudomonas syrin-
gae (Snomax, York Snow Inc.) to show examples of freezing
depression and efficient nucleation, respectively. Snomax is
a commercially available product derived from the bacterium
Pseudomonas syringae. Other compounds include nonanol
(C9H19OH, 98%, Sigma-Aldrich), decanol (C10H21OH, 98+%, Alfa
Aesar), dodecanol (C12H25OH, >99.0%, TCI Chemicals), tetrade-
canol (C14H29OH, >98.0%, TCI Chemicals), hexadecanol
(C16H33OH, 99%, Sigma-Aldrich), octadecanol (C18H37OH, 99%,
Sigma-Aldrich), nonanoic acid (C8H17COOH, 96%, Sigma-
Aldrich), dodecanoic acid (C11H23COOH, 99%, Thermo Scien-
tic), hexadecanoic acid (C15H31COOH, $99%, Sigma-Aldrich)
and octadecanoic acid (C17H35COOH, $98.5%,Sigma-Aldrich).
Ethanol was used as the solvent in solution preparations except
for sodium chloride, for which Milli-Q ultrapure water was used.
Table S1 of the ESI† provides details of the physical state at 25 °C
and the melting point of the fatty alcohols and fatty acids.
Methods
Calibration of the environmental cell

The environmental cell (Linkam, THMS600) was full calibrated to
compensate for variations between the preset temperature and
the temperature observed by the particles deposited on the
substrates within the cell.63–67 For example, using NaCl, known to
have a deliquescence relative humidity (DRH) of 75% over a wide
spectrum of temperatures,68 was used to generate a calibration
curve of the effective particle temperature,63,64 which is different
from the set point temperature. For each set temperature point,
a fresh aerosolized NaCl sample was generated specically for
calibration. Before each experiment, the deposited samples
underwent a 15 minutes calibration period within the cell, during
which they were dried under N2. Subsequently, there were gradual
increments in relative humidity (RH), with 10 minutes equili-
bration periods separating each increase (RH increased from
0.3% to DRH of NaCl). Both visual and spectral examinations
corroborated deliquescence, characterized by an expansion in
particle size, observable darkening of the droplet under an optical
microscope, and a sudden large increase in intensity in the O–H
stretching region spanning 3000 to 3700 cm−1. At the deliques-
cence point, temperature and dew point readings were recorded
using a hygrometer to calculate the relative humidity (RH) in the
environmental cell. The calibration of the environmental cell and
the cooling rate's effects on pure water's ice nucleation tempera-
ture has been previously discussed and detailed by Mael et al.64–67

Fig. S1† shows the calibration curve, illustrating its linearity
within the range of temperatures from −45 to 23 °C.
Aerosol generation using a nebulizer

A mesh nebulizer (OMRON, NE-U22-E), which works on
vibrating mesh technology, generated aerosolized lipid
© 2024 The Author(s). Published by the Royal Society of Chemistry
particles. This nebulizer has three parts: a power unit, a solu-
tion container, and a mesh cap. The solution container is the
reservoir, and the mesh cap uses pores to make 1–5 mm aero-
solized particles. Fatty alcohol and fatty acid solutions in
ethanol were put into themedication container of the nebulizer,
and the aerosol particles that formed (about 1–10 mm) were
collected onto hydrophobic quartz substrates coated by Rain-X.
Ice nucleation measurements using confocal Raman
spectroscopy

Freezing measurements were conducted using a Raman
microscope (Horiba, LabRamHR Evolution) with a 532 nm laser
coupled to an environmental cell as described previously in
detail.64,66 The spectrometer has an optical microscope
(Olympus BX41) and a 100× super long working distance
objective (SLWD). The environmental cell features gas inlets
and an exhaust line linked to a hygrometer (Buck, CR-4) and
a temperature controller, enabling precise regulation of
temperature and relative humidity (RH). Lipid particles depos-
ited onto a quartz substrate were placed in the environmental
cell, and a dry N2 ow was sent through the cell for 15 minutes.
A Raman spectrum of the lipid particle was aer following this
15 minutes N2 purge. The RH was controlled by circulating N2

through a bubbler lled with Milli-Q water and adjusting the
proportion of moist to dry N2 directed into the environmental
cell. The relative humidity was increased until a water droplet
formed above the lipid particle as evidenced by the Raman
spectrum showing the presence of the broad peak due to the
O–H stretch of liquid water. The temperature of the cell was
then dropped (rate = −10 °C min−1), and the droplets with the
embedded lipid particles were observed to change from liquid
water to ice as observed by changes in the optical image and in
the O–H stretch in the Raman spectrum, as shown in Fig. 2. The
spectrum displayed in Fig. 2(c) exhibits a broad O–H stretch
peak with peak maxima and shoulders at 3133, 3260, and
3344 cm−1 wavenumbers. These frequencies correspond to
hexagonal ice, indicating that the ice formed from these water
droplets containing lipid particles is in the hexagonal ice
structure.69–71
Calculation of ice nucleation weighted mean temperatures

As noted above, in a typical experiment, particles of fatty alco-
hols and fatty acids deposited on a hydrophobic substrate are
then exposed to increasing relative humidity to form a water
droplet, followed by decreasing temperature to form ice. In each
experiment, approximately 30 to 70 substrate-deposited lipid
particles were observed using a 10× microscope objective,
utilized with the Raman spectrometer. Two to three indepen-
dent ice nucleation experiments, which included 100 to 150
lipid particles, were conducted for each lipid to ensure repro-
ducibility. A video recording followed the entire experiment
from a lipid particle to an aqueous water droplet containing
a lipid particle to an ice-containing lipid particle. The temper-
atures at which individual lipid particles induced ice formation
were recorded to compute the ice nucleation weighted mean
Environ. Sci.: Atmos., 2024, 4, 1239–1254 | 1241
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Fig. 2 Immersion freezing of substrate-deposited lipid particles utilizingmicro-Raman spectroscopy. (a) Spectrum and an optical image of a∼10
mm diameter hexadecanol particle with peaks within the C–H stretching region at 2847, 2881, and 2938 cm−1. (b) Spectrum after the relative
humidity is raised to form a water droplet, with prominent broad peaks observed in the O–H stretching region at 3235 and 3391 cm−1, indicating
the presence of liquid water. (c) The same particle as in (a and b) at a lower temperature, where ice formation is evidenced by the O–H vibrational
bands at 3133, 3260, and 3344 cm−1. Vertical axis scales are different and have been magnified for the lipid particle compared to the droplet and
ice spectrum.
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average. Additionally, standard deviations were calculated to
assess data variability.
Theoretical viscosity estimation derived from molecular
composition

Each lipid particle phase state or viscosity (h) was estimated
from the theoretical glass transition temperature of the
organic–water mixture (Tg,org,wet), as done in previous studies,
as shown in eqn (1)–(3).72–75

Tg,org = A + BM + CM2 + D(O : C) + EM(O : C) (1)

Tg;org;wet ¼
�
1� worg

�
Tg;w þ 1

kGT

worgTg;org

�
1� worg

�þ 1

kGT

worg

(2)

logh ¼ �5þ 0:434

�
T0D

T � T0

�
(3)

The model parameterizes the dry glass transition tempera-
ture (Tg,org) from the particle's molar mass (M) and oxygen-to-
carbon (O : C) ratio, where A = −21.57 (±13.47) [K], B = 1.51
(±0.14) [K mol g−1], C=−1.7× 10−3 (±3.0× 10−4) [K mol2 g−2],
D= 131.4 (±16.01) [K], E=−0.25 (±0.085) [Kmol g−1] are tting
constants. Tg,org,wet was parameterized from Tg,org using the
Gordon–Taylor equation (eqn (2)), where worg is the mass frac-
tion of organics as worg = morg/(morg + mH2O), Tg,w is the glass
transition temperature of pure water (136 K), and kGT is the
Gordon–Taylor constant assumed to be 2.5 (±1.0). T0 is the
Vogel temperature, and T is the ambient temperature.

The mass of water (mH2O) in the particles was estimated
using the effective hygroscopicity parameter (ki), where i
represents the individual organic components. The water
1242 | Environ. Sci.: Atmos., 2024, 4, 1239–1254
activity was assumed to be RH = 80%. Since this value for fatty
alcohols and fatty acids is unknown, we rely on the approach of
Mikhailov et al.76 to estimate the ki of these organic compounds
using eqn (4).

ki ¼ Ji �

0
B@

ri

Mi
rw

Mw

1
CA (4)

where Ji represents the van't Hoff factor, ri and Mi denote the
density and molar mass of the solute (i) and water (w), respec-
tively. Ji was assumed to be 1 for the studied molecules. By
employing the model, we computed the h of the droplet upon
deliquescence near its freezing temperature. This is represented
as the “log hwet,” which represents the logarithm of a droplet's
viscosity aer its water uptake. Materials exhibiting hwet > 1012

Pa s (log hwet > 12) are classied as solid-like, while those with
hwet = 102–1012 Pa s (2 < log hwet < 12) are categorized as semi-
solid, and those with hwet < 102 Pa s (log hwet < 2) are liquid.58
Results and discussion
Weighted ice nucleation mean averages of fatty alcohols and
fatty acids

Immersion ice nucleation measurements were conducted on
individual micron-sized, supercooled droplets containing fatty
alcohols (nonanol, decanol, dodecanol, tetradecanol, hex-
adecanol and octadecanol) and fatty acids (nonanoic acid,
dodecanoic acid, hexadecanoic acid and octadecanoic acid).
These fatty alcohols and fatty acids were selected to investigate
their ice nucleation characteristics as they are atmospherically
relevant marine compounds.52,54–57 Additionally, Snomax, Milli-
Q water, and NaCl were included as standard references for
immersion freezing behavior. As discussed, each ice nucleation
© 2024 The Author(s). Published by the Royal Society of Chemistry
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experiment involved depositing a lipid particle, which was then
exposed to increasing relative humidity (RH) within the envi-
ronmental cell and then decreasing temperature. Furthermore,
this transition was tracked using Raman spectroscopy, wherein
the growth in the band associated with the O–H stretching
motion (n(OH)) from 3000 to 3700 cm−1 was monitored.
Subsequently, the cell's temperature was reduced (rate = −10 °
C min−1), and the particles were monitored until the transition
from droplet to ice occurred. Size andmorphology changes were
observed using an optical microscope, as shown in Fig. 2.

In previous studies, fatty alcohols were found to be effective
ice nuclei when prepared as monolayers on very large droplets
on the order of several hundreds of mm in size.77–80 Differences
in chain lengths were shown to result in different ice nucleation
temperatures with increasing freezing temperature observed
with an increase in hydrocarbon chain length.77,78,81 Fatty alco-
hols have garnered considerable interest because they are
among the few identied compounds capable of nucleating ice
and are also prevalent in the environment. Ochshorn82 et al.
investigated the ability of fatty alcohols to act as templates for
ice formation and facilitate freezing. Theoretical studies by Qiu
et al.83 showed that monolayers of fatty alcohols at the air/water
interface result in the fatty alcohol hydroxyl groups arranged to
resemble the structure found in the basal plane of ice. It has
been suggested that matching lattices between ice and the
surface governs their efficiency in nucleating ice.83 In addition,
organic monolayers are characterized by their so nature and
exhibit notable uctuations.83 It has also been hypothesized
Fig. 3 Ice nucleation weighted mean average temperatures are indicate
both fatty alcohols and fatty acids, along with Snomax and NaCl. The b
uncertainty in the measurement.

© 2024 The Author(s). Published by the Royal Society of Chemistry
that these uctuations contribute to the nucleation of ice.83 In
other studies, a “refreezing” phenomenon in fatty alcohol lms
were observed, whereby lms displayed enhanced ice nucle-
ation ability aer being frozen and thawed. This effect seemed
to diminish if the lm was allowed to warm adequately between
cycles. They postulated that the phenomenon stemmed from
alterations in the structure of the monolayer lm.79,84 Fatty acid
monolayers, on the other hand, have been shown to exhibit
poor IN capabilities.2

Fig. 3 shows weighted mean ice nucleation temperatures of
fatty alcohol and fatty acid particles embedded in water droplets
compared with pure water droplets (homogeneous ice nucle-
ation), NaCl droplets (freezing point depression and poor
heterogeneous ice nuclei), and Snomax (good heterogeneous ice
nuclei). Weighted mean IN temperatures and standard devia-
tions for the fatty alcohol and fatty acid particles are tabulated
in Table S1.† These results show that fatty alcohol particles
serve as effective ice nuclei, with their IN temperatures
demonstrating a chain length-dependent behavior, in line with
earlier reports,77 although quantitatively different. Specically,
we observed longer chain-length fatty alcohol particles exhibi-
ted greater nucleating ice efficiency than shorter chain lengths.
Gavish et al.77 observed fatty alcohol monolayers were nucle-
ating ice in the range of −14 to −8 °C for carbon chain length
between C14 and C30. Here, we show for lipid particles that the
freezing temperatures of hexadecanol and octadecanol were
approximately 8 to 10 °C lower than that reported earlier.77

Perkins et al.85 also looked at the freezing efficiency of C16 and
d by blue circles, with their respective uncertainties for lipid particles,
lue box depicts the freezing temperature of the water blank and the

Environ. Sci.: Atmos., 2024, 4, 1239–1254 | 1243
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C18 fatty acids and fatty alcohols. They mixed fatty acids and
fatty alcohols, adjusting their ratio within the monolayer, and
subsequently measured the freezing efficiency. For the pure
monolayer of C18 alcohol, they found the freezing temperature
between −16 to −21 °C based on the amount of material
deposited per molecule. For pure monolayer of C16 alcohol, the
freezing temperature was −14.8 °C. The variance between this
current study and earlier ones can be attributed to several
factors, including the use of lipid particles compared to lipid
monolayers. Additionally, this current study broadens our
investigation to encompass shorter-chain fatty alcohols, namely
nonanol, decanol, and dodecanol. Our observations indicate
that these compounds nucleate ice albeit close to but above the
homogeneous ice nucleation temperature of approximately
−38 °C.86–90

Using nonanoic acid, dodecanoic acid, hexadecanoic acid,
and octadecanoic acid, the fatty acid particles differ from the
fatty alcohol particle analogs. Our observations indicate that
two fatty acids (dodecanoic and hexadecanoic acid) nucleate ice
outside (at a warmer temperature) of the homogeneous freezing
temperature of water. In contrast, the others are within the
range found for homogeneous ice nucleation.

Understanding the behavior of fatty acid particles is crucial,
as demonstrated by McCluskey et al.'s37 study, where long-chain
fatty acids comprised approximately 18% of particles within the
submicron diameter range in their plunging water mesocosm
experiment. We conducted measurements of the 50% frozen
values for both fatty alcohols and fatty acids, as shown in
Fig. S2.† These values represent the points at which 50% of the
observed population of fatty alcohol or fatty acid particles
nucleated ice (vide infra). Our observed 50% frozen values
closely paralleled the weighted mean average IN temperatures,
with a correlation factor of 0.99, as depicted in Fig. S3.† Our
ndings align with previous literature studies,2 which indicated
that the freezing range for 50% of droplets composed of lipid
particles with chain lengths of C12, C14, C16, and C18 acids fell
between −33 °C and −37 °C.
Fig. 4 The frozen fraction of (a) fatty alcohols and (b) fatty acids relative t

1244 | Environ. Sci.: Atmos., 2024, 4, 1239–1254
Frozen fraction curves of fatty alcohol and fatty acid particles

We quantied frozen fraction, eqn (5), dened as the propor-
tion of particles that underwent ice formation at a specied
temperature across the entire particle population. To analyze
this, we segmented temperature ranges into bins of 1 °C
increments and sorted particles into respective bins based on
their freezing temperatures.

Frozen fraction ¼ NfðTÞ
N0

(5)

where Nf (T) is the number of frozen particles observed at the
temperature T, and N0 is the total number of droplets.

We generated frozen fraction curves to gain deeper insights
into the freezing behavior of fatty alcohols and fatty acids, as
shown in Fig. 4. These curves illustrate the correlation between
the frozen fraction, representing the proportion of particles that
have undergone freezing, and the corresponding temperature at
which freezing occurs. This relationship provides valuable
insights into the freezing behavior of fatty alcohol and fatty acid
particles.

As previously noted, longer chain-length fatty alcohols are
better ice nuclei than shorter ones. Fig. 4 illustrates the frozen
fraction curves of the fatty alcohols. It is evident from the
gure that fatty alcohol particles with longer chain lengths,
such as hexadecanol (C16) and octadecanol (C18), exhibit
frozen fraction curves shied to the right (at warmer temper-
atures, making them better ice nuclei) compared to those with
shorter chain lengths like nonanol (C9), decanol (C10), and
dodecanol (C12), whereas tetradecanol (C14) falls in between.
Most fatty alcohol particles exhibit distinct frozen fraction
curves, characterized by a sharp transition where a signicant
portion of particles nucleate ice within a narrow temperature
range. However, decanol, dodecanol, and octadecanol display
a tail at warmer temperatures. To better understand this tail,
we analyzed the different-sized droplets used for this study, as
discussed below.
o the temperature at which the individual droplets underwent freezing.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (a) and (b) Represent the size analysis of immersion freezing experiments conducted on decanol and octadecanol, respectively. The size
data has been categorized into Group A and Group B, representing the majority and minority populations for freezing. The table illustrates the
percentage of droplets in larger and smaller sizes nucleating ice at colder and warmer temperatures, suggesting the larger droplets nucleate ice
more readily.
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Droplet size effects on freezing

Our frozen fraction curve analysis considers droplets within
a range of droplet sizes (10–70 mm), as has been done for droplet
size ranges in Murray et al.,91 rather than individually due to the
high variability in droplet size from the collection of poly-
disperse substrate-deposited particles. Including multiple-sized
droplets in the analysis likely leads to uncertainty in the derived
frozen fraction since supercooled freezing depends on volume.
To better understand how size impacted the frozen fraction
curve, Fig. 5 shows the number of frozen droplets within
a narrower size range (increments of 10 mm) detected at a given
freezing temperature. These results qualitatively indicate that
lower temperatures are required to freeze the smallest particles,
and the largest particles freeze at warmer temperatures.

A tail in the frozen fraction curves of decanol, dodecanol,
and octadecanol may be attributed to the dependence of
freezing temperature on droplet size. We reanalyzed the ice
nucleation data of decanol and octadecanol to delve deeper into
size effects. Wemeasured the size of droplets nucleating ice and
divided them into two groups, labeled Group A and Group B, as
depicted in Fig. 5.

We constructed a histogram illustrating the count of drop-
lets nucleating ice across various temperature ranges for
different observed sizes for decanol and octadecanol. To
investigate size dependence, we categorized the temperature
ranges into two groups, Group A and Group B, where Group A
was the temperature range where most of the droplets formed
ice. The percentage of droplets nucleating ice below a specic
size threshold was then examined. Decanol revealed that among
© 2024 The Author(s). Published by the Royal Society of Chemistry
smaller-sized droplets (below 50 mm), 87.2% nucleated ice in
the colder temperature range (−34 °C < T < −32 °C), while only
12.8% nucleated into ice at warmer temperatures (−32 °C < T <
−23 °C). Conversely, among larger-sized droplets (above 50 mm),
only 20% nucleated ice in the colder temperature range (−34 °C
< T < −32 °C), while 80% nucleated into ice at warmer
temperatures (−32 °C < T < −23 °C). Octadecanol exhibited
similar trends. Among smaller-sized droplets (below 40 mm),
81% nucleated ice in the colder temperature range (−25 °C < T <
−22 °C), while only 19% nucleated into ice at warmer temper-
atures (−22 °C < T < −16 °C). Conversely, among larger-sized
droplets (above 40 mm), only 25% nucleated ice in the colder
temperature range (−25 °C < T < −22 °C), while 75% nucleated
into ice at warmer temperatures (−22 °C < T < −16 °C). These
ndings indicate smaller droplets exhibit ice nucleation at
colder temperatures, suggesting a potential correlation between
droplet size and IN temperature.
Ice nucleation and viscosity

Several studies have explored the relationship between the
phase state and homogeneous and deposition freezing. It has
been shown for secondary organic material that a glassy or
viscous phase state might be essential but not entirely indica-
tive of ice nucleation in an organic particle.92 In low-
temperature cirrus environments, characterized by the pres-
ence of highly viscous organic aerosols in a glassy phase,
evidence suggests that these particles may indeed nucleate ice,
mainly through the deposition mode of freezing.93 Murray
et al.94 demonstrated that glassy aerosol particles, such as citric
Environ. Sci.: Atmos., 2024, 4, 1239–1254 | 1245
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Fig. 6 (a) Depicts ice nucleation temperatures, represented by blue diamonds, and the estimated log wet viscosities at their respective ice
nucleation temperatures, depicted by purple squares, and (b) plot of log wet viscosity against ice nucleation temperatures, fitted with a linear
regression line, for six fatty alcohols. The uncertainties in the estimated log wet viscosities reflect the uncertainty in the fitting parameters in eqn
(1) to calculate the glass transition temperature.74
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acid, can nucleate ice heterogeneously at low relative humidity,
while Wilson et al.95 conrmed that ice nucleation temperature
of glassy aerosols is strongly related to their glass transition
temperature (Tg), with glass-forming substances such as raffi-
nose and 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA)
nucleating ice at temperatures higher than 200 K. Fowler et al.96

and Ignatius et al.62 found that viscous secondary organic
aerosols (SOA), such as those from a-pinene, exhibit inhibited
ice nucleation at very low temperatures due to restricted particle
growth, but can nucleate ice more readily at warmer tempera-
tures. Berkemeier et al.97 concluded that glassy SOA could
facilitate heterogeneous ice nucleation up to 225 K, with
deposition mode nucleation in glassy states, immersion mode
in partially deliquesced states, and homogeneous nucleation in
a liquid state. Together, these studies highlight the critical role
of aerosol phase and viscosity in determining ice nucleation
pathways and efficiency in the atmosphere. Our objective is to
explore the relationship between immersion freezing and the
phase state of the lipid particles. To elucidate this relationship,
we contend that understanding the phase state of the droplet
immediately before ice nucleation is essential. Phase state
characterization can be achieved through viscosity (h) analysis.
Therefore, we employed a theoretical model to determine the
wet viscosity (hwet), i.e., the particle's viscosity at equilibrium
with the ambient relative humidity at the measured IN
temperatures. We generated a plot correlating the ice nucle-
ation temperatures of the fatty alcohols with their respective wet
viscosity values to elucidate their relationship, as depicted in
Fig. 6(a).

As discussed above, fatty alcohol lipid particles becomemore
effective ice nuclei with increasing chain length. Furthermore,
1246 | Environ. Sci.: Atmos., 2024, 4, 1239–1254
we note a rise in the log(hwet) at their corresponding ice nucle-
ation temperatures with increasing chain length. Increased
viscosity with molecular size is expected, as viscosity tends to
increase due to stronger van der Waals forces between chains of
the fatty alcohol, resulting in elevated internal friction.
According to the model, log wet viscosity values below 2 indicate
a liquid phase state, while values between 2 and 12 suggest
a more semi-solid state. The estimated log wet viscosity value
for tetradecanol was 1.84, close to the transitional value
between liquid and semi-solid phases. Notably, at this point, we
observe that fatty alcohol particles begin to exhibit enhanced ice
nucleation capabilities. Beyond this transitional point, hex-
adecanol and octadecanol demonstrate signicantly higher wet
viscosity values than 2, indicating a semi-solid phase state.
Intriguingly, hexadecanol and octadecanol emerge as the most
effective ice nuclei (i.e., nucleate ice at warmer temperatures)
among the fatty alcohols of interest. These ndings align with
a prior modeling study that showed more viscous, partially
deliquesced, or phase-separated SOA at upper troposphere or
lower stratosphere temperatures and relative humidity could
nucleate ice more effectively by deposition and immersion
freezing.97 This could be the case here, whereby hydrophobic
organic particles with increasing molecular size and viscosity
slow relative humidity-induced phase transitions between
states as the particles cool by slowing water diffusion into the
particles. These organic particles within the droplets form ice
crystals heterogeneously at warmer temperatures and lower ice
supersaturations than homogeneous freezing. We also
attempted to establish a direct correlation between ice nucle-
ation temperatures and wet viscosity by plotting them against
each other and tting them onto a straight line, as depicted in
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Conceptual illustration of heterogeneous freezing at a lipid–water interface of insoluble and sparingly soluble particles. (a) An insoluble
particle within a water droplet demonstrates ice formation at the lipid–water interface as the temperature decreases. (b) Example of fatty alcohol
and fatty acid particles within a water droplet, depicting the orientation of lipids at the interface, where hydrophilic groups (–OH and COOH) of
the lipids form hydrogen bonds with water molecules, facilitating ice formation. The fatty acid particle exhibits greater water permeability
compared to the fatty alcohol particle due to its higher solubility in water. This increased permeability triggers a positive feedback mechanism,
allowing more water to diffuse into the fatty acid particle, which in turn lowers its viscosity. As a result, fatty acid molecules at the interface may
reorient their head groups inward, potentially disrupting the lipid particle/water interface and preventing the necessary critical nucleus to form,
that would otherwise promote heterogeneous freezing.
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Fig. 6(b). The analysis suggests a correlation with a correlation
coefficient of 0.84, suggesting, similar to other studies,93,98 that
phase state can play a role in heterogeneous ice nucleation
efficacy in immersion freezing.

We found less of a relationship between the much poorer ice
nucleating fatty acid particles. Fatty acid ice nucleation
temperatures and the estimated logarithm of wet viscosity
values by plotting them against each other, as illustrated in
Fig. S4(a).† For these poor INPs, the analysis revealed no clear
correspondence between ice nucleation and wet viscosity
values. Additionally, Fig. S4(b)† provides further evidence of the
lack of correlation between ice nucleation and wet viscosity
values, with an R-squared value of 0.1. Fatty acid particles are
unlikely to exhibit a correlation with viscosity due to their
propensity for homogeneous freezing, reaching the homoge-
neous freezing limit rather than undergoing heterogeneous
freezing. This characteristic is signicant because viscosity is
known to exert a more substantial inuence within the
temperature range where heterogeneous freezing occurs.
Consequently, we anticipate that the impact of viscosity on ice
nucleation will be more pronounced for processes involving
heterogeneous freezing, which typically occur at temperatures
warmer than those associated with homogeneous freezing.

Additionally, Wright and Petters et al.99 previously demon-
strated that the ice nucleation temperature for Arizona Test
Dust may depend on the cooling rate. Their study showed that
increasing the cooling rate from 0.01 K min−1 to 5 K min−1

resulted in a change in ice nucleation temperature from
−24.02 °C to −25.35 °C. However, no error was reported, and
© 2024 The Author(s). Published by the Royal Society of Chemistry
there was no apparent difference in the effects of the cooling
rate between a different range of 0.05 K min−1 and 5 K min−1.
Our experiment investigated the immersion ice nucleation of
hexadecanol at cooling rates of 3 °C min−1 and 10 °C min−1. We
found that at these cooling rates, the ice nucleation tempera-
tures overlapped in their standard deviation, −23.3 (±0.7) °C
and −21.9 (±1.0) °C, respectively. However, an unpaired t-test
shows these temperatures were statistically signicantly
different (p < 0.0001). The reason for this difference is unclear,
although it can be deduced from previous studies that the
cooling rate or time dependence for ice nucleation can affect the
number of active ice nucleation sites.99 This study does not
distinguish the effects of cooling rate on the freezing tempera-
tures of the other lipid particles but are compared at a rate of
10 °C min−1.
Conclusions and atmospheric
implications

This investigation explored the immersion freezing and IN
potential of marine-relevant lipid particles, both fatty alcohols
and fatty acids. Previous research has established that mono-
layers of fatty alcohols exhibit notable IN capabilities, with their
effectiveness shown to be chain length dependent.77,78,81

However, to our knowledge, no studies have been conducted on
the freezing behavior of fatty alcohol and fatty acid particles.
Our ndings reveal a chain length dependence in the IN ability
of micron-sized fatty alcohol particles, with longer chains
nucleating ice at higher temperatures. However, this
Environ. Sci.: Atmos., 2024, 4, 1239–1254 | 1247
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dependence is not as pronounced as previously for monolayers,
and the ice nucleating temperatures for the particles are
approximately ten degrees lower than that of monolayers.78,85,100

Compared to fatty alcohol particles, fatty acid particles
demonstrate limited efficacy in nucleating ice at warmer
temperatures, similar to what has been observed previously. We
also utilized frozen fraction curves to gain deeper insights into
the characteristics of these ice nuclei. It was noted that certain
curves exhibited a tail to higher temperatures. To understand
this observation in the frozen fraction curves, we conducted
a more detailed analysis of the IN behavior of decanol and
octadecanol. Our ndings revealed that a higher percentage of
smaller droplets nucleate ice at colder temperatures, while
larger droplets nucleate ice at warmer temperatures. These
results suggest a potential correlation between droplet size and
IN temperatures. We also sought to determine the potential
inuence of the phase state of droplets on their freezing
temperatures by estimating their viscosity at their freezing
temperature. Our ndings revealed a correlation between the
phase state of fatty alcohol droplets and IN ability. Our analysis
did not reveal any correlation between the phase state and ice
nucleation for fatty acids, likely due to their tendency to freeze
close to the homogeneous freezing limit. The viscosity effects on
ice nucleation are most notable for the fatty alcohol particles,
which froze at warmer temperatures than the homogeneous
freezing limit compared to the fatty acids and froze at warmer
temperatures with increasing predicted viscosity. No such
dependence was observed in the fatty acid case. However, this
analysis points to a limitation in the viscosity estimation, as it
was parameterized from molecular weight, oxygen-to-carbon
ratios, and estimated mass-based hygroscopicity parameters.
It does not consider the effects of organic anions nor the
different functional groups that could modulate viscosity
through changes in solubility and water content.101 In the case
of carboxylic acids, which are more soluble than fatty alcohols,
it is likely that their viscosities are overestimated.

Solubility also plays an important role in ice nucleation77,78,81

and may affect the relationships between phase state and ice
nucleation of fatty acids and fatty alcohols. Only the fatty
alcohols, less soluble than their fatty acid analogs, froze
heterogeneously, and their ice nucleation temperatures varied
proportionally with chain length and predicted viscosity. The
low solubility of fatty acids and fatty alcohols may also inuence
their effectiveness as ice nuclei.

Recent work by Bieber et al.102 suggests that the ice nucle-
ation mechanism of the bacterium Pseudomonas syringae is
likely induced by larger aggregates and fragments within the
droplet volume. Their ndings also indicate that Snomax,
a protein derived from the bacterium, aligns at the air–water
interface and nucleates ice there. Using hyperspectral imaging,
their study successfully pinpointed the origin of the ice nucle-
ation site. Although our study does not pinpoint the exact origin
of ice nucleation, the data suggests a conceptual understanding
of the process. The migration of components to the air–water
interface, water uptake, and the freezing process depend on the
particle's solubility, droplet surface tension, and the phase of
1248 | Environ. Sci.: Atmos., 2024, 4, 1239–1254
the particle immersed in the droplet at the freezing
temperature.

In Perkins et al.,85 fatty acids mixed with fatty alcohols
applied as a monolayer to liquid water droplets depressed the
freezing temperature of the fatty alcohols. It was suggested that
the fatty alcohols form monolayers resembling the hexagonal
ice crystal structure, which leads to warmer freezing tempera-
tures. Both fatty alcohols and acids in this study exhibit surface
activity. This increased surface activity, compared to that of
liquid water, could impact the water uptake properties of the
nucleus, a process inuenced by temperature.103 Carboxylic
acids, more polar than their alcohol counterparts, form more
hydrogen bonds with water molecules and dissolve more readily
in water.

We hypothesize, supported by our data, that the insoluble
fatty alcohols freeze at warmer temperatures than the fatty
acids, partly by inducing heterogeneous nucleation at the lipid
particle–water interface within the droplet, as opposed to the
air–water interface of fatty alcohol monolayers studied in Per-
kins et al.,85 or within the droplet volume of more soluble fatty
acid particles. A conceptual depiction of this process is shown
in Fig. 7. The predicted elevated viscosities of the semi-solids
(i.e., log(h) $ 2.0), particularly the insoluble fatty alcohols,
suggest limited diffusion of water into the particles. Due to their
low solubility and high viscosity, liquid water accumulates
along the fatty alcohol particle interface, with hydrophilic –OH
groups oriented toward this interface and the hydrophobic tails
remaining within the particle. This orientation may favor
heterogeneous ice formation by aligning with the basal plane of
ice. In contrast, more acidic analogues, while exhibiting similar
predicted viscosity, are more water-soluble. Water diffuses more
readily into the fatty acid particles, where the molecules disso-
ciate and dissolve more easily, potentially raising the barrier for
ice nucleation and resulting in lower activation temperatures.

Research indicates that organic aerosol emissions from
oceans suggest marine INPs could play a signicant role in
facilitating ice-phase transitions in clouds, particularly in
oceanic regions devoid of terrestrial aerosol sources, such as the
Southern Ocean.3,4,17,18,26 In natural environments, fatty acids
and fatty alcohols are integral components of biological
membranes and organic matter.52,54–57 Their presence in atmo-
spheric aerosols and on surfaces can signicantly impact cloud
formation and precipitation processes, thus playing a crucial
role in climate and weather studies.3,4,15 The hydrocarbon
chains in fatty acids and fatty alcohols can organize into
structures resembling ice's crystalline structure.83 This struc-
tural similarity reduces the energy barrier for ice nucleation,
facilitating the formation of ice crystals.

This study investigates the inuence of chain length and the
viscosity of lipid particles on INPs naturally present in nascent
SSA. Limited research had been done previously to understand
the impact of phase state on heterogeneous ice
nucleation.58–60,62 We utilized a theoretical model to calculate
the wet viscosity of lipid particles and examined their effect on
immersion ice nucleation. This study indicates that the more
viscous phase states of organic aerosol components that freeze
at temperatures warmer than the homogeneous freezing limit
© 2024 The Author(s). Published by the Royal Society of Chemistry
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are potentially better ice nuclei, providing a foundation for
further investigation into the signicant impact of phase state
on this process. We have previously demonstrated that the
organic matter in SSA can vary in viscosity depending on the
amount of algal biomass in the seawater, becoming more
viscous with increasing biomass and increasing molecular
weight of organic matter within the particles.104 It follows from
this study that a potentially larger fraction of SSA would be ex-
pected to nucleate ice heterogeneously during phytoplankton
blooms. This was shown in a previous study, demonstrating
higher INP fractions from SSA during the peak of a phyto-
plankton bloom in a marine aerosol reference tank.18 Another
study independently concluded that the SSA components from
phytoplankton blooms in the North Atlantic Ocean during late
spring facilitate IN activity.105 Future research should explore
the immersion ice nucleation behavior of atmospherically
relevant particles while concurrently determining their phase
state to more accurately assess the impact of phase state on
immersion ice nucleation.
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