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ABSTRACT Electroanalytical measurements are routinely used to estimate material properties exhibiting current and 
voltage signatures. Analysis of such measurements relies on analytical expressions of material properties to describe the 
experiments. The need for analytical expressions limits the experiments that can be used to measure properties as well as 
the properties that can be estimated from a given experiment. Such analytical relations are essentially solutions of the 
physics-based differential equations (with properties as coefficients) describing the material behavior under certain 
specific conditions. In recent years, a new machine learning-based approach has been gaining popularity wherein the 
differential equations are numerically solved to interpret the electroanalytical experiments in terms of corresponding 
material properties. Since the physics-based differential equations are solved, one can additionally estimate underlying 
fields, e.g., concentration profile, using such an approach. To exemplify the characteristics of such a Machine Learning 
assisted interpretation of electroanalytical measurements, we use data from the Hebb-Wagner test on a magnesium spinel 
intercalation host. As compared to the traditional analytical expression-based interpretation, the emerging approach 
decreases experimental efforts to characterize relevant material properties as well as provides field information that was 
previously inaccessible.  
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INTRODUCTION 

lectroanalytical techniques are instrumental to 
understanding material behavior in complex 

electrochemical systems1,2. Electrochemical systems 
function based on interrelated behavior of multiple 
materials. Electroanalytical techniques, in principle, 
characterize each of the relevant physicochemical behaviors 
of these materials, e.g., conductivity of electrolytes, reaction 
rates at electrode/electrolyte interfaces, and diffusion in 
intercalation hosts. As we envision new electrochemical 
systems to meet societal needs, we have to search for 
corresponding materials. In this context, electroanalytical 
techniques are quite valuable as one can screen materials 
based on their measured properties instead of having to 
build electrochemical systems and screen materials based 
on observed system behavior. With this motivation, in recent 
years, machine learning techniques have been employed to 
accelerate materials screening by automating 
electroanalytical experiments3,4. While rapid screening of 
properties that are quick to measure is conceptually 
straightforward, e.g., conductivity, many properties require 
long experiments. Additionally, one may have to carry out 
multiple electroanalytical experiments to characterize each 
of the relevant properties. For example, transport in battery 
electrolytes is characterized by two thermodynamic 
properties – density and thermodynamics factor – and three 
transport properties – conductivity, diffusivity, and 
transference number. Each of these requires a different 
experiment with thermodynamic factor, diffusivity, and 
transference number experiments spanning hours to days5–

15. 

The need for individual experiments is a characteristic 
aspect of electroanalytical tests. Since such tests are 
interpreted by curve fitting analytical equations, the 
experiments have to be devised such that the underlying 

physics equations afford an analytical solution. For example, 
the electrolyte diffusivity is typically measured using a 
restricted diffusion experiment6 that ensures that only 
concentration gradient-driven ion transport is dominant. 
Alternatively, transference number measurements using 
potentiostatic hold have to approach a steady state wherein 
only the ion of interest is mobile5,16 (prior to the steady state, 
all the solution-based species are mobile which in turn 
negates an analytical solution17). 

Instead, if we solve for the full physics computationally, 
we can utilize the full electrochemical experiment (at the 
expense of an analytical solution). Some recent studies 
exploring such an alternate interpretation are documented 
in Table 1. In the absence of an analytical solution, 
estimation of the corresponding material properties does 
become computationally involved. Herein, machine learning 
techniques, e.g., Bayesian Optimization, can reduce the 
computational burden18. Such implementations of Bayesian 
Optimization differ from computational19–21 or experimental 
screening3,4 of materials. We herein discuss Bayesian 
Optimization-based approaches to estimating material 
properties. In the subsequent discussion, we first illustrate 
the Bayesian Optimization concepts using an ordinary 
differential equation with two material properties to be 
estimated simultaneously. Next, we show how such an 
approach can simultaneously estimate five properties from 
a Hebb-Wagner test. Since the physics-based equations 
contain more information than just the macroscopic 
current/ voltage behavior at different material properties, 
one should be able to extract additional insights when 
physics-based equations are used to interpret experiments. 
We discuss such possibilities that extend the 
electroanalytical techniques beyond their analytical 
interpretation. 

Table 1. An incomplete list of recent studies that estimate material properties from experiments using physics-based 
differential equations. 

study simultaneously estimated properties experiments 

Guo, Sethuraman and White 
(2004) 22

gas-filled porosities of gas diffusion layer and 
catalyst layer, exchange current density, 

effective ionic conductivity, oxygen 
diffusivity in agglomerate particles 

fuel cell polarization curves at 
difference electrode pressures 

Santhanagopalan, Guo and 
White (2007) 23

diffusivities and intercalation reaction rate 
constants 

constant current operation of a full 
cell 

Chadwick et al. (2016) 24 diffusivity, rate constant, charge transfer 
coefficient, open circuit potential and 

nucleation overpotential 

cyclic voltammetry 

E
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Brady, Gould & West (2017) 25 diffusion coefficient, exchange current 
density, rate constant for the phase change 

reaction 

current interrupt on half-cells 

Ta, See & Gewirth (2018) 26 reaction rate constants  cyclic and linear sweep voltammetry 

Adams et al. (2019) 27 enthalpies and rate constants for thermally 
activated reactions

differential scanning calorimetry on 
battery active material powder 

Sethurajan et al. (2019) 28 concentration dependence of diffusivity and 
transference number 

constant current polarization of an 
electrolyte 

Ta et al. (2019) 29 reaction rate constants and diffusivity linear sweep voltammetry 

Horner et al. (2021) 30 diffusivity galvanostatic intermittent titration on 
a half-cell 

Mayilvahanan et al. (2021) 31 tortuosity constant current operation of porous 
intercalation electrodes 

Mistry et al. (2021) 32 active area and tortuosity constant current operation of porous 
intercalation electrodes 

Fenton Jr. & Brushett (2022) 33 open circuit voltage, diffusivities of redox 
species, charge transfer coefficient 

voltammetry 

Kuhn et al. (2022) 34 diffusivities, exchange current densities, 
cation transference number, Bruggeman 

coefficients  

galvanostatic intermittent titration on 
a full cell 

Feng et al. (2023) 35 enthalpies and rate constants for thermally 
activated reactions 

differential scanning calorimetry on 
cells 

Daniels et al. (2023) 36 concentration dependence of exchange 
current density 

constant current operation of full cells 

this study interfacial resistance, double layer 
capacitance, total conductivity, chemical 

diffusivity and Newman number 

constant voltage behavior of dense 
active material pellets 

BAYESIAN OPTIMIZATION 

In recent years, a few studies24,34 have employed Bayesian 
Optimization to estimate material properties (consistent 
with physics-based governing equations) of battery 
materials from experiments. Given that such an approach is 
still not widely used, we first illustrate essential concepts 
using a simple example. Consider current response governed 
by an ordinary differential equation 

d𝑖
d𝑡 = ―𝑖(1

𝜏 ―
1
𝑡) [1] 

subject to initial condition 

𝑖(𝑡0) = 𝛼𝑡0 [2] 

where  is a small time. Two properties  (proportionality 𝑡0 𝛼
constant) and  (time constant) appear in these equations. 𝜏
Exemplar measurements are shown in Figure 1(a), 

produced by solving Eqs. [1] and [2] for  and  𝛼 = 1 𝜏 = 2[s]
with a normally distributed noise of amplitude 0.05. 

The traditional approach to estimating  and  from 𝛼 𝜏
such measurements relies on approximate solutions of the 
physics-based differential equations as shown in Figure 
1(b) – (c). At very short times, it can be shown that  

𝑖(𝑡) = 𝛼𝑡 [3] 
In the other extreme of long times,  

d𝑖
d𝑡 ≈ ―

𝑖
𝜏

[4] 

i.e., 

log 𝑖 = ―
𝑡
𝜏 + constant

[5] 
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Figure 1. (a) Example measurement data for behavior describes by Eqs. [1] and [2]. Typical electroanalytical 
interpretation to estimate corresponding material properties,  and , are respectively shown in (b) and (c). 𝛼 𝜏

Accordingly, the slope of  versus  at short times, estimates 𝑖 𝑡 𝛼

, and the slope of  versus  at long times, estimates . log 𝑖 𝑡 ―
1
𝜏

The properties estimated in this fashion are mentioned in 
Table 2. 

In contrast, the Bayesian Optimization-based approach 
solves physics (i.e., Eqs. [1] and [2]) for assumed property 
values. Every such solution is compared against the 
experimental measurements to compute the difference, , Δ
expressed as

Δ(𝛼,𝜏) =
1

𝑁 time
points

𝑁 time
points

∑
𝑗 = 1

(𝑖expt
𝑗 ― 𝑖theory

𝑗 (𝛼,𝜏))2

[6] 

and schematically shown as a shaded region in Figure 2(a). 
Initially, such exact calculations are carried out for  𝑁guesses

property values. The property values are randomly chosen 
in the search space. Given this set of  values, a (𝛼𝑘,𝜏𝑘,Δ𝑘)
surrogate function is used to approximate the difference 
function over the entire search space. A typical choice for the 
surrogate function is a Gaussian Process. Mathematically, 

Δ(𝛼,𝜏) = Gaussian Process (𝛼𝑘,𝜏𝑘,Δ𝑘) [7] 

where  represents an approximate difference function. Any Δ
surrogate function should also provide a measure of 
uncertainty within the search space. The  locations (𝛼𝑘,𝜏𝑘)
where the exact difference, , is known have no uncertainty Δ𝑘

since they are precisely known. Other locations will exhibit 
varying levels of uncertainty depending on their proximity 
to these known locations. The Gaussian Process also 
provides such uncertainty information in the form of 
standard deviation, . Variations in  and  over the search 𝜎 Δ 𝜎
space for the initial  are plotted in Figure 2(b) and (c) 𝑁guesses

respectively. 

These two different pieces of information,  and , offer Δ 𝜎
two different routes to identifying the next property 

combination where physics (Eqs. [1] and [2]) should be 
explicitly solved for: 

i. locations with  smaller than the smallest of the Δ
exact differences, i.e., , are promising; Δ < min (Δ𝑘)

ii. locations with high uncertainty are useful since 
corresponding regions have not been examined 
before. 

An acquisition function, , combines these two information 𝒜
as per the expression: 

𝒜 = ( 𝜎
RMS(𝜎))𝜉(min (Δ𝑘)

Δ )
(1 ― 𝜉) [8] 

where RMS ≡ root mean squared. Subsequently physics-
based equations are explicitly solved for the property 
combination corresponding to . Here  is a max (𝒜) 𝜉 ∈ [0,1]
parameter that biases the decision for choosing the next 
property combination toward uncertainty information. The 
acquisition function map corresponding to Figure 2(b) and 
(c) is shown in Figure 2(d). Figure 2(e) identifies the new 
property combination explored based on Figure 2(d). Note 
that the uncertainty map (Figure 2(c)) shows the least 
uncertainty for the previously explored points (i.e., black 
dots in Figure 2(e)). 

Such maps are for a visual understanding of the steps, 
and are not necessary for executing the Bayesian 
Optimization. Instead, one samples the surrogate function 
over a large number of points (say ) to quantify  𝑁samples 𝒜
over the search space. It is advantageous to randomly 
generate these search points at every iteration, so every 
corner of the search space is sampled as the Bayesian 
Optimization progresses. 

The property combination identified in this fashion and 
the corresponding explicit difference are appended to the 

 set, and the same sequence of steps are repeated (𝛼𝑘,𝜏𝑘,Δ𝑘)
to improve the solution as shown in Figure 2. The 
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representative property values estimated in this fashion are 
enumerated in Table 2. The key advantage of the Bayesian 
Optimization is that the entire search space does not have to 
be explicitly examined to identify the solution. To 
understand how accurately the map of exact differences is 
inferred based on such a few property combinations 
arranged in an unstructured fashion, compare Figure 3(a) 
with (c). The surrogate difference map qualitatively matches 
the exact difference map. The region of minimum difference 
is also similar; however, the difference values are fairly 
different. This is an artefact of the use of Gaussian Process as 
a surrogate function. Since it is fundamentally a regression 
operation, it does not approach the exact difference values at 
the locations where the exact differences are available 
(regression approximately describes the underlying trend). 
This aspect is further clarified in Figure 3(d). Alternatively, 

any interpolation will recover the exact differences, e.g., 
Figure 3(e), and the corresponding difference map, Figure 
3(b), better approximates the exact difference map in Figure 
3(c). Despite the approximation, the estimated properties 
fairly describe the physics behavior underlying the 
measurements as shown in Figure 3(f). 

The interpolated difference map can be further used to 
identify the property values close to the solution point that 
only slightly increase the difference value as shown in 
Figure 3(g). The error bars represent property 
combinations for which . As is Δinterpolation ≤ 1.2 × min (Δ𝑘)
evident by the corresponding physics-based simulations in 
Figure 3(h), such a range of properties faithfully describe 
the measurements. Corresponding numerical values are 
identified in Table 2.  
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Figure 2. Illustrating different steps of the Bayesian Optimization algorithm. (a)  For a given choice of properties,  and , one can solve Eqs. [1] and [2] to obtain a  𝛼 𝜏 𝑖(𝑡)
behavior as shown by the continuous curve. The shaded region shows the difference between experimental measurements and such predictions. (b) Based on a few 
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initial guesses for  and  (identified as black dots in (e)), one can compute such exact differences, . Gaussian Process approximate such behavior, , over the entire 𝛼 𝜏 Δ Δ
search space as shown in (b). (c) The Gaussian Process also describes the corresponding uncertainty, . Larger values signify more uncertainty. Note that the smaller 𝜎
values coincide with black dots in (e). (d) An acquisition function, , combine both these information, , and , and ranks the points in the search space. The location 𝒜 Δ 𝜎

with the highest  value is selected as the next property combination to explicitly solve the physics for. This sequence of operations is repeated to identify the property 𝒜
combinations with the smallest difference, i.e., most representative of the experimental measurements. Each row represents an iteration of this process. 
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Figure 3. (a) Gaussian Process-based surrogate difference function is qualitatively identical to (b) interpolating using 
exact difference function computed at a few property combinations. Both of them capture the essential characteristics of 
(c) the exact difference over the entire search space. The difference between the surrogate (Gaussian Process-based) and 
interpolated difference function are clearer in (d) and (e): interpolation reproduces the exact values wherever available 
and interpolates for in-between points, while Gaussian Process is fundamentally a regression and does not necessarily 
recover the exact values. (f) Comparison of measurements and physics-based behavior corresponding to the estimated 
(i.e., smallest difference) property values. (g) Based on the interpolated difference function, the property combinations 
that are close to the minimum difference, here , can be identified. Corresponding range of Δinterpolation ≤ 1.2 × min (Δ𝑘)

physical behaviors are shown in (h). 

 

Since both the initial  property combinations and 𝑁guesses

the  points at every iteration are stochastically 𝑁samples

generated, re-applying the Bayesian Optimization algorithm 
to the same measurement will lead to a slightly different 
answer. Results from such five sets of calculations are also 
presented in Table 2. 

The aforementioned steps for Bayesian Optimization 
are conceptually similar to other works37,38. The key 
difference is the specific choice of the acquisition function 
(Eq. [8]). The steps rely on three user-specified parameters: 

 and . 𝑁guesses,𝜉 𝑁samples

 For a given choice of  and , similar 𝜉 𝑁samples 𝑁guesses +
 are needed to reach comparable  for a 𝑁iterations RMS(𝜎)
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given problem.  is an indicator for how RMS(𝜎)
accurately we know the behavior of the difference 
function over the property search space. 

 As discussed earlier,  judiciously combines the two 𝜉
ways of identifying the next property combination for 
the explicit physics calculation. Depending on the 
specific problem, one of those could be more useful to 
identifying the solution and in turn a biased , i.e., , 𝜉 ≠ 0.5
can be useful to more quickly identifying the solution. 
We did not have any such information about the 
problem and in turn we chose to use . 𝜉 = 0.5

 A larger number of initial samples, , more 𝑁samples

thoroughly examines the search space at every 
iteration, however, very large  slow down the 𝑁samples

execution as the surrogate function will be called upon 
to estimate more values. Note that library 
implementations like scikit-learn39 do make this 
process efficient and one does not need to individually 
call the Gaussian Process to evaluate  for every Δ,𝜎
sample point. Instead,  values are computed at all Δ,𝜎
sample points by a single function call.  

Table 2. Comparing estimated properties  and  against exact properties used to generate experimental data shown in 𝛼 𝜏
Figure 1(a). The range of property values indicated alongside the solution values correspond to the bars plotted in 

Figure 3(g). 

𝛼 𝜏 [s]

exact properties 1.00 2.00

traditional solution - 
Figure 1(b) and (c)

0.70 2.63

Figure 3 solution 1.06 (1.02 ― 1.09) 2.00 (1.87 ― 2.04)

repeat #1 0.94 (0.91 ― 0.98) 1.91(1.85 ― 1.99)

repeat #2 0.87(0.85 ― 0.92) 2.07(2.02 ― 2.13)

repeat #3 1.08(1.00 ― 1.11) 1.98(1.89 ― 2.04)

repeat #4 1.09(1.06 ― 1.11) 1.81(1.77 ― 1.87)

repeat #5 0.87(0.84 ― 0.93) 2.05(2.01 ― 2.14)

Another important aspect is the choice of the search 
space. As Figure 2 and Figure 3 show, we chose  𝛼 ∈ [0.1,10]
and . Two time constants are intrinsic to the 𝜏 ∈ [0.1,10]
measured signal in Figure 1(a): time between two 
consecutive measurements (here 0.1 [s]) and the total 
measurement time – 10 [s], and we chose them as the bounds 
on . Note that one could set narrower bounds by resorting 𝜏
to the Nyquist sampling criterion. Since  relates to the slope 𝛼
of the  data at early times, its bounds are set based on a 𝑖(𝑡)
visual examination of the measurements. 

Thus, for a given choice of experimental measurements 
and physics governing equations, how quickly Bayesian 
Optimization finds meaningful properties relies on the 
choice of the acquisition function, , algorithmic 𝒜
parameters, , and  (also referred to as 𝑁guesses,𝜉 𝑁samples

hyperparameters) and the property search space. 

ANALYZING HEBB-WAGNER MEASUREMENTS 

To illustrate the usefulness of the aforementioned Machine 
Learning-based approach to simultaneously estimating 
multiple properties, consider the Hebb-Wagner test. It is an 
electroanalytical technique routinely employed to 
characterize mixed ionic and electronic conduction in 
solids40–47. Its traditional interpretation estimates two 
material properties by measuring initial and steady state 
currents during constant voltage (i.e., potentiostatic) holds. 
In the subsequent discussion, we show that instead of using 
initial and steady state current measurements, we can 
estimate multiple properties by analyzing the time evolution 
of current measurements. 

Figure 4(a) schematically shows the experimental 
configuration for the Hebb-Wagner test. The corresponding 
current profiles are shown in Figure 4(b) and (c) (the 
experimental data is from our recent study48). As 
schematically shown in Figure 4(a), a dense pellet of 
MgCr2O4 – a mixed conductor – is sputter coated with Pt thin 
films. Given the high conductivity of Pt and its smaller 
thickness compared to the pellet (~100 [nm] versus ~1 
[mm]), the measured current and voltage reflect signatures 
of bulk transport in the pellet and electron transfer at 
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Pt/pellet interfaces. The corresponding physics-based 
governing equations48 are 

∂c
∂𝑡 =

∂
∂𝑥(𝒟(1 ―

𝑐
𝑐max )∂𝑐

∂𝑥 ― 𝑡Θ
+

𝑖
2𝐹 ― 𝑐𝑣Θ) [9] 

𝜙0 ― 𝜙𝐿 = 𝑖
𝐿

∫
0

1
𝜎d𝑥 +

𝐿

∫
0

𝑡Θ
+

3𝑅𝑇
2𝐹 (1 +

∂log 𝑓MΘ

∂log 𝑐 )dlog 𝑐

[10]
subject to boundary conditions 

―𝒟(1 ―
𝑐

𝑐max)∂𝑐
∂𝑥 = ― 𝑡Θ

+
𝑖

2𝐹
[11] 

𝑖 = 𝑖𝑅 + 𝑖𝐶 [12]

𝑖𝑅 =
1
𝑅i

Δ𝜙interface
[13]

𝑖𝐶 = 𝐶i
d(Δ𝜙interface)

d𝑡
[14]

𝑉app = Δ𝜙interface + (𝜙0 ― 𝜙𝐿) [15]

Figure 4. (a) Experimental setup for the Hebb-Wagner test. Corresponding (b) constant voltage, , polarization 𝑉app = 1 [V]
and (c) zero voltage relaxation behavior for a 0.98 [mm] thick, 98.1% dense MgCr2O4 pellet at 350 [℃]. Raw measurement 

data is borrowed from an earlier work by the authors48. The experimental data is collected every 0.5 [s] and most of the 
measurement point lie underneath the continuous theoretical trend in (b) and (c). 

Note that  and  jointly describe the behavior of two 𝑅i 𝐶i

identical interfaces. Thus, resistance of either interface is 𝑅i

 and the corresponding capacitance is .  Also, /2 2𝐶i

concentration, , describes the concentration of both the 𝑐
electrons and sites filled with  (due to local charge Mg2 +

neutrality) as . It can be shown that in the 𝑐 =
1
2𝑐𝑒 ― = 𝑐MgΘ2 +

limit of small concentration perturbation such that the 
properties can be assumed constant for the duration of the 
experiments, these equations simplify to

∂c
∂𝑡 = 𝒟

∂2𝑐

∂𝑥2

[16] 

𝜙0 ― 𝜙𝐿 =
1
𝜎

{𝑖𝐿 + 2ℕ𝕖𝐹𝒟(𝑐𝐿 ― 𝑐0)} [17]

subject to  

―𝒟
∂𝑐
∂𝑥 = ―

𝑖
2𝐹

[18] 

where  is the uniform pellet concentration at the start of 𝑐eq

the test, while  and  are defined as 𝑐 ℕ𝕖

𝑐 =
(𝑐 ― 𝑐eq)

𝑡Θ
+ (1 ―

𝑐eq

𝑐max)
[19] 

ℕ𝕖 = (𝑡Θ
+ )23𝑅𝑇

4𝐹2 (1 +
∂log 𝑓MΘ

∂log 𝑐 )
(1 ―

𝑐eq

𝑐max)
𝑐eq𝒟

[20]

Eqs. [12] – [15] are equally applicable. Thus, Eqs. [12] –[20] 
describe the experimental behavior. These expressions 
contain five measurable properties:  (interfacial 𝑅i,𝐶i
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properties) and  (bulk properties). In principle, each 𝜎,𝒟,ℕ𝕖
of these can be inferred from the experiments as long as they 
exhibit different detectable signatures as shown in Figure 
4(b). While such a connection between physics governing 
equations and experimental measurements is intuitively 
clear, the analysis of the experimental measurements by 
solving Eqs. [12] –[20] is cumbersome as they do not exhibit 
an analytical solution and one has to computationally solve 
the governing equations for every choice of property values 
(this bottleneck has been one of the key reasons for 
popularity of electroanalytical techniques which can be 
interpreted by fitting analytical solutions to experimental 
measurements). Machine learning techniques like Bayesian 
Optimization make such an analysis computationally 
tractable. 

Applying the same procedure as outlined earlier, these 
five properties are estimated. Figure 4(b) and (c) compare 
physics-based calculations using these estimated properties 
against measurements. Given simultaneous estimation of 
five properties, the corresponding difference map is five 
dimensional. Figure 5(a) and (d) illustrate its 2D cross-
sections in the same spirit as Figure 3(b). Equivalently, 
Figure 5(b) and (c) sketch physics-based behavior 
corresponding to the property bounds identified in Figure 
5(a) while Figure 5(e) and (f) refer to Figure 5(d). Note that 
we directly solve for  and  since it is more 𝑅i,𝜏𝑅i𝐶i,𝜎,𝜏𝒟 ℕ𝕖
straightforward to specify search space for  and  𝜏𝑅i𝐶i 𝜏𝒟

instead of  and , respectively. 𝐶i 𝒟

Figure 5. (a), (d) Interpolated difference maps corresponding to measurements reported in Figure 4(b) and (c). Each of 
the other three properties in (a) and (d) are kept fixed at their estimated values. (b), (c) and (e), (f) compare physics-

based calculations against measurements, using the property bounds respectively identified in (a) and (d). 

While the 2D difference maps in Figure 3(a), (b) and (g) 
clearly identify uniqueness of the estimated properties, 
Figure 5(a) and (d) only partially answer this. To further 
justify the uniqueness of the solution, Figure 6 plots  ℕ𝕖
versus  maps at different  combinations and 𝜏𝒟 (𝑅i,𝜏𝑅i𝐶i

)

estimated . By comparing different maps in Figure 6, it is 𝜎
evident that the solution lies closer to Figure 6(i). As Table 
3 reveals, this is indeed the case. Note that as discussed 
before, the stochastic nature of Bayesian Optimization gives 
rise to slightly different properties with repeated runs (for a 
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given run of Bayesian Optimization, the uncertainty map 
prescribes if enough iterations have been carried out).  

Figure 6.  versus  interpolated difference maps at different  combinations and estimated  value. Horizontal ℕ𝕖 𝜏𝒟 (𝑅i,𝜏𝑅i𝐶i
) 𝜎

panels are at different  and , while the vertical panels are at different  𝜏𝑅i𝐶i = 0.25, 0.63, 1.58 3.98 [s] 𝑅i = 0.25, 0.63, 1.59
and . The colorbar is identical to Figure 5(a) and (d). The solution is closer to (i).  3.98 [105 Ω ⋅ cm2]
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Table 3 reports multiple repeats to get a sense for such 
variance in estimated properties. 

Apart from simultaneously solving for all the properties 
by analyzing the complete time series, another advantage of 
such an approach lies in its ability to report underlying fields 
since the corresponding physics-based equations are solved 
for each property combinations. Figure 7 reports various 
concentration and potential fields corresponding to the 
solution reported in Figure 4(b) and (c). 

Figure 7(a) and (d) sketch the evolution of interfacial 
potential drop, , respectively during polarization Δ𝜙interface

and subsequent relaxation. As is evident in Figure 7(a), the 
interfacial drop manifests within the first few seconds and 
stays invariant for the rest of the polarization. Equivalently, 
during relaxation, it diminishes within a similar timeframe. 
Recall that  describes the behavior of both the Δ𝜙interface

interfaces, i.e., either of the interface experiences half the 

potential drop. Here  is reported to express Δ𝜙interface/𝑉app

the contribution of  to the overall response. Δ𝜙interface

Figure 7(b), (c), (e) and (f) present bulk fields across 
the pellet thickness. Since during polarization, electrons 
enter from  and leave from , the evolution of the 𝑥 = 𝐿 𝑥 = 0
concentration profiles in Figure 7(b) is intuitive. Given local 
charge neutrality, the flux of filled Mg2+ sites ensures their 
equivalent distribution. During relaxation, the concentration 
relaxes as shown in Figure 7(e). Note that the slopes of the 
concentration profiles differ across Figure 7(b) and (e) since 
as per Eq. [18], the slopes directly relate to the current 
density, . The different behaviors of  in Figure 4(b) and (c) 𝑖 𝑖
accounts for these features in concentration profiles. Given 
identical electronic charges enter and leave from the two 
interfaces, the total pellet concentration does not change, i.e., 

.∫𝐿
0𝑐d𝑥 = 0

Table 3. Comparing variability in properties estimated from the same experimental measurements reported in Figure 
4(b) and (c) as symbols. Such a variation is due to the stochastic nature of the Bayesian Optimization algorithm. 

interfacial properties bulk properties 

𝑅i [105 Ω ⋅ cm2] 𝜏𝑅i𝐶i [s] 𝜎 [10 ―8 S/cm] 𝒟 [10 ―10 cm2/s] ℕ𝕖 [10 ―2]

Figure 4 solution 1.59 (1.42 ― 1.78) 0.24 (0.22 ― 0.31) 4.34 (4.33 ― 4.35) 3.94 (3.26 ― 13.43) 1.73 (1.43 ― 1.91)

repeat #1 2.58 (2.37 ― 2.73) 0.13 (0.12 ― 0.14) 4.51 (4.50 ― 4.51) 2.83 (2.48 ― 3.31) 1.00 (0.93 ― 1.09)

repeat #2 1.65 (1.50 ― 1.80) 0.65 (0.61 ― 0.84) 4.33 (4.32 ― 4.34) 4.83 (3.91 ― 6.03) 1.19 (1.10 ― 1.34)

repeat #3 1.58 (1.45 ― 1.73) 0.71 (0.65 ― 0.80) 4.33 (4.32 ― 4.33) 3.96 (3.20 ― 4.74) 1.64 (1.52 ― 1.85)

repeat #4  2.51 (2.35 ― 2.68) 0.18 (0.17 ― 0.20) 4.48 (4.47 ― 4.48) 1.17 (1.01 ― 1.33) 0.76 (0.71 ― 0.82)

Repeat #5 2.34 (2.12 ― 2.56) 0.80 (0.72 ― 0.89) 4.47 (4.46 ― 4.50) 3.47 (2.96 ― 4.79) 1.14 (1.04 ― 1.27)

Combining Eqs. [10], [15] and [17], it can be shown that 
the applied voltage drop, , is composed of three distinct 𝑉app

contributions: interfacial drop, , ohmic drop, and Δ𝜙interface

concentration overpotential. The latter two relate to the bulk 
fields and equivalently their spatial dependence can be 
mathematically expressed as   

Δ𝜙ohmic(𝑥) = 𝑖
𝑥
𝜎

[21] 

Δ𝜙conc(𝑥) =
1
𝜎2ℕ𝕖𝐹𝒟(𝑐𝐿 ― 𝑐(𝑥)) [22]

The ohmic drop is straightforward to imagine. Hence, Figure 
7(c) and (f) sketch the concentration overpotential. It is 
important to note that the concentration overpotential is 
about 10% of the applied voltage when the polarization 
approaches the steady state. The distribution of the different 
potential drops varies across different materials or testing of 

the same material at different pellet thicknesses or 
measurement temperatures. 

DISCUSSION 

Figure 8 presents the conceptual differences among the 
traditional electroanalytical tests, physics-based theory and 
herein highlighted emerging approach based on machine 
learning. While physics-based theory predicts fields and 
macroscopic behavior corresponding to prescribed 
properties, the electroanalytical techniques pose an inverse 
problem of estimating properties from macroscopic 
measurements. The emerging approach of using machine 
learning techniques, e.g., Bayesian Optimization, to interpret 
electroanalytical tests in a physics-consistent fashion has 
two obvious advantages: 

 Since the full experimental timeseries is analyzed, 
multiple properties are estimated simultaneously. For 
example, traditionally, the Hebb-Wagner test40,41,49 is 
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only analyzed for its initial and steady state currents, 
which respectively characterize  and  (or the 𝜎 ℕ𝕖
transference number if the material exhibits 
conventional mixed conduction). Instead, the 
aforementioned analysis simultaneously characterizes 

 and , from the same data (traditionally, it 𝑅i,𝐶i, 𝜎,𝒟 ℕ𝕖
would have required additional electroanalytical tests 
to characterize  and 40,50–53). Such an estimation 𝑅i,𝐶i 𝒟
of multiple properties from a single experiment does 

not overfit he physics as long as each of these 
properties exhibit distinct signatures, e.g., as identified 
in Figure 4(b).  

 In addition to the estimated properties, various 
concentration and potential fields are computationally 
available for the duration of the experiments. Such 
information is not available from direct analytical 
interpretation of the electroanalytical tests. 

Figure 7. Internal fields corresponding to physics-based solution reported in Figure 4(b) and (c). (a), (b) and (c) refer to 
polarization, while (d), (e) and (f) relate to relaxation.  is defined in Eq. [19].  is defined in Eq. [22]. 𝑐 Δ𝜙conc

The first advantage reduces the experimental efforts and in 
turn expands the scope of robotic experiments for material 
screening. The second advantage provides previously 
inaccessible information that can be compared against 
imaging experiments54,55 to identify missing physics. For 
example, the electrolyte literature assumed that the solvent 
does not move when an electrolyte is polarized since it is a 
charge neutral species. Recent X-ray Photon Correlation 
Spectroscopy experiments revealed a distinct presence of 
solvent motion56 which in turn has extended the 
understanding of electrolyte transport to incorporate an 
overlooked physics of solvent motion in response to 
concentration gradients and currents17.

Often analytical solutions not only solve physics under 
a select few operating conditions, but physics is also 
simplified. Such simplifications often lead to erroneous 

interpretation of the measurements, e.g., the Hebb-Wagner 
test is known to suffer many limitations57 if interpreted 
casually. For another example, consider the galvanostatic 
intermittent titration test – a widely used test to measure 
diffusion in electrochemically intercalating hosts. Its 
traditional interpretation assumes58–60 that the particles are 
spherical, their entire surface area is available for 
intercalation, intercalation is limited by ion diffusion and 
follows a solid solution mechanism. Depending on the 
context each of these assumptions can be violated and the 
standard analysis becomes invalid. Instead, the emerging 
approach in Figure 8 would retain its validity and account 
for such additional material complexities as long as the 
underlying physics has been meticulously verified. 

In many such instances, a traditional analytical 
interpretation may not even identify that the material 
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exhibits unexpected behavior. For example, the Hebb-
Wagner measurements shown in Figure 4(b) and (c) do not 
exhibit the conventional mixed ionic electronic conduction 
behavior61–64. However, a traditional interpretation using 
initial and steady state currents would not have identified 
the breakdown of the conventional mixed conduction 
theory. Only when the complete current versus time data 
were interpreted using the conventional mixed conduction 
theory, the atypical behavior became apparent48. 

Figure 8. Conceptual differences across traditional 
electroanalytical tests, physics-based theory and the 

emerging machine learning-based approach (discussed 
herein) lie in the information they use and/or provide. 

A thought-provoking question is how many different 
properties can be identified? As long as each of the 
properties exhibit differentiable signatures, it is possible to 
estimate them simultaneously. A related concern with an 
ML-based interpretation of electroanalytical techniques is 
uniqueness of the estimated properties. In addition to each 
of the estimated properties exhibiting differentiable 
signatures, one should justify the estimated property values 
by examining difference landscapes (e.g., Figure 5(a), (d) 
and Figure 6), comparing changes in physics-predicted 

behavior with small changes in the estimated properties 
against experimental data (i.e., Figure 5(b), (c), (e) and (f)) 
and quantifying repeatability of the solution (for example, 
Table 3). Such sense checks should be employed to justify 
that the ML-based interpretation of the experimental data is 
meaningful. 

Another concern is the cost of analysis. Since the physics 
equations are numerically solved, such an implementation is 
computationally expensive. Of various machine learning 
algorithms, Bayesian Optimization is designed such that 
physics is explicitly solved at only the most promising 
property combinations. Thus, the choice of the specific 
machine learning algorithm helps manage computational 
expenses. There are other equivalent machine learning 
techniques that explicitly solve physics at a few selected 
property combinations to estimate properties from 
experimental measurements, e.g.,65, and can be used to 
extend the electroanalytical measurements as advocated 
here. Alternatively, the same problem could have been cast 
as a deep neural network that is trained on a large 
combination of explicit physics solutions. However, it would 
require many more explicit solutions. Interestingly, deep 
neural networks that are trained using physics equations as 
the loss functions66,67 could provide another efficient 
approach. Note that one can further reduce the 
computational time by solving physics in a faster 
programming language like Fortran or C while a python or a 
MATLAB script executes the machine learning aspects. 
Often, the scripting languages offer special libraries to 
dynamically link them to Fortran, C or C++, e.g., F2PY68. We 
leveraged such functionality to analyze the Hebb-Wagner 
data discussed in Figure 4. 

Given the conceptual and computational overheads 
associated with the proposed approach, one should adopt it 
judiciously. If the physics equations can be solved 
analytically for the entire experiment, one should use it for 
regression over the experimental data, for example, under 
certain conditions, the Hebb-Wagner tests do exhibit 
analytical solutions69,70. However, if the analytical solutions 
are only available for limited experimental data, e.g., short 
time and/or long time, or if the analytical solution does not 
exist, one should prefer the emerging approach advocated 
here (compare across different rows in Table 2). 

CONCLUSIONS 

While electroanalytical techniques have been historically 
used to measure properties of materials relevant to 
electrochemical systems, ongoing and future efforts in 
understanding material behavior require (i) screening a 
material for desired properties and (ii) probing more 
complex material behaviors. Both of these applications pose 
challenges for traditional electroanalytical techniques (given 
their use of analytical solutions for interpreting properties, 
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they either require prohibitively high experimental efforts 
for materials screening and/ or fail to capture complex 
material behavior). 

An emerging approach is to use the physics-based 
governing equations to interpret the electroanalytical tests. 
Machine learning techniques like Bayesian Optimization 
ensure manageable computational costs for such analyses. 
Such a synergistic combination of electroanalytical 
experiments, physics-based theory and machine learning 
techniques simultaneously estimates multiple properties 
from a single experiment as well as offer information about 
the underlying fields like concentration and potential. Thus, 
qualitatively and quantitatively more information is inferred 
from the electroanalytical experiments. The field 
information is uniquely valuable to independently assess our 
physics-based understanding of the material response 
against imaging measurements. Additionally, analysis of the 
full electroanalytical tests offers a route to interpreting more 
complex material behavior in contrast to analyzing limiting 
instances, e.g., short time/ high frequency response. 

Thus, machine learning assisted physics consistent 
interpretation of the electroanalytical tests is a promising 
route to understanding electrochemical behavior of 
materials. 
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APPENDICES 

Appendix A. Checklist71 Summarizing Theoretical and Computational Aspects of the 
Present Study. 

Manuscript Title : How Machine Learning Can Extend Electroanalytical 
Measurements Beyond Analytical Interpretation 

Submitting Author* : Aashutosh Mistry 

Y/N/NAa

Q1. Have you provided all assumptions, theory, governing equations, 
initial and boundary conditions, material properties (e.g., open-circuit 
potential) with appropriate precision and literature sources, constant 
states (e.g., temperature), etc.? 

Remarks:  

Y

Q2. If the calculations have a probabilistic component (e.g., Monte Carlo, 
initial configuration in Molecular Dynamics, etc.), did you provide 
statistics (mean, standard deviation, confidence interval, etc.) from 
multiple (≥3) runs of a representative case? 

Remarks: refer to Error! Reference source not found. and Table 3. 

Y
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Q3. If data-driven calculations are performed (e.g., machine learning), did 
you specify dataset origin, the rationale behind choosing it, what 
information it contains, and the specific portion of it being utilized? Have 
you described the thought process for choosing a specific modeling 
paradigm?

Remarks: The discussion section describes the rationale for choosing 
Bayesian Optimization. 

Y

Q4. Have you discussed all sources of potential uncertainty, variability, 
and errors in the modeling results and their impact on quantitative 
results and qualitative trends? Have you discussed the sensitivity of 
modeling (and numerical) inputs such as material properties, time step, 
domain size, neural network architecture, etc. where they are variable or 
uncertain?

Remarks: 

Y

Q5. Have you sufficiently discussed new or not widely familiar 
terminology and descriptors for clarity? Did you use these terms in their 
appropriate context to avoid misinterpretation? Enumerate these terms 
in the “Remarks”.

Remarks: no new terminology has been introduced; Newman number, 
, is not widely familiar and its mathematical expression along with ℕ𝕖

appropriate references defining it have been cited

Y

* I verify that this form is completed accurately in agreement with all co-authors, to the 
best of my knowledge. 
a Y ≡ the question is answered complete. Discuss any N or NA responses in “Remarks”. 

Appendix B. Nomenclature. 

symbol description

𝒜 acquisition function 
refer to Eq. [8]

𝐶i interfacial capacitance [μF/cm2]

𝑐 concentration [mol/m3] 

𝑐 scaled concentration, unitless 
refer to Eq. [19] 

𝒟 chemical diffusivity [cm2/s] 

𝐹 Faraday’s constant [96487 C/mol] 

𝑓MΘ activity coefficient, unitless 

𝑖 current density [mA/cm2] 

𝐿 pellet thickness [mm] 

𝑁 number of initial guesses, samples, time points, etc. 

ℕ𝕖 Newman number, unitless 

refer to Eq. [20]

𝑅 Universal gas constant [8.314 J/mol·K] 

𝑅𝑖 interfacial resistance [Ω·cm2] 

𝑇 temperature [K] 

𝑡 time [1 min ≡ 60 s] 

𝑡Θ
+ transference number of Mg2+ filled sites relative to empty sites, 

unitless 

𝑣Θ continuum velocity of empty sites [m/s] 

𝑥 spatial coordinate [1 m ≡ 102 cm ≡ 103 mm]

Greek symbols: 

𝛼 proportionality constant in Eq. [2] 

Δ difference function for a given choice of material properties; defined 
by Eq. [6] 

𝜉 parameter in  𝒜

𝜎 total conductivity [S/cm] 
(also) standard deviation 

𝜏 time constant in Eq. [1] 

𝜙 potential [V] 

Superscripts/ subscripts: 

eq equilibrium 

i interface 

max maximum 

0 value at 𝑥 = 0

𝒟 related to chemical diffusivity, 𝒟

𝐿 value at 𝑥 = 𝐿

𝑅i𝐶i related to interfacial resistance, , and capacitance,  𝑅i 𝐶i

Θ empty sites 

Abbreviations: 

RMS root mean squared 
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