Shape-morphing bioelectronic devices

Abstract

Shape-morphing bioelectronic devices, which can actively transform their geometric configurations in response to external stimuli (e.g., light, heat, electricity, and magnetic fields), have enabled many unique applications in different areas, ranging from human–machine interfaces to biomedical applications. These devices can not only realize in vivo deformations to execute specific tasks, form conformal contacts with target organs for real-time monitoring, and dynamically reshape their structures to adjust functional properties, but also assist users in daily activities through physical interactions. In this review, we provide a comprehensive overview of recent advances in shape-morphing bioelectronic devices, covering their fundamental working principles, representative deformation modes, and advanced manufacturing methodologies. Then, a broad range of practical applications of shape-morphing bioelectronics are summarized, including electromagnetic devices, optoelectronic devices, biological devices, biomedical devices, and haptic interfaces. Finally, we discuss key challenges and emerging opportunities in this rapidly evolving field, providing insights into future research directions and potential breakthroughs.

Graphical abstract: Shape-morphing bioelectronic devices

Article information

Article type
Review Article
Submitted
13 Marts 2025
Accepted
02 Maijs 2025
First published
05 Maijs 2025

Mater. Horiz., 2025, Advance Article

Shape-morphing bioelectronic devices

S. Xu, R. Yang, Y. Yang and Y. Zhang, Mater. Horiz., 2025, Advance Article , DOI: 10.1039/D5MH00453E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements