Sub-Newtonian coalescence dynamics in shear-thickening non-Brownian colloidal droplets

Abstract

Recent investigations into coalescence dynamics of complex fluid droplets revealed the existence of sub-Newtonian behaviour in polymeric fluids (elastic and shear thinning). We hypothesize that such delayed coalescence or sub-Newtonian coalescence dynamics may be extended to the general class of shear thickening fluids. To investigate this, droplets of aqueous corn-starch suspensions were chosen and their coalescence in the sessile–pendant configuration was probed by real-time high-speed imaging. Temporal evolution of the neck (growth) during coalescence was quantified as a function of suspended particle weight fraction, ϕw. The necking behavior was found to evolve as the power-law relation, R = atb, where R is the neck radius, with exponent b ≤ 0.5, implying that it is a subset of the generic sub-Newtonian coalescence. Furthermore, the coalescence dynamics could be demarcated into two distinct regimes, b ∼ 0.5 and b < 0.5, where the emergence of visco-elastic pinch-off response was observed in the latter regime. The particle fraction demarcating these regimes, designated as the critical particle weight fraction, ϕwϕc > 0.35, also coincides with the existence of ‘jamming’ and ‘flowing’ regions within the neck during viscoelastic pinch-off of cornstarch suspensions (Roché et al., Phys. Rev. Lett., 2011, 107, 134503). We also propose a simplistic theoretical model that captures the observed delay in coalescence dynamics implicitly through altered suspension viscosity stemming from increased particle content.

Graphical abstract: Sub-Newtonian coalescence dynamics in shear-thickening non-Brownian colloidal droplets

Supplementary files

Article information

Article type
Paper
Submitted
22 Nov. 2024
Accepted
10 Marts 2025
First published
12 Marts 2025

Soft Matter, 2025, Advance Article

Sub-Newtonian coalescence dynamics in shear-thickening non-Brownian colloidal droplets

M. V. R. Sudheer, S. C. Varma, A. Kumar and U. U. Ghosh, Soft Matter, 2025, Advance Article , DOI: 10.1039/D4SM01389A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements