Effects of Mn promotion on the structure and catalytic performance of Co2C-based catalysts for the Fischer–Tropsch to olefin reaction

Abstract

An investigation into the effect of an Mn promoter on the structure and catalytic performance of Co3O4 catalysts for the Fischer–Tropsch to olefin (FTO) reaction was conducted. It was found that the introduction of the Mn promoter into Co3O4 precursors altered the morphology of the catalytic active phase from Co2C nanospheres to Co2C nanoprisms with specifically exposed facets of (101) and (020), which exhibited enhanced activity and C=2–4 selectivity compared to those of Mn-free Co2C nanospheres. Further studies suggested that the Mn promoter could interact with Co to form CoxMn1−xO intermediates, which were readily involved in the formation of Co2C nanoprisms rather than Co2C nanospheres. Additionally, Mn-doping improved CO adsorption capacity, creating a C-rich and H-poor micro-environment around Co2C active sites. As a result, the as-prepared 10Mn/Co3O4 catalyst exhibited the highest activity (25.8 C%) and C=2–4 selectivity (54.1 C%) together with a relatively lower CH4 selectivity (8.5 C%). Moreover, product distribution significantly deviated from classical Anderson–Schulz–Flory (ASF) distribution. However, excessive Mn addition would cover the Co2C active sites, leading to decreased catalytic activity and olefin selectivity.

Graphical abstract: Effects of Mn promotion on the structure and catalytic performance of Co2C-based catalysts for the Fischer–Tropsch to olefin reaction

Supplementary files

Article information

Article type
Paper
Submitted
23 Okt. 2024
Accepted
10 Dec. 2024
First published
11 Dec. 2024

React. Chem. Eng., 2025, Advance Article

Effects of Mn promotion on the structure and catalytic performance of Co2C-based catalysts for the Fischer–Tropsch to olefin reaction

X. Wang, X. Zhou, H. Shen, W. Chen, Y. An, Y. Dai and T. Lin, React. Chem. Eng., 2025, Advance Article , DOI: 10.1039/D4RE00515E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements