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Spontaneous emergence of motion of an isotropic
active particle in a Carreau fluid

Suhas Shreekrishna,a Shubhadeep Mandal b and Sayan Das *a

Active particles are self-propelling in nature due to the generation of a fore-aft asymmetry in the

concentration of solutes around their surface. Both the surface activity and mobility play an important

role in the particle dynamics. The solutes are the products of the chemical reaction between the active

particle surface and suspending medium. Unlike Janus particles, isotropic active particles have been

shown to undergo spontaneous self-propulsion beyond a critical particle size (or the Péclet number).

Compared to Janus active particles, there is a third ingredient, namely, advection-induced instability that

dictates the dynamics of such particles. The present study numerically investigates the role played by

shear rate-dependent viscosity of a suspending medium in the self-phoretic dynamics of such isotropic

active particles. Towards this, a non-Newtonian Carreau fluid is taken as the suspending medium. One

of the important findings of this study is the presence of a second critical Péclet number beyond which

the spontaneous motion of the particle ceases to exist. Even though this critical Péclet number had

been previously investigated for Newtonian fluids, strong dependence of the former on the rheology of

the suspending medium was not explored. The analysis also shows that a shear thinning fluid

significantly reduces the maximum velocity of the particle. In addition, confinement is found to have a

significant effect on the axial propulsive velocity of the particle suspended in a Carreau fluid.

1 Introduction

Studies on synthetic/artificial micron-sized active particles have
been a topic of immense interest among the scientific commu-
nity in the past few decades.1–3 There are, in fact, two different
types of chemically active autophoretic particles, namely: che-
mically active Janus particles, which comprise an active as well
as an inert portion of the surface of the particles. These
particles self-propel as a result of the diffusophoresis of the
non-uniformly distributed chemical solutes generated upon
reaction of a suspending medium with the active cap.1,2,4–6

The second category of active particles is isotropically coated
with a chemically active material. Even though there exists no
asymmetry in the distribution of the solutes generated, it is
observed that beyond a certain particle size, a hydrodynamic
instability sets in that introduces a non-uniformity in the
distribution of the solutes in the vicinity of the surface of the
particles, hence leading to their self-diffusophoretic motion.7–9

Recent studies on active particles towards advancement in
terms of physiological functions and bio-compatibility have

ensured their applications in bio-medicines10 that encompass
micro-surgery, in vitro delivery of drugs to target destinations11

and biological target isolation12 to name a few.
Active particles in general propel as a result of the activity

of the solute diffusion within a suspending medium as well as
the surface mobility responsible for the development of fluid
flow out of the concentration gradient of the solute in the
near vicinity of the particle surface.1,13–18 The mechanism of
self-propulsion of Janus particles originates from the slip flow
generated due to the diffusion of solutes as a result of the
surface chemical kinetics of an asymmetrically coated particle.
In contrast, an isotropically coated active particle is capable of
exhibiting spontaneous self-propulsion due to a hydrodynamic
instability that leads to an asymmetry in the distribution of the
solute. Minor perturbations in the solute concentration to an
initially isotropic distribution of the solute in the vicinity of the
particle cause interfacial flows resulting in solute advection.
The presence of an instability further amplifies the initial
perturbation and creates a polarity in the concentration along
the particle surface. Thus the initial symmetry is broken and
the particle self-propels in response to the slip flow generated
around it. The spontaneous propulsion is a result of the non-
linear interplay between the chemical and hydrodynamic fields
in the vicinity of the particle, and is possible only if the strength
of the solute advection overcomes any homogenizing effects or
the system Péclet number (Pe) is greater than its critical value.
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Such a spontaneous motion of isotropic particles has been
studied analytically7 as well as observed both experimentally19

and numerically.20

Michelin et al.7 were the first to show that a critical Péclet
number exists at Pe = 4 across which there is a transition from a
stationary isotropic particle to a self-propelled one, when the
particle is suspended in a Newtonian fluid. The maximum velocity
for the particle was observed approximately at Pe = 10. Subse-
quently, Izri et al.19 reported spontaneous motion of solubilizing
water droplets suspended in an oil–surfactant medium. This
study provides the experimental evidence of spontaneous motion
of isotropic particles/droplets in the presence of stronger advec-
tion as compared to diffusion of solutes. Hu et al.,21 in their
numerical study, investigated the phoretic motion of circular
discs. They showed the different phases of motion by varying
the Péclet number. As Pe increases, it was shown that the particle
exhibits frequent chaotic bursts from its circular trajectory till
it undergoes a fully chaotic motion. Kailasham et al.8 studied
numerically the motion of isotropic spherical particles till the
Péclet number becomes as high as 80. They divided the entire
particle trajectory into four major regimes, namely quiescent, a
steady state, stirring and a chaotic state. They showed through
a spectral element method that even axisymmetric autophoretic
particles can show chaotic dynamics over a longer time limiting
condition. Although ballistic motion was shown to be predomi-
nant in the short time limit, sub-diffusive chaotic motion was
observed at a long time limiting scenario.

The effect of confinement was thoroughly investigated by a
study performed by Picella and Michelin,9 where the critical
Péclet number was observed to fall as a result of an increase in the
channel confinement. In another study, Desai and Michelin22

numerically investigated the near wall motion of isotropic active
particles. The distance of the droplet from the wall as well as the
Péclet number were two parameters based on which dipolar or
quadrupolar states were identified. A numerical study on the
steady state propulsion of isotropic active particles along the wall
boundary was performed by the same authors.23 It was shown in
this study that for a moderate Pe, chemically interactive wall
repulsion as well as the velocity of the particle reduce, thus
resulting in the motion of particles towards the wall with an
increase in Pe. The effect of the particle shape was showcased in
the numerical study by Zhu and Zhu,24 where the propulsion of
isotropic elliptic active discs was taken into consideration.
Recently Hu et al.25 presented the three-dimensional numerical
analysis of the spontaneous motion of isotropic colloids. This
study showed the gradual transition of isotropic colloids from a
linear trajectory to a circular and finally to a fully chaotic motion
with an increase in the Péclet number.

Most microorganisms remain suspended in complex
fluids; so it is essential to have an understanding of self-
propulsion in the presence of complex fluids. Synthetic active
particles encounter complex fluids in applications such as
in vitro and in vivo drug delivery,11,26,27 biological target capture
and isolation,12 etc. A significant number of studies have been
dedicated towards investigating the dynamics active Janus
particles in viscoelastic fluids or in other complex suspending

media.28–32 A significant number of previous studies focus on the
dynamics of squirmers in shear-thinning fluids, both in an
unbounded medium using an asymptotic approach33–36 as well
as a bounded one with the help of the lattice Boltzmann
method.37,38 Li et al.29 numerically studied the role of boundaries
in the swimming dynamics of a microorganism, suspended in a
viscoelastic medium. They utilized a squirmer model in their
analysis to show that the shear thinning behaviour of the sus-
pending medium has a weaker wall-trapping effect on pusher type
squirmers as compared to the neutral or the puller type. In a
previous study by Datt et al.,33 the motion of an active particle in a
second-order fluid was shown based on the distribution of surface
activity. Solano et al.39 performed experiments on silica particles
coated with carbon caps and suspended in a shear-thinning fluid.
The particles, when illuminated, exhibited autophoretic motion
which was higher than that in Newtonian fluids, thus resulting in
larger translational and rotational diffusion coefficients. However,
none of these studies focus on the isotropic active particles.

Even though the spontaneous motion of isotropic particles
has been investigated in a Newtonian fluid,7–9,21,40 the
dynamics of such particles in a complex fluid medium, such
as a Carreau fluid, is still missing from the current literature.
The present study looks into the combined effect of fluid
rheology and channel confinement on the phoretic motion of
isotropic particles due to spontaneous symmetry breaking at a
finite Péclet number. Although there is not a significant change
in the occurrence of the first critical Péclet number when the
particle is suspended in a shear thinning (or shear-thickening)
fluid, the second critical Péclet number is seen to be strongly
dependent on the fluid properties. Unlike a Newtonian fluid, a
Carreau fluid shows the following properties: zero-shear-rate
viscosity (Z0), infinite-shear-rate viscosity (ZN), the power-law
index (n) and the relaxation time of the fluid (l). The power-law
index, n, signifies the extent of shear thinning (for n o 1) or
shear thickening (for n 4 1) behaviour. The relaxation time,
l, signifies the inverse of a characteristic shear rate at which
non-Newtonian effects become significant. The present study
particularly focuses on the effect of all these properties on
the critical Péclet numbers as well as the phoretic velocity of the
particles. When suspended in a shear thinning fluid, the
particles exhibit a greater increase in their phoretic velocity
due to a stronger confinement. This study uses a finite element
based approach to calculate the concentration of the solutal
molecules as well as the velocity components of the isotropic
particles at finite Péclet numbers.

2 Problem formulation

The physical system comprises an isotropic active particle of
radius a which is freely suspended in a non-Newtonian Carreau
fluid confined in a microchannel. A schematic of the system is
presented in Fig. 1. The particle consists of an inert core and is
coated uniformly over its surface by an active catalyst, which
when comes into contact with the solvent molecules undergoes
a chemical reaction generating solutal product molecules.
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Hence there is a uniform flux of these solutes from the particle
surface which can be quantified by A.7 A positive (negative)
value of A would indicate emission (adsorption) of the solutes.
The concentration of these solutes far away from the particle
surface is taken as CN, whereas the local concentration is
denoted by C. These solute molecules interact with the particle
surface via a short range potential. These interactions may be
repulsive or attractive that results in the generation of a
diffusiophoretic slip flow in the vicinity of the particle surface.
The diffusiophoretic slip flow is dependent on the gradient of
the concentration of the solute molecules, generated by the
combined influence of diffusion as well as flow advection and
can be expressed as us ¼MrsC, where rs = (I � nn)�r is the
surface gradient operator with n as the outward unit normal on
the particle surface.4 M is known as the surface mobility which
indicates the strength of interaction of the solute molecules
with the particle surface.4 A negative (positive) mobility sig-
nifies effective repulsive (attractive) interactions between the
solute molecules and the particle surface.4

The solute concentration is governed by the advection-
diffusion equation

@C

@t
þ u � rC ¼ Dr2C; (1)

where D represents the diffusivity of solute molecules and u is
the velocity field. The above equation is subjected to the
following boundary conditions at the active surface of the
particle (Sp), the channel wall (Sw) and the inlet/outlet (Sin, Sout)
of the channel:

D
@C

@n

����
Sp

¼ �A;
@C

@n

����
Sw

¼ 0;
@C

@z

����
Sin;Sout

¼ 0: (2)

The first boundary condition takes into account the constant
rate of flux from the active particle surface whereas the second
and thrid boundary conditions denote the no-flux scenario
for the inert wall and the inlet/outlet to the channel, respectively.
The fluid motion is governed by the momentum equation and
the continuity equation

r
@u

@t
þ u � ru

� �
¼ �rpþr � 2Zð _gÞE½ �; r � u ¼ 0; (3)

where r is the fluid density, p is the pressure field, and E = (ru +
(ru)T)/2 is the rate-of-strain tensor. In sharp contrast to the
Newtonian fluid, the shear viscosity of the Carreau fluid Z(_g) is

a function of the shear rate _g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE:EÞ

p
. The shear-rate depen-

dence of viscosity is represented by the following constitutive
equation41

Zð _gÞ ¼ Z1 þ Z0 � Z1ð Þ 1þ ðl _gÞ2
� �n�1

2 : (4)

It should be noted that the Carreau fluid simplifies to the
Newtonian fluid with constant viscosity Z0 when ZN = Z0, n = 1
or l = 0.

The fluid flow equations are subjected to the following
boundary conditions along the particle surface, the channel
wall and the inlet/outlet of the channel:

u|Sp
= us + U, u|Sw

= 0, u|Sin,Sout
= �Uez (5)

where U is its translational velocity of the particle. Notably, the
fluid motion is coupled to the solute concentration via the
surface slip velocity term (us ¼MrsC). The channel wall is
considered to be inert and thus satisfies no-slip and no-
penetration conditions. Note that in the present study we focus
on the axisymmetric motion in which the particle translates
along the z-axis (i.e. U = Uez) and does not rotate. The transla-
tional velocity of a neutrally buoyant particle is governed by the
Newton’s second law of motion:

m
dU

dt
¼
ð
Sp

s � nð ÞdS; (6)

where m is the mass of the particle and s = �pI + 2Z(_g)E is the
stress tensor. The right hand side of eqn (6) represents the total
hydrodynamic force on the particle. At the steady state, the total
hydrodynamic force vanishes and the particle translates in a
force-free manner.

3 Numerical solution

A closer look into the governing equations and boundary condi-
tions reveals that the solute concentration and fluid flow are
coupled to each other, and the physicochemical hydrodynamics
is described by the coupled nonlinear differential equations.

Fig. 1 A schematic of the physical system consisting of a particle of radius a suspended in a cylindrical microchannel of radius R and length L. U is the
axial velocity of the particle which is due to the generation of slip velocity (us) at the particle surface (Sp). The black dots denote the solutes generated as a
result of the chemical reaction at the particle surface. The surface of the microchannel (Sw) is considered as inert.
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To identify the important dimensionless numbers, we use the
following characteristic scales: length B a, velocity B AMj j=D,
time B aD=AMj j, pressure B Z0 AMj j=aD, and concentration B
a Aj j=D. The present system is governed by the following dimen-
sionless numbers: Pećtlet number Pe ¼ a AMj j

�
D2, Reynolds

number Re ¼ r AMj ja=DZ0, Carreau number Cu ¼ l AMj j=aD,
viscosity ratio b = ZN/Z0, power-law index n, dimensionless activity
A ¼A=Aj j, dimensionless mobility M ¼M=Mj j, and confine-
ment ratio k = a/R. The Carreau number signifies the relative
importance of the characteristic strain rate imposed on the fluid
to the crossover rate of strain dictated by the relaxation time of the
fluid. In what follows, we solve the mathematical model and
represent data in the dimensionless form.

Exact analytical solution for this problem cannot be
obtained for a wide range of parameters, thus we obtain
numerical solution towards a detailed understanding of the
involved fluid dynamics. The numerical solution for the above
mentioned mathematical model is obtained by using the finite
element software COMSOL Multiphysics. In the present study,
we are primarily focused on analyzing the axisymmetric phoretic
motion of the particle. To avoid continuous re-meshing of the
simulation domain, we have solved the transport equations
along with the boundary conditions in a reference frame which
translates with the particle. The use of co-moving reference
frame enables us to use a body-fitted mesh on the particle
surface. The mathematical model is solved numerically with
the particle situated at its center and in a computational domain
of length L c R. We have used the following parameters: Pe A
[0,50], Re = 10�3, Cu A [0.01,100], b = 0.01, n A [0.25,1.5], A = 1,
M = 1 and kA [0.2,0.8]. The values of the parameters used in this
study correspond to fluids such as Xanthan gum42 and cervical
mucus.33,43 Both Boyko and Stone42 and Cordero and Lauga43

have fitted the Carreau model to the viscosity-shear rate data for
Xanthan gum and human cervical mucus to obtain the property
values, respectively. Based on these studies, the viscosity ratio, b,
has been taken to be 0.01 or even lower values like O(10�4). For
higher values of b, the fluid exhibits behavior closer to that of a
Newtonian fluid.

The flow field is solved for a low Reynolds number (Re = 10�3)
and the Carreau constitutive model (eqn (4)) is adopted for the
suspending fluid. An axisymmetric rectangular computational
domain of size 100a � 20a is considered, which is discretized
into approximately 36 000 elements. These elements are chosen
as triangular (P2 � P1) elements. The mesh is generated as a
uniformly growing mesh with the denser mesh near the particle
surface and coarser far away from it in order to precisely capture
the concentration gradient around the particle and hence the
slip velocity. The reference frame is chosen to be moving with
the particle and the far-field velocity is found out such that the
net force acting on the particle is zero. Towards time discretiza-
tion the implicit second order backward differentiation formulae
(BDF) solver is utilized with a time step size of 0.01 and a relative
tolerance of 10�6. The linear system of equations obtained upon
discretization of the governing equations is then solved using
the parallel direct sparse solver (PARDISO). The grid size inde-
pendence test of the model is presented in Fig. 10 of Appendix A.

4 Results and discussion
4.1 Motion in a Newtonian fluid

A significant number of earlier studies have focused on the
spontaneous self-propulsion dynamics of isotropic particles
suspended in a Newtonian fluid.7–9 The numerical model used
in this analysis is validated with some of these numerical
studies. Fig. 2(a) shows the variation of the dimensionless axial
phoretic velocity of the isotropic particle suspended in an
unbounded medium (k = 0.05). This variation is compared
with the numerically obtained results of both Michelin et al.7

and Kailasham and Khair.8 The latter had shown the variation
over a wider range of Péclet numbers. The present numerical
simulations show a good match with both of the above results.
It can be observed from Fig. 2(a) that there are a total of three
different regimes that best describe the particle dynamics. The
first is the no-propulsion (NP) regime (Pe r 4). In this regime,
there is a radial symmetry in the solute concentration in the
vicinity of the particle surface. Beyond Pe = 4, the second

Fig. 2 Validation of the numerical model (a) comparison of the variation of the axial phoretic velocity of the isotropic active particle in an unbounded
medium as a function of the Péclet number. (b) Comparison of the axial phoretic velocity variation with Pe in a confined microchannel (k = 0.5).
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regime starts, which is the self-propulsion (SP) regime and can
be seen to lie in the range 4 o Pe r 26. Similar observations
were also made from the studies by Michelin et al. as well as
Kailasham and Khair.7,8 The Péclet number demarcating the
first and the second regime is known as the first critical Péclet
number (Pe1). In this regime a spontaneous propulsion of the
particle initiates. The corresponding non-uniform ‘comet-
shaped’ solute distribution as well as the streamlines can be
seen in Fig. 3(a). The latter clearly indicates the unidirectional
self-propulsion of particles. A maximum phoretic velocity is
obtained at Pe E 10 after which the particle velocity gradually
reduces till Pe = 26. Finally beyond Pe = 26, the particle shows
negligible self-propulsion. Even though there is a fluid flow,
pumping the fluid from the poles to the equatorial region of the
particle (refer to the streamlines in Fig. 3(b)), the net phoretic
velocity is negligible. This can be supported by observing the
solute distribution around the particle (Fig. 3(b)), which signifies
a symmetric distribution of the solute across its transverse axis.
This regime is thus referred to as the stirring regime (St). The
particular Péclet number demarcating the self-propulsion and
the stirring regime is the second critical Péclet number (Pe2).

Fig. 2(b) on the other hand shows the effect of confinement on
the axial phoretic velocity of the particle as a function of the Péclet
number. As can be clearly seen, the first critical Péclet number is
shifted from 4 to 0.01 in the presence of a confinement (k = 0.5).
For a strongly confined particle, the asymmetry in solute distribu-
tion around the particle surface is enhanced which results in an
early triggering of the spontaneous motion. The numerical model
used, thus predicts the same variation of axial phoretic velocity of
the particle as shown by Picella et al.9 in their study.

4.2 Motion in a Carreau fluid

4.2.1 Unbounded domain j = 0.05. Initially, the particle is
considered to be suspended in an unbounded domain, that is,
the channel radius is considered to be more than five times the
particle radius. For an isotropic active particle suspended in a
shear-thinning fluid (or a shear-thickening fluid), the first
critical Péclet number (Pe1) does not change as compared to
that of the particle in a Newtonian fluid. However, changes in
Pe2 are observed due to alteration in the rheology of the
suspending fluid medium. In addition, there are other inter-
esting changes in the particle dynamics that deserve attention.

Effect of rheology. Fig. 4 shows the variation of the axial
phoretic velocity with Pe for different values of the Carreau
number (Cu). As Cu - 0, the suspending fluid tends to behave
like a Newtonian-fluid. The axial phoretic velocity in Fig. 4(a) is
normalized with respect to the maximum velocity for the case
of a Newtonian fluid (Cu - 0) at Pe = 10. The figure shows the
variation of the phoretic velocity when the particle is suspended
in different shear-thinning fluids with varying Cu. As can be
seen from the figure, the first critical Péclet number at which
the motion of the particle sets in remains the same (Pe1 = 4) for
all values of Cu. Hence, rheology is seen to have no effect on the
first critical Péclet number when the particle is suspended in an
unbounded medium. This is intuitive because the effect of
rheology comes into play only when there is motion. Up to Pe1 =
4, there is no motion, and therefore, fluid rheology has no effect
on the first critical Péclet number. In contrast, the maximum
self-propulsion velocity (at Pe = 10) is found to reduce with an
increase in the characteristic strain rate of the fluid (or Cu).
However, as Cu - N, the point of maximum self-propulsive

Fig. 3 Surface plot showing the variation of the solute concentration
around the particle for (a) Pe = 10 and (b) Pe = 30. The figures also presents
the streamlines. The latter clearly shows the absence of particle motion in
the second case, whereas a non-uniform distribution in the first case
suggesting the origin of a phoretic flow.

Fig. 4 (a) Variation of normalized axial phoretic velocity (U) of the particle,
suspended in a shear thinning Carreau fluid (n = 0.25,b = 0.01), as a
function of Pe. This variation is shown for different values of Cu (0, 1, 10,
50, 100). The maximum phoretic velocity of the particle (UN) suspended in
a Newtonian fluid (Cu = 0) is used for normalization. (b) Variation of the
phoretic velocity of the particle with Pe near the first bifurcation corres-
ponding to suspending fluids with different rheology (Cu = 0, 10, 50). The
particle is suspended in an unbounded medium (R = 1000a).
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velocity shifts towards a higher value of the Péclet number. In
addition, the magnitude of the maximum propulsive velocity
also increases. This above observation can be understood by
taking into consideration the rheology of the suspending fluid.
The characteristic of a shear thinning fluid indicates a
reduction in its viscosity due to its straining motion as the
particle self-propels through the fluid. This in-turn indicates a
decrease in both the thrust and drag acting on the particle.
However, in shear thinning fluids, it has been observed that the
decrease in thrust is much greater as compared to the drag
reduction for a finite value of Cu (o100). So a decrease in the
velocity, hence maximum velocity, should be expected as
observed in Fig. 4(a). At very high or low strain rates (or Cu),
the behavior of the suspending Carreau fluid reverts back to
that of a Newtonian fluid and the swimming velocity thus
increases. This can be also be observed in Fig. 4(a).

Another important observation from the same figure is the
gradual decrease in the slope of the curve, that is DU/DPe, just
above the first critical Péclet number. This reflects on the role
of the particle size in its phoretic motion. For a particle
suspended in a Newtonian fluid or as Cu - 0, an increase in
its size within the corresponding range, 4 r Pe r 10, resulted
in a significant rise in its propulsive thrust as compared to the
drag. This manifests in a larger increase in its phoretic velocity
as compared to the case of a particle suspended in a shear
thinning fluid. On suspension in a shear thinning fluid, the rise
in the propulsive thrust due to a larger particle size is counter-
acted by the reduction in thrust due to shear-thinning behavior
of the fluid. This effectively results in a lower rate of an increase
of particle propulsive velocity with an increase in the particle
size till Pe = 10.

Fig. 4(b) presents the variation of the axial phoretic velocity
of the particle with Pe in the vicinity of the symmetry break
(Pe = 4). This variation is shown for different rheologies of the
suspending medium (Cu = 0, 10, 50). Towards obtaining the
phoretic velocity of the particle, the computational domain was
kept quite large (R = 1000a) in order to ensure a negligible effect
due to boundaries near the bifurcation, where both advection
and diffusion of solutes are comparable. It is observed from
Fig. 4(b) that the variation of phoretic velocity of the particle,

suspended in a Newtonian fluid (Cu = 0), is linear with respect
to Pe and is in agreement with the theoretical prediction
(U = (Pe � 4)/16) by Morozov and Michelin20 for values of the
Péclet number close to 4. However, with an increase in Cu,
the variation is no longer linear and gradually deviates further
away from that predicted by Morozov and Michelin20 for a
Newtonian suspending medium. The deviation primary arises
due to more reduction in the phoretic thrust as compared to
the induced Stokes drag on the particle, when suspended in a
shear-thinning fluid. This is also evident from Fig. 4(b) that
shows a decrease in the rise of the phoretic velocity of the
particle due to a corresponding increase in Pe.

The second critical Péclet number (Pe2). The second critical
Péclet number Pe2 corresponds to the particular size of the
particle at which its spontaneous propulsion comes to a stop, for a
fixed solutal diffusivity and a characteristic phoretic velocity. As
seen from the regime diagrams (Fig. 5), Pe2 is seen to be a strong
function of the rheology of the suspending medium unlike the
first critical Péclet number. A clear transition can be observed
between the spontaneous self-propulsion and the stirring regime.
Interestingly, as mentioned above, the occurrence of the stirring
regime is seen to be dependent on the rheology of the fluid,
governed by the three parameters, namely, b, Cu, and n. The
primary focus of this subsection is to determine the nature of the
dependence of the particle dynamics on these parameters, for
different values of the Péclet number.

Fig. 5 showcases the three different regimes: the no-
propulsion regime (NP), the spontaneous self-propulsion
regime (SP) and the stirring regime (St). Depending on the values
of Pe as well as b, Cu, and n, Fig. 5 presents a numerical
prediction on the occurrence of the spontaneous self-
propulsion of the particle. Fig. 5(a) presents the regime diagrams
based on the variation of the viscosity ratio, b and the Péclet
number, Pe for a fixed value of the Carreau number (Cu = 30)
and the power index, (n = 0.25). Likewise, Fig. 5(b) and (c) refer to
regime diagrams for the variation of Pe with Cu and n, respec-
tively. In all of these figures, the ‘red’ region signifies the no-
propulsion regime (NP), whereas the ‘blue’ and the ‘yellow’
regions signify the self-propulsion (SP) and stirring regime (St),

Fig. 5 Regime diagrams indicating the effect of rheology of the suspending medium on the second critical Péclet number. The ‘red’ color regime
indicates the no-propulsion (NP) regime, which is seen to be independent of the fluid rheology and hence the first critical Péclet number has a fixed value
of 4.7 The ‘blue’ and ‘yellow’ colored regimes indicate the spontaneous self-propulsion (SP) regime and the stirring regime (St), respectively. (a) The effect
of the viscosity ratio (b) for Cu = 30, n = 0.25, whereas (b) and (c) showcase the effect of Cu (b = 0.01, n = 0.25) and n (b = 0.01, Cu = 30), respectively.
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respectively. It can be correctly observed that the first critical
Péclet number (Pe1), which marks the transition from the NP
regime to the SP one, is fixed at a value of 4, irrespective of the
rheology of the suspending fluid. However, this is not the
scenario for the case of the second critical Péclet number (Pe2).
When referred to Fig. 5(a), the variation in (Pe2) is seen to be
significant for lower values of b, that is, the further the rheology
of the fluid drifts away from that of a Newtonian fluid (b = 1), the
greater is the change (increase) in the value of the (Pe2). The
nature of variation of (Pe2) with Cu (Fig. 5(b)) is just the opposite
to that of figure (a). This is primarily because for a Newtonian
fluid Cu - 0, thus the transition from the SP to the St regime is
expected to initiate at lower Pe values. A further increase in the
value of Cu inherently delays the transition. Finally, Fig. 5(c)
presents the regime diagram based on the variation of the power
index n. It can be inferred that shear thickening fluids (n 4 1)
have a significantly lesser effect on the second critical Péclet
number as compared to a shear thinning fluid.

To gain a better insight into the motion characteristics of
the isotropic particles, the non-dimensional solute concen-
tration (c) at the particle interface is plotted with respect to
the polar angle (y A [0,p]). It should be noted that the axis of
symmetry lies at y = 0,p. It can be observed that in the NP as

well as the St regime there is no phoretic motion of the particle.
However, these regimes do not signify similar particle
dynamics. An explanation to this can be given if we look into
Fig. 6. Fig. 6(a) and (b) present the variation of the solutal
concentration along the surface of the particle suspended in a
shear thinning (n = 0.25) and a shear thickening (n = 1.25)
medium, respectively. As can be seen from Fig. 6(a) and (b), the
variation in the solute concentration is shown for different
Péclet numbers to make sure all the three different regimes are
considered. As expected for the SP regime (Pe = 28, 40 in
Fig. 6(a) and Pe = 9, 23 in Fig. 6(b)), the variation in c with
respect to y is asymmetric about y = p/2. If we focus on the
corresponding variation for the NP regime (Pe = 3) and the St
regime (Pe = 58 in Fig. 6(a) and Pe = 46 in Fig. 6(b)), we note an
interesting observation. Even though the variations of c for both
the cases are symmetric about y = p/2, ensuring no phoretic
motion, there is hardly any variation of c in the NP regime. This
clearly indicates that although the particle undergoes no self
propulsion in the St regime (similar to the NP regime), there is
clearly a convection of the fluid in the vicinity or stirring (hence
the name of the regime) leading to such a symmetric distribu-
tion of the solutes along the particle interface. The inset in Fig. 6
shows the orientation of the particle with respect to the axis of

Fig. 6 Variation of the normalized solutal concentration (c) along the particle surface for different values of Pe, thus exhibiting the change of the
concentration in different regimes. (a) The variation for a shear thinning Carreau fluid, whereas (b) corresponds to a shear thickening suspending fluid.
The other parameters are: Cu = 30, b = 0.01. The inset shows the orientation of the particle and the variation of the polar angle (y).

Fig. 7 Variation of normalized axial phoretic velocity of the isotropic colloid with Pe for different values of (a) b (= 0.001, 0.01, 0.1, 1) for Cu = 30, n =
0.25, (b) n (= 0.25, 0.5, 1, 1.25) for Cu = 30, b = 0.01 and (c) Cu (= 0, 5, 10, 30, 60) for b = 0.01, n = 0.5. The phoretic axial velocity of the particle in a
Newtonian fluid at Pe = 10 (UN) is used for normalization.
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symmetry. On comparison of the two figures (a) and (b) for shear
thinning (n = 0.25) and shear thickening (n = 1.25) fluids,
respectively, it can be inferred that the asymmetry in the varia-
tion of c in the SP regime is higher for a shear thinning fluid as
compared to the shear thickening fluid, thus resulting in a
greater phoretic velocity of the particle when suspended in the
former fluid type.

Fig. 7(a)–(c) show the variation of the normalized axial
phoretic velocity with the Péclet number for different values
of Cu, b and n, respectively. The primary focus for these figures
is the transition of the dynamics of the particle from the SP to
the St domain. In Fig. 7(a), b is varied from 0.001 to 0.9 whereas
the other parameters Cu, n are kept fixed at 30, 0.25, respec-
tively. It is seen that for lower values of b (= 0.001, 0.01, 0.1),
there is a gradual transition from the SP regime to the St
regime, however, for higher values (b = 0.9) there is an abrupt
jump in the velocity near the second critical Péclet number
resulting in a negligible phoretic velocity from a finite value. In
other words, the more the rheology of the fluid deviates from a
Newtoninan fluid the smoother is the transition from the SP to
the St regime. In addition to this, the earliest (lowest value of
Péclet number) transition from the SP to St regime occurs with
a jump for a Newtonian fluid (b - 1), however, the transition
occurs, without any jump, at increasingly larger values of Pe for
lower values of the viscosity ratio, b. A similar observation can
be made from Fig. 7(b), where a jump discontinuity is observed
between regimes SP and St for a Newtonian fluid (n = 1). This
jump is reduced as the fluid rheology (n = 0.25) deviates more
from that of a Newtonian fluid. Interestingly, the transition
occurs at the lowest value of a Newtonian fluid, whereas, for
both shear-thickening (n = 1.25) and shear-thinning (n = 0.5)
fluids, the transition from the SP to the St regime is seen to
occur at larger values of Pe. Similar observations can also be
made from Fig. 5(c). Finally, Fig. 7(c) presents the variation of
the normalized phoretic velocity with Pe for different values of
Cu. However, unlike Fig. 4, the primary focus here is on the
second critical Péclet number. Again, similar to the other
figures (b) and (c), the abruptness in reaching the stirring
regime gradually decreases with an increase in Cu.

4.2.2 Effect of confinement. It has been previously shown
by Picella and Michelin9 that the presence of confinement not
only shifts the first critical Péclet number towards 0, but also
increases the phoretic velocity of the active particle, in general.
This is due to the increase in the fore-aft asymmetry in the
distribution of solutes in the vicinity of the particle surface due
to the presence of the inert wall. For confinement ratios k A
(0.2,0.8), there is no presence of any stirring regime for values
of the Péclet number below 100. However, for significantly large
values of Pe, the St regime may appear. The confinement effect
results in significant asymmetry in the solutal distribution near
the particle surface (refer to Fig. 9) resulting in self-sustained
phoretic motion of the particle.

Fig. 8 represents the variation of the axial phoretic velocity of
the particle as a function of both Cu and n for different
confinement ratios. The phoretic velocity is normalized with
respect to the corresponding velocity of the particle, suspended

in a Newtonian fluid. The figures showcase the role played by
the fluid rheology in phoretic motion of a confined active
particle. Fig. 8(a) represents the variation of the normalized
particle velocity as function of Cu for different values of k at
Pe = 10 and n = 0.5. For Cu = 0 or a Newtonian fluid, the particle
exhibits the maximum velocity at Pe = 10. However, for a shear
thinning fluid, the velocity of the particle is reduced signifi-
cantly between 0 r Cu r 5 irrespective of the extent of the
confinement. At higher values of Cu, the effect of channel
confinement is enhanced. That is, the increase in the phoretic
velocity of the particle due to the increase in the confinement
ratio is significantly higher when the particle is suspended in a
shear thinning fluid. In addition to this, the increase in the
velocity is further enhanced as Cu increases. An explanation
towards such an observation can be provided by analyzing the
nature of the suspending fluid. The viscosity of a shear-
thinning fluid reduces at high strain rates. Now for a strongly
confined particle, the strain rate is significantly higher due to
the presence of the inert wall near the particle surface. This
results in lesser drag but at the same time generates a higher
asymmetry in the solute distribution along the particle surface
creating a larger solute concentration gradient. This manifests

Fig. 8 Effect of confinement on the the axial phoretic velocity for b = 0.01
at Pe = 10. (a) Variation of the normalized phoretic velocity of the isotropic
active particle as a function of (a) Cu (with n = 0.5) and (b) n (with Cu = 30)
for different values of k (= 0.05, 0.2, 0.5, 0.8).
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itself in a higher propulsive thrust on the particle as compared
to a weakly confined particle. Such an observation can also be
made from Fig. 9 which shows the concentration of solutes
at the vicinity of the particle for Cu = 30, n = 0.5, b = 0.01, and
Pe = 10. Fig. 9(a) and (b) show the solute distribution for k= 0.2
and k = 0.8, respectively, and the concentration gradient for the
latter can be observed to be greater. A careful observation of
Fig. 8(a) also shows that there is an increase in the phoretic
velocity for a strongly confined particle (k = 0.8), whereas the
velocity decreases for a weakly confined particle (k = 0.2) with Cu.
This is evident because of a larger drag force as well as a lower
fore-aft asymmetry for a weakly confined particle. Fig. 8(b) shows
the variation of the phoretic velocity of the particle for different
confinement ratios, when suspended in shear-thinning as well as
a shear-thickening fluids. As n - 1, the suspending fluid tends to
become Newtonian. It can be observed from the figure that as the
value of n is reduced, the effect of confinement becomes more
prominent for the similar reasons stated above. Interestingly, if
the value of n 4 1, then the fluid becomes shear-thickened and
the effect of confinement reverses. Even though the confinement
does not have a significant impact on the particle dynamics in this
regime (n 4 1), the velocity of the particle now is seen to be lower
for a strongly confined particle. This is exactly opposite to what is
observed for a shear thinning suspending fluid due to the
increase in viscosity at higher strain rates.

5 Conclusion

The present study focuses on the spontaneous propulsion of
isotropic active particles in a Carreau fluid. Towards this, an
axisymmetric model of the particle is considered and a finite
element based numerical approach is adopted to solve the
coupled flow field and the density field equations. Upon
performing a thorough analysis, it is found that rheology does
not have a significant effect on the critical Péclet number, at
which the propulsion of the particle sets in. However, the
rheology is seen to have a significant effect on a second critical
Péclet number at which the spontaneous self-propulsion of the
particle comes to a stop. The maximum velocity as well as the
overall variation of the phoretic velocity of the particle with Pe
are also strongly dependent on the rheology of the fluid.
Previously, it had been shown by Picella and Michelin9 that a

strong confinement increases the overall velocity of the particle
due to the generation of a thin film between the particle surface
and the channel wall. Interestingly, this effect of confinement is
magnified when the suspending fluid is shear-thinning (or
shear-thickening). A significantly larger change in the phoretic
velocity is observed due to a change in the channel confinement
when the particle is suspended in a shear thinning fluid rather
than a Newtonian fluid. For a shear-thickening fluid, in contrast,
the phoretic velocity reduces for a stronger confinement.

The present system could be experimentally realized using
chemically active droplets for which the isotropic active particle
serves as a canonical model.22,23,44 Chemically active droplets propel
in a surfactant-rich solution by means of solubilization19,45–47 and
inherently do not possess any geometric or chemical asymmetry as
in the case of a typical Janus active colloid. The propulsion of
an active droplet is primarily dependent on the hydrodynamic
instability induced symmetry-breaking of the emission/absorption
of the chemical solutes (for example surfactants) as a result of any
perturbation given to the system. This, in-turn, leads to the genera-
tion of a solutal concentration gradient and hence a Marangoni
stress is induced at the droplet interface that results in its propul-
sion. It should be noted that such a phenomenon is dependent on
the advection of the solutes as opposed to their diffusion; so the
Péclet number (or the droplet size) is expected to be significantly
large. There have been a few experimental studies of active droplets
suspended in a non-Newtonian viscoelastic medium.48,49 Hence
even though the present numerical model cannot be studied
experimentally, active droplets in a non-Newtonian Carreau fluid
can be used for experimental studies and hence for validation. Some
examples of Carreau fluids, as stated above, are blood or cervical
mucus33 (biological fluids) and xanthan gum.42
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Fig. 9 Non-dimensional solute concentration around the particle, when
suspended in a shear thinning fluid with Cu = 30, n = 0.5, b = 0.01 for
(a) k = 0.2 and (b) k = 0.8. The solute concentration gradient for the latter
case is clearly larger. The surface plots are shown for Pe = 10.

Fig. 10 Transient variation of axial phoretic velocity at Pe = 10
for different maximum element sizes. The results shown above corre-
spond to the particle suspended in a Carreau fluid with b = 0.01, Cu = 30,
and n = 0.25.
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Appendix

The grid-independence check is carried out here to ensure the
consistency of the results obtained irrespective of the element
size chosen. Fig. 10 presents the transient variation of the axial
phoretic velocity of the particle suspended in an unbounded
medium (k = 0.05). The suspending medium is a shear-
thinning Carreau fluid with the following properties: b = 0.01,
Cu = 30, n = 0.25, and Pe = 10. The variation is shown
corresponding to the different maximum element sizes (0.01,
0.03, 0.008). In the numerical simulations performed, the
maximum element size has been chosen as 0.01. It can be
observed from Fig. 10 that there is a good match between the
transient variations from the three different runs.
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