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Engineered cortical microcircuits for
investigations of neuroplasticity†

Nicolai Winter-Hjelm, *a Pawel Sikorski, b Axel Sandvigac and Ioanna Sandvig*a

Recent advances in neural engineering have opened new ways to investigate the impact of topology on

neural network function. Leveraging microfluidic technologies, it is possible to establish modular circuit

motifs that promote both segregation and integration of information processing in the engineered neural

networks, similar to those observed in vivo. However, the impact of the underlying topologies on network

dynamics and response to pathological perturbation remains largely unresolved. In this work, we

demonstrate the utilization of microfluidic platforms with 12 interconnected nodes to structure modular,

cortical engineered neural networks. By implementing geometrical constraints inspired by a Tesla valve

within the connecting microtunnels, we additionally exert control over the direction of axonal outgrowth

between the nodes. Interfacing these platforms with nanoporous microelectrode arrays reveals that the

resulting laminar cortical networks exhibit pronounced segregated and integrated functional dynamics

across layers, mirroring key elements of the feedforward, hierarchical information processing observed in

the neocortex. The multi-nodal configuration also facilitates selective perturbation of individual nodes

within the networks. To illustrate this, we induced hypoxia, a key factor in the pathogenesis of various

neurological disorders, in well-connected nodes within the networks. Our findings demonstrate that such

perturbations induce ablation of information flow across the hypoxic node, while enabling the study of

plasticity and information processing adaptations in neighboring nodes and neural communication

pathways. In summary, our presented model system recapitulates fundamental attributes of the

microcircuit organization of neocortical neural networks, rendering it highly pertinent for preclinical

neuroscience research. This model system holds promise for yielding new insights into the development,

topological organization, and neuroplasticity mechanisms of the neocortex across the micro- and

mesoscale level, in both healthy and pathological conditions.

Introduction

The underlying microcircuit motifs and architectures of
neural networks play a pivotal role in facilitating efficient
information processing, transfer, and storage within the
brain.1 However, our understanding of how these structural
motifs that emerge during brain development contribute to
efficient neural computations in physiological conditions, or
influence the effect of pathological perturbations, remains
incomplete. This knowledge gap is, in part, attributed to the
inherent challenges of studying brain network dynamics at

the micro- and mesoscale level in vivo. Engineered neural
networks offer a complementary approach to in vivo models
by enabling investigation of neuroplasticity in a controlled
microenvironment in vitro. Engineered neural networks are
based on the inherent property of dissociated neurons to self-
organize over time into complex computational systems,
recapitulating fundamental characteristics of brain
networks.2,3 This process occurs under the influence of
various chemically and physically regulated guidance cues
from the microenvironment that operate in a spatiotemporal
manner in tandem with inherent self-organizing properties of
neurons and their spontaneous electrical activity.4–7 The
presence of topological cues within the neurons'
microenvironment is highly relevant for the emergence of
microcircuit motifs and architectures that mimic the modular
organisation of neural circuits of interest, thereby further
improving the physiological relevance of the model. Current
technologies, such as microfluidics, enable precise
manipulation of network topology. Such platforms promote
establishment of modular networks, where populations of
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neurons are segregated into distinct chambers connected by
micrometer-sized tunnels accessible only to their neurites.8

Recent studies have shown the importance of modularity in
inducing complex dynamics, balancing integrated and
segregated activity akin to that seen across brain regions
in vivo.9–12 By implementing geometrical constraints within the
microtunnels, it is furthermore possible to precisely control the
direction of axonal outgrowth between the distinct populations
of neurons.13–17 This approach, in combination with
microelectrode array (MEA) interfaces enabling
electrophysiological recordings, can be utilised to recapitulate
and study the feedforward microarchitectures observed in many
brain areas. In this way, anatomically relevant microcircuits,
such as the cortical–hippocampal projection, can be established,
thereby providing a robust methodology for studying neural
network function and dysfunction in a controlled setting.11,18

A better understanding of how the underlying structure of
neural networks shapes their dynamics is critical for
deciphering physiological behaviours, as well as network
responses to pathological perturbations.19 Graph theory has
emerged as a prominent mathematical approach for gleaning
meaningful insights into neural network connectivity and
function.20,21 Within this framework, several hallmarks of
efficient neural network organization have been identified,
including small-world properties with high local clustering
and short path length between nodes, and a modular,
hierarchical network architecture that promotes efficient
information flow between distinct parts of the network.21,22

Furthermore, efficient neural circuits typically feature a small
number of highly interconnected hubs, which are critical for
integrating information across distinct network regions.23

These topological traits, believed to be genetically encoded in
the neurons for instructing neural self-organization, are
hypothesized to minimize the metabolic cost of the network
while maintaining efficient information flow.24–26 Analyzing
and recognizing such traits can provide insights into the
computational complexity of neural networks in both in vivo
and in vitro settings.27–30

Neocortical microcircuits, characterized by their well-
defined, layered input/output structure, is a compelling
system to engineer using modular, directional microfluidic
platforms.31 The neocortex represents one of the most
intricate structures in the human brain, being responsible
for a broad spectrum of functions, ranging from storage of
working memory and predictive coding to various cognitive
and sensorimotor tasks.32–36 While exhibiting diverse
functions across distinct cortical regions, the entire neocortex
is theorized to comprise canonical elementary processing
units known as minicolumns.37–40 The precise function of
such minicolumns in cortical processing is still under debate,
yet they are believed to represent fundamental units of
cortical organization. Furthermore, cortical networks exhibit
complex spatiotemporal activity patterns during
development, even in the absence of external input, both
in vivo and in vitro.2,3,13,41–44 Additionally, cortical circuits
demonstrate a remarkable ability to undergo plasticity

changes during development and in response to external
stimuli or damage.45–47 Thus, the layered structural
organization, intricate spontaneous functional dynamics and
extensive plasticity of neocortical microcircuits render them
compelling motifs for investigation under controlled
conditions in vitro, offering valuable insights into the
structure–function relationships of such circuits.

In this study, we present an advanced microfluidic
MEA model for recapitulating the feedforward,
hierarchical architecture of the neocortex in vitro.
Furthermore, we demonstrate the utility of this model
system for studying network plasticity in response to
selective perturbation of hub nodes that are central for
information flow between higher and lower nodes in the
structured hierarchy. We evaluate changes in the
networks' information processing by analyzing both
spontaneously evoked and stimulation-induced activity
and apply connectomics and graph theory to study
alterations in information flow within the networks. We
thus present an engineered cortical microcircuit model
that facilitates the investigation of developmental network
dynamics, as well as its behaviour under physiological
and pathological conditions.

Materials and methods
Design & fabrication of microdevices

The design of the microfluidic MEA was created using Clewin
4 (WieWeb Software, Enschede), as depicted in Fig. S1.† The
platform was organized hierarchically into four distinct layers
with a feedforward architecture consisting of 12
interconnected chambers, referred to as nodes. Each node
had a diameter of 3.5 mm. Two and two nodes were
interconnected by 20 microtunnels, each 350 μm long, 10 μm
wide and 5 μm high. These channels had geometries inspired
by the Tesla valve to induce unidirectional axonal outgrowth
between the nodes.13 Additionally, spine structures were
integrated on the postsynaptic side to misguide any
outgrowing axons trying to enter the tunnels in the
unintended direction.17 The MEAs were engineered to be
compatible with a MEA2100 workstation from Multichannel
Systems. Electrodes, measuring 2 mm in length and 10 μm
in width, were strategically positioned across each channel
area, as well as at the entrances and exits of each tunnel area,
to monitor all activity propagation between the nodes.
Furthermore, two electrodes were placed in each of the nodes
in layer 1 and layer 4, with an additional electrode positioned
in node 4. All electrodes were functionalized with a thin layer
of highly nanoporous platinum to enhance their signal-to-
noise ratio. A reference electrode was also positioned in each
of the 12 nodes, with all reference electrodes connected to
the same channel on the recording system. The fabrication of
all microelectrode arrays followed our recently reported
protocol.13 Six separate MEAs were used for the cell
experiments.
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Coating, cell plating and maintenance

An overview of the experimental timeline is depicted in
Fig. 1A. Prior to coating, all interfaces underwent sterilization
in UV light for a minimum of 1 h. Subsequently, the samples
were soaked in DMEM, low glucose (Gibco™, 11885084) for
at least 48 h to remove any potentially toxic, uncured PDMS
left in the microfluidic chips. The interfaces were then coated
with 0.1 mg ml−1 poly-L-ornithine solution (PLO) (Sigma-
Aldrich, A-004-C) overnight in a fridge at 4 °C. The following
day, all chambers were washed three times with Milli-Q (MQ)
water to remove unattached PLO, before coating the surfaces
with a laminin solution consisting of 16 μg mL−1 natural
mouse laminin (Gibco™, 23017015) diluted in phosphate-
buffered saline (PBS, Sigma-Aldrich, D8537) at 37 °C, 5% CO2

for 2 h. To ensure flow of the coating solution through the
microtunnels, a hydrostatic pressure gradient was established
between the chambers by filling them with varying amounts
of the solution.

An astrocytic feeder layer was plated two days prior to
plating of neurons. Astrocyte medium consisted of DMEM,
low glucose supplemented with 15% fetal bovine serum
(Sigma-Aldrich, F9665) and 2% penicillin–streptomycin
(Sigma-Aldrich, P4333). Rat astrocytes (Gibco™, N7745100)
were plated at a density of 50 cells per mm2, equivalent to
750 cells per culturing chamber. The cells were allowed to
expand for two days before the plating of neurons. The
astrocyte medium was subsequently replaced by neuronal
medium consisting of Neurobasal Plus Medium (Gibco™,
A3582801) supplemented with 2% B27 Plus (Gibco™,
A358201), 1% GlutaMax (Gibco™, 35050038) and 2%
penicillin–streptomycin (Sigma-Aldrich, P4333). 0.1% Rock
Inhibitor (Y-27632 dihydrochloride, Y0503, Sigma-Aldrich)
was included in the medium during plating to enhance cell
viability. Sprague Dawley rat cortical neurons (Gibco, A36511)
were plated at a density of 500 cells per mm2, i.e., 7500 cells
per chamber. Following this, half the cell medium was
replaced with fresh neuronal medium at 4 h and 24 h after

Fig. 1 Experimental setup. (A.) Experimental timeline for cell experiments. An astrocytic feeder layer was plated two days prior to plating of
neurons. Baseline recordings were conducted at 16 and 20 days in vitro (DIV). At 21 DIV, localized hypoxia was induced in one of the central nodes
in layer 3 using CoCl2. Electrophysiological recordings were subsequently conducted every second day until 28 DIV. (B.) Schematic illustrating the
organization of the 12 nodes, arranged into four distinct layers containing 2, 3, 4, and 3 nodes, respectively. Stimulations were administered
following the recordings of spontaneously evoked activity from 20 to 28 DIV. Each stimulation session consisted of 10 consecutive spikes with a
10 s interspike interval and was applied to all input and output nodes (nodes 1, 2, 10, 11 & 12) in increasing order based on their node numbers.
The illustrations are not drawn to scale.
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plating. Subsequently, the medium was replaced every second
day throughout the experimental period. All electrophysiology
experiments were conducted using cells from the same
batches and cell vials.

Immunocytochemistry

For immunocytochemistry, cells were plated in microfluidic
platforms bonded to glass coverslips (VWR International, 24
× 24 mm No. 1 Menzel-Gläser). Prior to fixation, cells were
washed with PBS to remove debris. Fixation was performed
for 15 min at room temperature using glyoxal solution
comprising 20% absolute ethanol (Kemetyl, 100%), 8.0%
glyoxal solution (Sigma-Aldrich, 128465), and 1% acetic acid
(Sigma-Aldrich, 1.00063) in MQ-water.48 Following fixation,
the cells underwent three consecutive PBS washes, each
lasting 15 min. Subsequently, cells were permeabilized with
0.5% Triton-X (Sigma-Aldrich, 1086431000) diluted in PBS,
followed by two additional PBS washes to remove excess
Triton-X. The cells were then blocked with a solution
consisting of 5% goat serum (Abcam, ab7481) diluted in PBS
and incubated at room temperature on a shaking table at 30
rpm for 1 h. Primary antibody solutions, prepared in PBS
with 5% goat serum as well as antibodies at concentrations
listed in Table 1, were added to the cells. The cultures were
then incubated overnight on a shaker table at 30 rpm at 4 °C.
The following day, cells were rinsed three times with PBS for
15 min each, followed by incubation with 0.2% secondary
antibodies diluted in PBS and 5% goat serum at room
temperature for 3 h on a shaker table at 30 rpm. Prior to
application, the secondary antibody solution was centrifuged
at 6000 rpm for at least 15 min to remove precipitates.
Subsequently, 0.1% Hoechst (Abcam, ab228550) diluted in
PBS was added to the cultures, and the cultures were
incubated for an additional 30 min on the shaker table.
Before imaging, all cultures underwent three PBS washes
followed by two rinses in MQ water.

Viral transductions for structural characterization

To induce ubiquitous expression of GFP and mCherry within
distinct nodes, viral transductions were performed using an
AAV 2/1 serotype construct containing either pAAV-CMV-beta
globin intron-EGFP-WPRE-PolyA or pAAV-CMV-beta globin
intron-mCherry-WPRE-PolyA plasmids driven by a CMV
promoter. The viral vectors were produced in-house by
Rajeevkumar Raveendran Nair at the Viral Vector Core

Facility, NTNU. Transductions were conducted at 9 DIV (n =
4). Initially, 3/4 of the neuronal media in the nodes located
in layers 1 and 3 of the 12-nodal microfluidic chips were
aspirated, and viruses for expression of GFP were introduced
at a concentration of 5e2 viruses per cell. After a 3 h
incubation period, the transduced nodes were replenished
with fresh media. Subsequently, 3/4 of the media in the
nodes situated in layers 2 and 4 were removed, and viruses
for expression of mCherry were applied at a concentration of
5e2 viruses per cell. Following another 3 h of incubation,
these node were also replenished with fresh media. Network
imaging was conducted at 21 DIV (prior to induction of
hypoxia) and at 28 DIV.

Quantitative analysis of structural unidirectionality was
not conducted due to the inherent limitations of such
methods. While this type of analysis can offer valuable
insights into network structure, it may not capture all
neuritic processes, as factors such as varying axon diameters,
neurite growth across multiple layers, and multiple
collaterals from a single axon can significantly bias
fluorescence intensity. Consequently, we opted to focus on
quantitative analysis of the functional network profile rather
than the structural one.

Chemical perturbation to induce hypoxia

Cobalt chloride (CoCl2) (Merck, 15862) was used to induce
hypoxia in either node 7 or 8 at 21 DIV.49 The node
demonstrating the greatest functional connectivity among
the electrodes within the incoming and outgoing
microtunnels of the node at 21 DIV was selected for
perturbation. Initially, 3/4 of the media in the targeted node
were removed, followed by the addition of fresh cell media
containing 1000 μM CoCl2. To keep the impact of the
perturbation localized to a single node, the chamber was
filled only up to half its volume, thereby establishing a
hydrostatic pressure gradient between the targeted and
neighboring nodes. This yielded an overall concentration of
500 μM CoCl2 in the targeted node.

Calcium imaging

To conduct calcium imaging, the cells in 6 microfluidic chips
bonded to glass coverslips (VWR International, 24 × 24 mm No.
1 Menzel-Gläser) were transduced with in-house prepared viral
vectors with an AAV8 serotype construct containing pAAV.CAG.
GCaMP6s.WPRE.SV40 plasmids (Addgene, 100844). The cells
were transduced at 17 DIV by replacing the cell medium with
fresh neuronal medium containing a viral load of 5e2 viruses
per cell. Imaging was conducted between 20–28 DIV.

Imaging

Fluorescence microscopy and calcium imaging were
performed using either an EVOS M5000 microscope
(Invitrogen) or an EVOS7000 microscope with an onstage
incubator (Invitrogen). DAPI (AMEP4650), CY5 (AMEP4656),
GFP (AMEP4651) and TxRed (AMEP4655) LED light cubes

Table 1 Antibodies and concentrations used for immunocytochemistry

Marker Catalogue number Concentration

GFAP Ab7260 1/1000
NeuN Ab279295 1/500
Neurofilament heavy Ab4680 1/5000
PSD95 Ab13552 1/250
Synaptophysin Ab32127 1/500

All antibodies were purchased from Abcam.
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and Olympus UPLSAP0 4×/0.16 NA and 20×/0.75 NA
objectives were utilized. Post-processing of images was
conducted in ImageJ/Fiji or Adobe Photoshop 2020. For the
calcium imaging, the microfluidic chips were covered by a
custom-designed 3D-printed cap (UltiMaker Cura 3D printer)
covered with a gas permeable membrane (MEA Membrane
Cover, ALA scientific instruments). Recordings were
conducted for 2 min at 3 frames per s.

Electrophysiological recordings

Electrophysiological recordings were performed using a
MEA2100 workstation (Multichannel Systems) with the
sampling rate set to 25 000 Hz. This rate significantly exceeds
the Nyquist frequency needed for neural spikes, which
typically range from 300 to 3000 Hz, enabling detailed
characterization of spike shapes. With neural spikes generally
lasting 1–2 ms, this sampling rate provides at least 25 to 50
data points per spike, improving the accuracy of both spike
and burst detection. A constant temperature of 37 °C was
maintained using a temperature controller (TC01,
Multichannel Systems). Sterility of the cultures during
recordings was ensured by employing a 3D-printed plastic
cap with a gas permeable membrane (MEA Membrane Cover,
ALA scientific instruments). Prior to recordings, the neural
networks were allowed to equilibrate for 5 min on the
recording stage, followed by a 15 min recording period. This
recording time was chosen to ensure the detection of a
sufficient number of network-wide events for robust
statistical analysis, while minimizing the duration that the
neural networks needed to be outside the incubator. All
recordings were conducted 24 h after media changes.

Electrical stimulations

Stimulations were applied subsequent to the recordings of
spontaneous network activity on 20, 22, 24, 26 and 28 DIV.
The stimulation protocol applied a series of 10 consecutive
pulses at ±800 mV amplitude (positive phase first), each
lasting 200 μs, with an interspike interval of 10 s (Fig. 1B).
These stimulation parameters were selected to elicit a
sufficient response from nearby neurons while staying within
the “water window” to prevent potentially harmful
electrochemical reactions, such as oxidation and reduction,
that could compromise neuronal viability.50 Nodes 1, 2, 10,
11 and 12 in layers 1 and 4 of the 12-nodal networks were
selected for stimulation to verify the establishment of
functional feedforward microcircuits. Stimulations were
applied to the nodes in increasing order. Each spike train
was delivered to the most active electrode positioned at the
center of the targeted node, determined by the firing rate of
the electrodes.

Data analysis calcium imaging

For analysis of the calcium imaging recordings, the open-
source software CALIMA was utilized.51,52 Downscaling was
set to 2× to shorten execution time prior to analysis. The

standard deviation was set to 2.5, 3.5 and 0.003 for the three
Gaussian filters employed by the software to detect regions of
interest (ROI), respectively. Spike detection was based on the
mean values (ΔF/F0) per ROI, and parameters were set to 10 s
windows, a Z-score of 3.0 and an m value of 0.6. Matlab
R2021b was used for further analysis. The SpikeRasterPlot
function developed by Kraus53 was adapted and used for
creating raster plots.

Data analysis electrophysiology

Data analysis was performed using Matlab R2021b, with
graphs plotted using the linspecer function, based on the
colorBrewer palette.54,55 To preprocess the data, a 4th-order
Butterworth bandpass filter was applied to remove
frequencies below 300 Hz and above 3000 Hz. Additionally,
noise from the power supply mains at 50 Hz was eliminated
using a notch filter. Zero-phase digital filtering was employed
to avoid group delay in the output signal. Spike detection was
carried out using the Precise Timing Spike Detection (PTSD)
algorithm developed by Maccione et al.56 The data was
thresholded at 8 times the standard deviation of the noise,
with maximum peak duration and refractory time set to 1 ms
and 1.6 ms, respectively. This threshold was selected based
on the method established in the original paper and
validated through visual inspection.56 The SpikeRasterPlot
function developed by Kraus53 was adapted to create raster
plots.

After binning the data into 50 ms time bins, functional
connectivity was analyzed using Pearson correlation. To
visualize key network features, graphs were plotted with
electrodes as nodes and Pearson correlation as edges. Edges
with connectivity less than 0.05 were removed to highlight
only the strongest connections. Node color was used to
represent firing rate (Hz), while node size corresponded to
PageRank centrality. Community detection was performed
using the Louvain algorithm, which delineated nodes into
distinct communities based on the strength of their
interconnections.57 Node edge colors in the graphs indicated
community membership. Graph theoretical measures
represented in the graphs were calculated using the Brain
Connectivity Toolbox developed by Rubinov & Sporns.58

To calculate the path length between nodes in layers 1
and 4 of the networks, the inverse of the summed correlation
between nodes was utilized. Specifically, the correlation for
distinct paths was determined by summing the correlations
between nodes/tunnels along the path. For example, for path
1 going from node 1 to 10, a sum of the correlation between
the electrodes in node 1 and tunnel 1, tunnel 1 and tunnel 2,
tunnel 2 and tunnel 3 and tunnel 3 and node 10 was used. If
one or more correlation values were zero, the path length was
considered infinite and the data point not included in the
graph. The total path length between two nodes was
calculated by summing the path lengths of all available paths
connecting the nodes.
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To remove stimulation artifacts, the stimulation data was
processed using the SALPA filter developed by Wagenaar
et al.59 Additionally, 15 ms of filtered data was blanked
following each stimulation time point. The data was then
binned into 30 ms time intervals, and peristimulus time
histograms (PSTHs) of the average response of stimulations
in each tunnel were plotted. Tunnels were considered active
if they exhibited an integrated average response of at least 10

spikes within the first 300 ms following the stimulations,
which served as the threshold for evaluating stimulation-
evoked propagation of activity across the layers. All PSTHs
were additionally manually inspected to identify false
negatives and false positives. This decision was based on the
presence of clearly distinguishable peaks and whether these
peaks followed the correct order according to the sequence of
the channels between the nodes.

Fig. 2 Establishment of mature feedforward, hierarchical neural microcircuits within the 12-nodal platforms. (A.) Micrograph showing a neural
network growing on top of a microelectrode array (MEA) at 21 days in vitro (DIV). The white boxes outline aggregated clusters of neurons. (B.)
Micrograph illustrating the outgrowth of axons through the Tesla valve microtunnels at 21 DIV. Three electrodes can be seen spanning the width
of the tunnels to capture neural activity propagating across the two displayed nodes. (C.) Micrographs of a 12-nodal network with neurons
expressing either GFP (layers 1 and 3, magenta) or mCherry (layers 2 and 4, cyan) at 28 DIV. The images show how the Tesla valve microfluidic
tunnels promote feedforward axonal outgrowth, by rerouting axons growing in the unintended direction back to their node of origin. (D.)
Immunocytochemistry micrograph showing that the neural networks reached a mature state by 27 DIV, indicated by the presence of the mature
structural and nuclei markers neurofilament heavy (NFH) and NeuN, respectively. (E.) Immunocytochemistry micrograph showing the
colocalization of the pre- and postsynaptic markers synaptophysin and PSD95, indicating the establishment of mature synapses.
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Results
The 12-nodal microfluidic devices facilitate establishment of
feedforward, hierarchical cortical microcircuits

To assess the efficacy of the 12-nodal microfluidic platform
in fostering the development of mature feedforward,
hierarchical neural microcircuits, structural characterization
was conducted using immunocytochemistry, optical, and
fluorescence microscopy. By 16 DIV, neurons had organized
into densely connected networks within the individual nodes
(Fig. 2A) and established long-range connections across the
microtunnels interconnecting the nodes (Fig. 2B). Geometric
features inspired by the Tesla valve design were integrated
into the microtunnels to promote unidirectional axonal
outgrowth between the nodes, complemented by saw-tooth
structures on the postsynaptic side to prevent axons from
finding the inlets.13 The application of viral tools facilitated
the expression of different fluorescent probes in distinct

nodes of the multi-layer cortical networks. This confirmed
the effectiveness of the Tesla valves in redirecting axons from
the postsynaptic node back to their node of origin while
guiding axons from the presynaptic node to the opposite
node (Fig. 2C). Furthermore, immunocytochemistry validated
the structural maturation of the networks within the nodes
by 21 DIV, with the markers neural nuclear protein (NeuN)
and neurofilament heavy (NFH) (Fig. 2D).60,61 Additionally,
GFAP staining was employed to identify the astrocytic feeder
layer.62 Colocalization of the pre- and postsynaptic markers
synaptophysin and PSD95 confirmed the presence of mature
synaptic connections in the networks (Fig. 2E).63,64 Overall,
this characterization confirmed structural and functional
maturity, with networks exhibiting a feedforward,
hierarchical architecture across the distinct layers and nodes.

At 16 DIV, electrophysiological recordings unveiled a
complex functional interplay of segregated and integrated
activity across all network layers and nodes (Fig. S2†).

Fig. 3 Electrophysiological characterization of information flow in the laminar cortical microcircuits. (A.) Schematic of the 12 nodes organized
into 4 layers. Boxes indicate where the voltage traces, shown in the insets to the right, were recorded. The insets display a representative burst
propagating from layer 1 to layer 4 through the connecting tunnels. (B.) and (C.) Peristimulus time histograms (PSTHs) displaying the average
response of 10 consecutive stimulations in each of the three tunnels connecting layer 1 to layer 4 in the hierarchy, when stimulating nodes in layer
1 and 4, respectively. Stimulations in one of the nodes of layer 1 induced clear responses in the consecutive layers, while no response was
observed beyond the first tunnels upon stimulation of the nodes in layer 4. (D.) Histogram showing percentage of stimulation induced activity
spanning 1, 2 or 3 layers when stimulating nodes in layer 1 (forward) or 4 (backward), respectively. While more than 50% of available pathways
exhibited activity propagating across all three layers of microtunnels in the feedforward direction, stimulations to the nodes in layer 4 did not
evoke detectable responses beyond the first layer of microtunnels in more than 99% of available pathways in the backward direction.
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Network-wide bursts were observed propagating from the
bottom layer (layer 1) to the uppermost layer (layer 4) of
nodes across the three layers of microtunnels (Fig. 3A).
Additionally, externally applied electrical stimulations to the
nodes in layer 1 of the networks induced activity that
propagated across all three layers of microtunnels in more
than 50% of the available pathways. In contrast, stimulations
to the nodes in layer 4 did not evoke detectable responses
beyond the first layer of microtunnels in over 99% of
available pathways (Fig. 3B–D). 60% of stimulation-induced
activity in layer 4 was detected in the first layer of

microtunnels, i.e., between layer 3 and 4. However, it is worth
noting that the electrodes detecting this activity were
positioned halfway through the tunnels, and is not
representative of activity propagating across the full length of
the tunnels. Nevertheless, these findings illustrate a defined
hierarchical structural and functional organization within the
networks, with potent propagation of activity from layer 1 to
layer 4, but limited propagation of activity in the opposite
direction from layer 4 to the lower layers.

In addition to MEA-based electrophysiology, calcium
imaging was utilized to examine activity within distinct nodes

Fig. 4 Induction of localized perturbation to a hub node. (A.) Micrograph depicting a healthy neural network prior to perturbation at 21 days
in vitro (DIV). The enlarged inset illustrates the healthy attachment of the neural network, with white arrows highlighting the neural somata. (B.)
Micrograph illustrating the fragmentation of the same neural network 4 days after perturbation. The enlarged inset shows the neural network
detachment, with a white arrow pointing to a cluster of detached neurons. (C.) Micrograph displaying the microtunnels connecting a healthy
presynaptic node and a perturbed postsynaptic node 7 days after perturbation. The enlarged inset highlights neurite fragmentation as they enter
the node from the microtunnels, with white arrows pointing to detached neurons in the perturbed node. (D.) Micrograph showing the presynaptic
side of microtunnels leading to a perturbed node, depicting the retraction of neurites growing towards the perturbed node. The enlarged inset
highlights neurite fragmentation at the presynaptic node as they enter the microtunnels, with white arrows pointing to clusters of detached
neurons. (E.) Micrograph of a 12-nodal network with neurons expressing either GFP (layer 1 and 3, magenta) or mCherry (layer 2 and 4, cyan). The
image demonstrates the clear difference in fluorescence intensity within the perturbed node (white box) compared to the surrounding,
unperturbed nodes. (F.) Firing rate detected by electrodes within the microtunnels connected to the perturbed node, exhibiting a steep decline
following perturbation at 21 DIV. (G.) Correlation between the activity detected by the electrodes in the microtunnels directly adjacent the
perturbed node, indicating the extent to which activity entering the node elicits an outgoing response. A steep decline can be seen following
perturbations at 21 DIV. In figures F and G, each point represents a recording from an individual neural network at a specific developmental time
point (DIV), with a total of n = 6 networks. The thick dark gray line shows the mean value, and the shaded area represents the standard deviation.

Lab on a Chip Paper

Pu
bl

is
he

d 
on

 0
3 

se
pt

em
br

is
 2

02
4.

 D
ow

nl
oa

de
d 

by
 F

ai
l O

pe
n 

on
 0

7.
05

.2
02

5 
08

:1
3:

49
. 

View Article Online

https://doi.org/10.1039/d4lc00546e


4982 | Lab Chip, 2024, 24, 4974–4988 This journal is © The Royal Society of Chemistry 2024

in greater spatial detail (Fig. S3A†). This technique was
employed to investigate whether the multi-nodal design, with
multiple inputs to each node, influenced the synchronization
of activity within the individual nodes. The calcium imaging
revealed high degrees of intranodal synchrony across all
layers, including the top layer receiving inputs along multiple
pathways (Fig. S3B and C†). This finding not only
demonstrated the efficacy of the design in promoting
coordinated neural activity but also highlighted the potential
for combining electrophysiology and calcium imaging on
these platforms to study structure–function dynamics with
high spatiotemporal precision. Additionally, the observed
synchrony both across and within the nodes underscored the
functional maturation of the networks, setting a reliable
baseline for the perturbations performed at 21 DIV.

Localized perturbations induce node ablation and alters the
network connectome

To demonstrate the applicability of the model system in
studying neuroplasticity in response to localized
perturbations, chemical hypoxia was induced in a central
node of layer 3 at 21 DIV. Neural networks rely critically on a
continuous supply of oxygen for healthy functioning, and
hypoxia has been implicated in the pathogenesis of several
neurodegenerative diseases.29,65,66 In the days following the

perturbation, all networks exhibited rapid and extensive
fragmentation within the targeted node (Fig. 4A and B).
This fragmentation was particularly noticeable towards the
center of the targeted nodes, but could also be observed
extending towards the microtunnels (Fig. 4C). Moreover,
axons entering the targeted node were observed to retract
from the tunnels over time (Fig. 4D). However, the
perturbation did not significantly impact the viability of the
neurons within the neighboring nodes (Fig. 4E). Analysis of
electrophysiological activity detected by electrodes in the
microtunnels leading to the targeted nodes revealed a rapid
functional disconnection of the nodes from the remaining
parts of the networks (Fig. 4F and G). These results clearly
demonstrate that induction of hypoxia had a detrimental
impact on the structural and functional connectivity of the
targeted nodes within the first 24 h following perturbation,
as intended.

To investigate dynamic changes in the functional
connectome of the networks before and after perturbation,
graph theoretical analysis was applied. Initially, at 16 DIV,
robust interconnectivity was evident throughout the networks
(Fig. 5A). By 20 DIV, a subtle decrease in functional
connectivity was observed, potentially reflecting network
pruning and refinement as the networks matured (Fig. 5B).
Based on the recordings at 20 DIV, Pearson correlation was
used to identify the most central node in layer 3 for

Fig. 5 Dynamic changes in the network connectome before and after perturbation. (A.)–(D.) Representative graphs of a single 12-nodal network at
16, 20, 24 and 28 days in vitro (DIV). The graphs depict individual electrodes as nodes and their correlation as edges. Node color represents firing
rate, node size represents PageRank centrality, and the color of edges around the nodes represents community belonging based on the Louvain
algorithm. Following perturbation at 21 DIV, it is evident how functional connectivity across the hypoxic node is disrupted. Additionally, a
strengthening of functional connections in unperturbed parts of the networks is observed at 24 DIV.
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functional integration between layer 1 and layer 4 of each
network (outlined with a pink arrow in Fig. 5B). This node
was subsequently selected for perturbation at 21 DIV. By 24
DIV, 3 days following the perturbation, functional
connectivity across the targeted node was markedly
disrupted, while functional connections in unperturbed
regions of the networks appeared strengthened (Fig. 5C). By
28 DIV, further refinement and alterations in the connectome
were apparent, as evidenced by the differential delineation of
the networks into distinct communities using the Louvain
algorithm (Fig. 5D). In summary, the application of graph
theory revealed dynamic alterations in the functional
connectome of the 12-nodal neural networks following
localized perturbation, highlighting the intricate adaptive
responses and network reorganization processes in response
to perturbation. Furthermore, these graph representations
demonstrate the strength of integrating multiple metrics—
such as community structure, centrality, and firing
characteristics—to reveal distinct changes in network
parameters over time, both individually and in combination.
This approach can be used to study how different parts of
the network participate in adaptive and maladaptive
responses to induced perturbations.

The hierarchical microfluidic layout enables investigations of
plasticity in information transmission pathways following
localized perturbation

To evaluate plasticity changes in the networks following
localized perturbation, its impact on information processing
pathways going between layer 1 and 4 was evaluated (Fig. 6A
and S4†). The path length between nodes was calculated as
the inverse of the correlation, summing over all paths
connecting two nodes. Path lengths increased over time, with
the degree of increase contingent on the centrality of the
hypoxic node in information transmission (Fig. 6B and S5†).
Additionally, individual networks exhibited differential
susceptibility to the perturbation, with some maintaining
more robust and consistent paths between nodes in layer 1
and 4 post-perturbation. For instance, node 1 had a total of
three pathways connecting it to node 10 (paths 1, 2 and 4),
with two of these pathways passing directly through the
targeted node (paths 2 and 4) (Fig. 6A). The lateral pathway
to the hypoxic node (path 1) maintained a consistent path
length over time, both before and after perturbation
(Fig. 6C). Conversely, the paths through the hypoxic node
(paths 2 and 4) exhibited increased path length over time,

Fig. 6 Alterations in information processing pathways following localized perturbation. (A.) Schematic illustrating changes in the three information
processing pathways between node 1 in layer 1 and node 10 in layer 4 following perturbation of a central node in layer 3. (B.) Graph showing
changes in path length between node 1 and node 10 before and after localized perturbation. The path length increases gradually over time, with
varying degrees across the individual networks. (C.) Graph depicting the path length of the only pathway not passing through the hypoxic node
connecting node 1 and 10. A slight decline in path length is observed the day after perturbation, followed by a gradual increase over time. (D.)
Graph displaying the path length of one of the other two pathways connecting node 1 and node 10, going directly through the hypoxic node. A
decreasing number of networks maintain functional connections through the hypoxic node over time, as reflected by the increased path length
and diminishing number of data points. For figures B–D, each point represents a recording from an individual neural network at a specific
developmental time point (DIV), with a total of n = 6 networks. The thick darker line shows the mean value, and the shaded area represents the
standard deviation.
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with an increasing number of networks showing functionally
disrupted pathways as time progressed post-perturbation
(Fig. 6D and S6H†). Similar results were found for the
pathways connecting the other nodes (Fig. S6†). These results
demonstrate the robustness of this model system for
studying plasticity changes in the functional connectome
following localized perturbations.

Perturbation alters stimulation responsiveness across
pathways

To assess the effects of localized perturbation on signal
transmission within the networks, changes in the forward
propagation of stimulation-induced activity from layer 1 to
layer 4 were analysed between 20 and 28 DIV. The majority of
pathways not passing through the hypoxic node maintained
their sensitivity to stimulations, displaying a consistent
response in the days following the localized perturbation
(Fig. 7A). In contrast, pathways that passed directly through
the perturbed node showed a gradual decline in

responsiveness over time (Fig. 7B and C). Prior to
perturbations, stimulations induced activity that propagated
across all three layers of microtunnels in more than 40% of
all available pathways. By 22 DIV, one day after the
perturbation, there was a 10% increase in activated pathways
going around the hypoxic node, reaching 56.2%, while less
than 3% of pathways passing through the hypoxic node
exhibited activity propagating through all three layers of
microtunnels (Fig. 7D). Although pathways going around the
hypoxic nodes also showed a moderate decline in
responsiveness to stimulations past 22 DIV, the extent of this
decline was less pronounced compared to the pathways
passing through the hypoxic node. External stimulations were
also applied to all nodes in level 4 between 20 to 28 DIV,
confirming maintenance of a feedforward microcircuit
configuration by the absence of activity propagating beyond
the first layer of microtunnels (results not shown). This
analysis reveals that localized perturbations disrupted signal
transmission within the networks, with pathways directly
passing through the perturbed node showing a gradual

Fig. 7 Alterations in the propagation of stimulation-evoked activity following localized perturbation. (A.) Peristimulus time histograms (PSTHs)
displaying the average response of 10 consecutive stimulations going through an unperturbed pathway between node 1 and 10 at 20 and 28 days
in vitro (DIV). The response to stimulation remained consistent over time. (B.) PSTHs displaying the average response of 10 consecutive stimulations
across a pathway going through the hypoxic node between node 1 and 10 at 20 and 28 DIV. A progressive decrease in response is observed across
tunnels 2 and 3 between 20 and 28 DIV. (C.) Schematic illustrating the pathway going around the hypoxic node, and the pathway passing directly
through the hypoxic node in figures A and B. (D.) Histogram showing the percentage of stimulation-induced activity spanning 1, 2, or 3 layers of
microtunnels when stimulating nodes in layer 1 over time for n = 6 networks. Blue boxes represent pathways that do not pass through the
perturbed node, while pink boxes represent pathways that pass directly through the perturbed node. The propagation of stimulation-evoked
activity is markedly reduced in the pathways going through the hypoxic node, in contrast to the more moderate reduction seen in pathways going
around the hypoxic node.
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decline in responsiveness over time, while pathways going
around the targeted node maintained a more stable response
to stimulations.

Discussion

In this study, we have demonstrated an advanced model
system for structuring and studying hierarchical multi-nodal
cortical neural networks with controlled connectivity in vitro.
Neocortical microcircuits have a well-defined, layered
structure with controlled, feedforward axonal projections
connecting the distinct layers. The model system presented
here recapitulates the fundamental attributes of this
structure through the implementation of controlled
topological constraints. We show that selective perturbation
of an identified hub node within the network abolished
information flow across the targeted node and significantly
influenced neighboring pathways for information
transmission in the multilayer networks. These results
illustrate the powerful potential of neuroengineering
approaches to model physiologically relevant neural
microcircuits with predefined hierarchies.

Such engineered neocortical circuits are highly relevant
for disease modelling. A range of neurological and
psychiatric disorders, among others Alzheimer's disease,
schizophrenia, stroke and Huntington's disease, are linked to
abnormalities in the neocortex.67–70 Numerous studies have
shown that brain networks from patients with these
conditions exhibit clear deviations from those of healthy
subjects.71,72 One such deviation is the increased
vulnerability of hub areas to pathological perturbations.73–75

Over time, pathological damage to these hubs leads to
overload and node failure as the node cannot handle the
massive amount of incoming information, likely due to the
high energetic demand required to maintain them.76 Due to
their central role in network integration, failure of these hubs
can thus have widespread effects on network function.25

Microfluidic models harbor substantial, albeit underutilized,
potential for elucidating pathological mechanisms and
changes in network dynamics within controlled
microenvironments.77,78 For example, several studies have
illustrated how the dysfunction of one node affects the
function of connected healthy nodes in various diseases,
including how misfolded protein aggregates can spread in
such networks.11,79–82 A key advantage of the presented
model system is that it enables the application of localized
perturbations to individual nodes within a complex network
hierarchy, while allowing precise monitoring of
spatiotemporal changes in neighboring areas, as
demonstrated. Various types of perturbations can be applied
to study their impact on network functionality, ranging from
electrical,83 chemical,84 chemogenetic,85 to
pharmacological.86–88 Additionally, by selectively perturbing
distinct nodes within the 12-nodal interface, it is also
possible to analyze how the centrality of different nodes
influences network functionality and adaptation to damage.

The inherent plasticity of cortical networks renders them
particularly suitable for such investigations.89,90

Several models have been proposed to explain the changes
in brain network dynamics over time in the presence of
disease or trauma, yet a unified understanding remains
elusive.91 Furthermore, a persistent challenge lies in the
significant variability of both structural and functional
alterations observed across studies.74 For instance, in
Alzheimer's disease, some studies report increased path
length and decreased global efficiency with time, while
others have observed the opposite.72,92–96 This underscores
the complexity of brain network alterations in response to
trauma and disease, and the importance of improved model
systems to study dynamic changes at early stages to
understand and predict their progression and impact at
multiple spatiotemporal scales. Engineering neural networks
with multiple layers and pathways connecting the different
nodes across these layers, as shown here, can facilitate the
examination of a wide spectrum of adaptive and maladaptive
responses to induced or inherent pathological perturbations.
This includes the study of compensatory mechanisms such
as neural reserves or degeneracy, where in the presence of an
evolving perturbation, other network components can
compensate for the damage.25,97,98 The emergence of new
functional connections and the strengthening of existing
ones in non-perturbed pathways three days after perturbation
demonstrate that the presented model system can effectively
recapitulate such compensatory mechanisms in vitro. While
most studies to date have employed a two-nodal device
featuring one healthy and one diseased population, the larger
number of nodes adopted in this study offers a distinct
advantage. Overall, the intricate design of the presented
hierarchical platform facilitates the study of a wide range of
connectomic adaptations to localized perturbations.

Engineered neural networks can exhibit variations in
developmental timelines and established connectivity,
similar to their in vivo counterparts. Factors such as the
number of axons passing through microtunnels connecting
nodes can influence activity spread, leading to variations in
self-organization and functional profiles across different
networks. In this study, while the networks displayed
consistent developmental characteristics, such as firing
rates, path lengths between layers, and average node
degrees, distinct variability was observed in connection
strength between nodes along different pathways before
perturbation. Perturbations were applied to either node 7 or
8, based on which node had higher functional centrality for
information transfer between layer 1 and layer 4. This
ensured a significant impact on overall network
connectivity, allowing for both adaptive and maladaptive
changes in surrounding pathways. Understanding these
variations is crucial for interpreting network behavior and
ensuring consistency in results across experimental setups.
Therefore, developmental differences should be considered
during statistical analysis to ensure reproducibility of
results.
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Microfluidic MEAs can readily be used to co-culture
distinct neuronal subtypes, enhancing the physiological
relevance of emerging network behaviours.11,99–102 For this
study, we used cortical embryonic rat neurons and
demonstrated the fundamental attributes of this model
system for engineering complex networks, identifying central
hubs in the system, selectively perturbing them, and
investigating the effects of the perturbation across the
hierarchical network. Despite the canonical structure of
cortical microcircuits, there is significant heterogeneity
across the cortex, with different layers containing distinct
neuronal subtypes that contribute to diverse connectivity
patterns and functions.40 The engineered microcircuit shown
in the present study is an excellent model system for studying
physiological and pathophysiological changes in multi-layer,
hierarchical neocortical networks in vitro. Future work may
thus incorporate region-specific cortical cells into the model,
for example, for specific investigations of cortical
microcircuit formation and encoding.

Conclusion

Engineered neural networks represent a versatile tool for
investigating the dynamics of neural circuits in controlled
microenvironments. This study has introduced a novel
microfluidic platform featuring 12 hierarchically
interconnected nodes, designed to mimic the laminar
organization of neocortical neural networks in vitro. A
significant advantage with the large number of
interconnected nodes is the facilitation of precise, targeted
perturbations, enabling the study of adaptive compensatory
mechanisms such as neural reserves and degeneracy. By
inducing hypoxia in a central hub node, we have
demonstrated the utility of this platform for probing
plasticity changes, revealing adaptations in both directly
impacted and surroundings network regions. This makes the
present model highly relevant for advanced disease
modelling.
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