The spatial and electronic effects of polypyrrole between MnO2 layers enhance the diffusion ability of Zn2+ ions†
Abstract
New electrochemical energy storage systems have stringent requirements for energy storage materials, and traditional MnO2 cannot comply with the requirements because of the problems of electrical conductivity and phase transition. In this work, a novel polypyrrole (PPy) intercalation MnO2 (MnO2/PPy-x) material was prepared and proved to be suitable for use in a high performance cathode of aqueous zinc ion batteries (AZIBs). The material characterization results proved that PPy played a key role between MnO2 layers, and the reduction of Mn and extension of Mn–O bonds inhibited the distortion reaction of MnO2, resulting in enhanced structural stability and excellent cycle life. In addition, electrochemical analysis revealed the H+/Zn2+ co-intercalation mechanism, and MnO2/PPy-1 had high electrical conductivity, and fast reaction kinetics. Density functional theory (DFT) calculation proved the change of electron distribution between the MnO2 layers. The PPy endowed MnO2 with excellent electrical conductivity. Moreover, as an interlayer spacer, it hindered charge transfer and decreased the binding ability of Zn2+ and MnO2. As a result, the electrochemical performance of MnO2/PPy-1 was greatly enhanced. The final results demonstrated that MnO2/PPy-1, which has a high conductivity and wide layer spacing, offered a superior capacity of 234 mA h g−1 and a long cycle life of 2000 cycles at a current density of 1 A g−1. In addition, according to the test results of pouch batteries, MnO2/PPy-1 shows great potential for the flexible device market because of its superior flexibility and safety. This work provides a new method and approach for the modification of MnO2-based materials.
- This article is part of the themed collection: 2024 Inorganic Chemistry Frontiers HOT articles