Issue 17, 2024

Self-assembly of water-filled molecular saddles to generate diverse morphologies and high proton conductivity

Abstract

The design of single-component organic compounds acting as efficient solid-state proton conduction (SSPC) materials has been gaining significant traction in recent times. Molecular design and controlled self-assembly are critical components in achieving highly efficient SSPC. In this work, we report the design, synthesis, and self-assembly of an organic macrocyclic aza-crown-type compound, P2Mac, which complements synthetic ease with efficient SSPC. P2Mac is derived from the pyridine-2,6-dicarboxamide (PDC) framework and contains polar amide and amine residues in its inner region, while aromatic residues occupy the periphery of the macrocycle. The crystal structure analysis revealed that P2Mac adopts a saddle-shaped geometry. Each P2Mac molecule interacts with one water molecule that is present in its central polar cavity, stabilized by a network of five hydrogen bonds. We could self-assemble P2Mac in a variety of unique, aesthetically pleasing morphologies such as micron-sized octahedra, hexapods, as well as hollow nanoparticles, and microrods. The water-filled polar channels formed through the stacking of P2Mac allow attaining a high proton conductivity value of 21.1 mS cm−1 at 27 °C under a relative humidity (RH) of 95% in the single crystals of P2Mac, while the as-prepared P2Mac pellet sample exhibited about three-orders of magnitude lower conduction under these conditions. The low activation energy of 0.39 eV, calculated from the Arrhenius plot, indicates the presence of the Grotthus proton hopping mechanism in the transport process. This report highlights the pivotal role of molecular design and self-assembly in creating high-performance SSPC organic materials.

Graphical abstract: Self-assembly of water-filled molecular saddles to generate diverse morphologies and high proton conductivity

Supplementary files

Article information

Article type
Paper
Submitted
31 Janv. 2024
Accepted
20 Marts 2024
First published
27 Marts 2024

Nanoscale, 2024,16, 8427-8433

Self-assembly of water-filled molecular saddles to generate diverse morphologies and high proton conductivity

N. P. Pradhan, S. Gupta, S. N. Ghosh, A. Paul, S. Talukder and A. Srivastava, Nanoscale, 2024, 16, 8427 DOI: 10.1039/D4NR00456F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements