Daniel
Halwidl
a,
Wernfried
Mayr-Schmölzer
ab,
Martin
Setvin
a,
David
Fobes
c,
Jin
Peng
c,
Zhiqiang
Mao
c,
Michael
Schmid
a,
Florian
Mittendorfer
ab,
Josef
Redinger
ab and
Ulrike
Diebold
*a
aInstitute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10/134, 1040 Vienna, Austria. E-mail: diebold@iap.tuwien.ac.at
bCenter for Computational Materials Science, TU Wien, Wiedner Hauptstrasse 8-10/134, 1040 Vienna, Austria
cDepartment of Physics and Engineering Physics, Tulane University, 2001 Percival Stern Hall, New Orleans, LA 70118, USA
First published on 5th March 2018
Activating the O2 molecule is at the heart of a variety of technological applications, most prominently in energy conversion schemes including solid oxide fuel cells, electrolysis, and catalysis. Perovskite oxides, both traditionally-used and novel formulations, are the prime candidates in established and emerging energy devices. This work shows that the as-cleaved and unmodified CaO-terminated (001) surface of Ca3Ru2O7, a Ruddlesden–Popper perovskite, supports a full monolayer of superoxide ions, O2−, when exposed to molecular O2. The electrons for activating the molecule are transferred from the subsurface RuO2 layer. Theoretical calculations using both, density functional theory (DFT) and more accurate methods (RPA), predict the adsorption of O2− with Eads = 0.72 eV and provide a thorough analysis of the charge transfer. Non-contact atomic force microscopy (nc-AFM) and scanning tunnelling microscopy (STM) are used to resolve single molecules and confirm the predicted adsorption structures. Local contact potential difference (LCPD) and X-ray photoelectron spectroscopy (XPS) measurements on the full monolayer of O2− confirm the negative charge state of the molecules. The present study reports the rare case of an oxide surface without dopants, defects, or low-coordinated sites readily activating molecular O2.
In general, the activation of O2 is achieved by either exciting the neutral molecule to one of its two singlet states6 or by charging the molecule thus forming a superoxide (O2−) or a peroxide (O22−) ion. If available, the electrons for charging the O2 can be transferred directly from the oxide surface, but a substantially unperturbed oxide (i.e. stoichiometric, step- and defect-free) rarely provides electrons for a spontaneous formation of charged oxygen species. Often the oxide has to be activated by photoinduced electron transfer, surface intermolecular electron transfer,7 or the introduction of dopants, defects, or low-coordinated sites.8
Superoxo and peroxo species have been predicted and/or observed on a few catalytically relevant binary oxides. In experiments on anatase TiO2(101) it was recently experimentally shown that molecular oxygen accepts charge from subsurface Nb+ dopants, resulting in a mixed adsorption of neutral O2 and superoxide ions9 at low temperature (5 K). Charged oxygen species have been predicted for reduced CeO2(111),10 (110) and (100) surfaces,11 and their formation has been experimentally confirmed on polycrystalline CeO2.12,13 Calculations for pure ZrO2 show only a weak physisorption of O2 while yttria stabilized zirconia should facilitate dissociation via a superoxo species.14 Similarly, O2 is predicted to adsorb weakly on pure ZnO(100)15 but to form a superoxo species when the ZnO is Al-doped.16 Charged oxygen species on SnO2 play a crucial role in chemical sensing, although the correct interpretation of experimental results has been questioned.17
The binary alkaline-earth oxide (001) surfaces are closely related to AO-terminated perovskite surfaces. Molecular oxygen does not adsorb on the unperturbed CaO(001)18 and MgO(001)19 surface. Only after introducing defects by ultraviolet or gamma irradiation, thermal activation, or doping with transition metal ions the formation of charged oxygen species was observed.18,20 Ultrathin MgO films supported on a metal (Ag or Mo) allow for an electron transfer from the substrate to activate adsorbed oxygen, explaining the catalytic properties of such systems.19,21,22
Turning to ternary oxides, direct experimental evidence on microscopic reaction pathways is sparse. One of the most studied perovskite oxides is SrTiO3.5 Calculations have shown that on the technologically relevant SrO-terminated (001) surface O2 is activated to O2− only if surface oxygen vacancies are present.23 In contrast, the defect free LaO-terminated La2NiO4(001) surface is theoretically predicted to readily chemisorb oxygen either as superoxo or peroxo species.24
This paper combines theory and experiment to investigate on the first step in oxygen activation on a ternary oxide, namely electron transfer to adsorbed O2. Ca3Ru2O7, the prototypical perovskite material considered here, is a Ruddlesden–Popper perovskite (alternating ABO3 and AO layers) and cleaves easily between adjacent CaO layers. It is shown that the pristine CaO-terminated (001) surface facilitates the activation of O2 to a superoxide ion without a need for prior surface treatment, or the presence of steps, oxygen-vacancies or dopants. Surface spectroscopy in combination with atomically-resolved Scanning Probe Microscopy and DFT calculations confirm the charge state of the as-formed oxygen and provide detailed models for the adsorption geometry of isolated molecules and the dense (2 × 1) O2− overlayer formed at higher coverage.
Combined STM/nc-AFM measurements were performed at 4.8 K in a UHV system consisting of a preparation chamber and an analysis chamber with base pressures below 2 × 10−11 mbar, equipped with a commercial Omicron q-Plus LT head. Tuning-fork-based AFM sensors with a separate wire for the tunnelling current were used34 (k = 1900 N m−1, f0 = 31500 Hz, Q ≈ 30000). A custom-design cryogenic differential preamplifier was used for measuring the cantilever deflection.35 Electrochemically etched W-tips were glued to the tuning fork and cleaned in situ by field emission and self-sputtering in 10−6 mbar Ar.36 O2 was either dosed directly into the cryostat in the analysis chamber at 5.5 K or in the preparation chamber while keeping the sample at 123 K.
For all STM measurements the bias voltage was applied to the sample; positive or negative bias voltages result in STM images of the unoccupied or occupied states, respectively. All STM images shown were corrected for distortions as described elsewhere.37
Fig. 1 The calcium ruthenate structure. All scale bars correspond to 1 nm. (a) Unit cell of the n = 2 member of the Can+1RunO3n+1 Ruddlesden Popper series. Cleavage planes are marked in gray. (b) Top view and STM simulation (Tersoff–Hamann approximation40) of the CaO-terminated Ca3Ru2O7(001) surface. The RuO6 octahedra are alternately tilted with respect to the c axis (most pronounced in the ac plane), and rotated in the ab plane as indicated by the straight and curved arrows, respectively. The red box marks the orthorhombic unit cell (a = 5.365 Å, b = 5.562 Å). (c) STM image of the cleaved surface. The dark (bright) substrate lines in [010] direction correspond to areas where the apical oxygen atoms of the RuO6 octahedra are tilted towards (away from) each other, compare to (b). The point defects are attributed to spurious impurities (see ESI†). STM parameters: Vsample = +0.8 V, Itunnel = 0.1 nA, Tsample = 78 K; image rotated and cropped; fast scan direction is 68° clockwise from horizontal. (d) Constant-height nc-AFM image, different area than in (c). Shown is the frequency shift, Δf. The apical oxygen atoms are imaged as bright dots (less negative Δf, more repulsive), arranged in zig-zag lines in [010] direction. AFM parameters: A = 100 pm, Vsample = +0.25 V, Tsample = 4.8 K; fast scan direction is 50° clockwise from horizontal. |
The tilt and rotation of the octahedra leads to a distorted surface oxygen sublattice that was found essential in affecting the ordering of a hydroxyl overlayer on this surface.29 STM shows alternating bright and dark lines along the [010] direction, see Fig. 1c. According to a STM simulation (Tersoff–Hamann approximation)40 the dark (bright) substrate lines correspond to areas where the apical oxygen atoms of the RuO6 octahedra are tilted towards (away from) each other (Fig. 1b). All non-contact atomic force microscopy (nc-AFM) images in this work show the frequency shift, Δf, and are recorded in constant-height mode, where darker color means higher attractive force. Pioneering works on oxide surfaces show that the AFM contrast is governed by the electric charge of the tip apex.41,42 ‘Positively terminated’ tips interact attractively with anions, and repulsively with cations. ‘Negative tips’ show the opposite behaviour. The contrast in Fig. 1d corresponds to the negative termination; simultaneously measured STM and AFM images show that the apical oxygen atoms interact repulsively with the tip and thus are imaged as bright dots arranged in zig-zag lines in [010] direction.
The observed point defects are attributed to impurities (Ti, Sr, Mg, Ba) in the material (see Table S1†) rather than intrinsic defects that would stem from the cleaving process. The calculated creation energies for O and Ca vacancies, 3.9 and 5.3 eV, respectively, are significantly higher than the cleaving energy per broken Ca–O bond of 0.91 eV. Also, the appearance in STM of O vacancies created by electron irradiation is known from previous work.29
When the Ca3Ru2O7(001) surface is exposed to a low dose of O2 at 5 K, AFM images taken at 0 V sample bias voltage show dark spots of varying contrast and size, see Fig. 3a. When applying a slightly negative or positive sample bias voltage, tunnelling current starts to flow and a few adsorbates interact with the tip, see Fig. 3b. In Fig. 3c two larger, dark spots change their position and contrast in the consecutive image in Fig. 3d and an additional feature appears in the vicinity of the two spots. This suggests that the varying contrast and size of the dark spots at zero bias voltage (Fig. 3a) can be attributed to molecules adsorbed at surface defects or in non-equilibrium positions, or molecules adsorbed too close to each other to be resolved.
It is well-known that the tip's electric field and/or the tunnelling current can influence adsorbates.43,44 The calculated O–O stretch mode for the adsorbed O2− lies at 139 meV (1121 cm−1); exciting this mode could be the reason for the increase in mobility observed in Fig. 3c, d. In comparison, STM images of a similarly-prepared sample taken at 78 K show only streaks across surface defects, see Fig. 4. Occasionally the streaks continue along the [010] direction after the tip first scanned across a defect, indicating that a molecule was being moved along the bright substrate line. This shows that the molecules first adsorb at surface defects and the difficulty of imaging weakly-bound adsorbates with STM, see also Fig. S1.†
Fig. 5 Ordered superoxide overlayers. All scale bars correspond to 1 nm. (a) DFT model and STM simulation (Vsample = +0.8 V) of the (2 × 1) overlayer with one molecule per primitive unit cell. Bridge sites B1 and B2 are labeled as in Fig. 2. Note that the O2− appear as bright elongated spots with a dark node in the center (brackets). (b) Experimental STM image of the (2 × 1) overlayer. The bright, streaky area at the center is a domain boundary as indicated by the registry of the white dots. The O2− rows show a weak (‘w’) or strong (‘s’) degree of undulation. (STM parameters: Vsample = +1.0 V, Itunnel = 0.05 nA, Tsample = 78 K; fast scan direction is 59° clockwise from horizontal.) (c) Detailed STM image (same parameters) of O2− adsorbed next to a surface defect. Both rows begin with a bright spot (arrows) followed by the distinct node and a slightly weaker spot, in agreement with (a). (d) AFM image of a partially covered sample, showing a (3 × 1) overlayer. Red ticks mark lattice-constant intervals along [100]. The O2− and surface O are imaged as intense and faint, bright spots, respectively (corresponding to repulsion). AFM parameters: A = 500 pm, Vsample = 0 V, Tsample = 4.8 K. |
The STM simulation of the (2 × 1) overlayer shows bright, elongated spots corresponding to a superposition of two lobes of the neighboring O2−, separated by a dark node at the center of the molecular bond, rather than between two molecules (see Fig. 5a). The electronic contrast leads to an apparently alternating spacing of the rows in STM although the O2− molecules are equally spaced in [100] direction. Here only a STM simulation is shown as the simulation of atomically-resolved nc-AFM is more involved, since the tip has to be taken into account explicitly.
When going from low coverage towards saturation, the molecules become less mobile and STM images less streaky, until the (2 × 1) overlayer forms, see Fig. S1.† The experimental saturation coverage of close to one monolayer (ML, where 1 ML is defined as one adsorbate per primitive unit cell) is shown in Fig. 5b. The O2− covered part of the surface appears as rows of pairs of a bright and a slightly weaker spot on a black background, running in [010] direction. The distance between the pairs along the row is one lattice constant, and every other gap between the bright and slightly weaker spots is more pronounced. Neighbouring rows are shifted by half a lattice constant in [010] direction, and appear subtly different as the spots in one row strongly (weakly) undulate with respect to the [100] direction, marked by s (w) in Fig. 5b. The O2− rows have alternatingly narrow and wide gaps in [100] direction. The bright, streaky areas are domain boundaries: the spacing of the rows labelled s and w is narrow in the upper half of the image, but wide in the lower half. The row that undulates strongly in the upper half of the image undulates weakly in the lower half and vice versa. This is because the molecules are shifted half a lattice constant in [010] direction across the domain boundary, where the row with all O2− adsorbed in B1 sites becomes a row with all O2− adsorbed in B2 sites and vice versa (compare to the white dots that mark lattice-constant-intervals along [010]). The streaky appearance of the domain boundaries indicates weakly-bound molecules that cannot be imaged with STM. This results in an apparent coverage of only 0.9 ML when counting all O2− on the rows.
Fig. 5c shows two O2− rows (marked by arrows) that start next to an unknown, dark surface defect. Both rows begin with a bright spot followed by the more pronounced gap and a slightly weaker spot. This agrees well with the STM simulation showing a distinct node in the center of the molecules, and a weaker depression between two molecules. To confirm that the O2− are adsorbed in either B1 or B2 sites, i.e., on the bright substrate lines, a part of the overlayer was removed by scanning with higher bias voltage (+2.0 V), see Fig. S2.†
While, as pointed out above, STM disturbs molecules at low coverage too much for reliable imaging, this is possible with AFM. Fig. 5d shows an AFM image of a sample partially covered with O2−. It should be noted that after the tip approach with non-zero sample bias voltage the tip was moved to a different region with 0 V bias voltage to exclude a possible charging or manipulation of the adsorbate upon the initial scan. In AFM the molecules are imaged as bright spots (less negative Δf, more repulsive). The surface oxygen atoms of the uncovered sample between the O2− rows are imaged as faint, bright spots. The overlay shows the surface atoms of the pristine surface aligned to the uncovered part of the sample, and confirms that the O2− molecules adsorb close to a Ca–Ca bridge. In contrast to STM images the rows are equally spaced by one lattice constant in [100] direction. Thus the alternating row spacing in STM images (Fig. 5b) is mainly due to a difference in electronic contrast.
A detailed analysis of the electronic properties of the (2 × 1) overlayer shows that the O2 molecule does not adsorb as a neutral molecule. The density of states show an additional, occupied π* state in the minority channel, leading to the formation of a charged O2− species, regardless of the level of theory, see Fig. 6. An analysis of the differential charge shows that the electron is transferred into the π* orbital oriented towards the nearest Ca, filling this orbital, see Fig. 7a, b. This is also reflected in the magnetic properties: the neutral gas phase O2 molecule has two half-filled π* orbitals in the triplet state resulting in a magnetic moment of 2 μB. Upon adsorption, one π* orbital becomes filled, leaving the second orthogonal π* state singly occupied. This orbital carries the remaining magnetic moment of about 1 μB (see Fig. 7c). The electron is transferred from the RuO states at the Fermi level in case of the metallic substrate phase described by vdW-DFT, and from the Ru of the closest RuO6 octahedron in the insulating substrate phase described by the HSE06 functional. As a consequence of the more localized electron transfer in the insulating phase the RuO6 octahedra in the surface layer closest to the O2− molecule contract by 5.2% while the remaining two expand by 3.0%, see Fig. S3a.† In vdW-DFT approximation, only a slight contraction (3%) of the octahedra close to the molecule takes place (Fig. S3b†), where the bond between the central Ru and the apical O atom is shortened. Compared to the metallic phase, only minor structural changes occur in the HSE06 calculations: the O2− molecules rotate by 4.5° clockwise and 4.3° counterclockwise, and the tilting angle is increased to a value of 12° with respect to the surface plane. Although the O2− adsorption geometries are almost identical, the adsorption energy decreases from 1.19 eV to 0.58 eV and the HOMO–LUMO gap of the O2− increases from 0.7 eV to 3.1 eV when comparing the HSE06 to the vdW-DFT result. The HSE06 functional certainly improves the description of the electronic structure of the molecular adsorbate, but does not capture the metallic character of the substrate and tends to underestimate the screening properties of metals and small-gap semiconductors.46 However, the HSE06 adsorption energy of 0.58 eV agrees well with the experimental estimate of 0.6 eV (see below).
To assess why the adsorption energy according to vdW-DFT is too high compared to the experimental value, and whether the strong decrease in adsorption energy in the HSE06 calculation is due to the insulating substrate phase or the increased HOMO–LUMO gap, a state-of-the-art many-electron-approach in the random phase approximation47 (RPA) was used. The RPA calculations predict an O2− adsorption energy of 0.72 eV and the corresponding G0W0 calculations result in the metallic substrate phase with a HOMO–LUMO gap of the O2− of approximately 1.7 eV (see Fig. 6c), which is significantly larger compared to the vdW-DFT calculation. The increase in the adsorption energy of 0.14 eV compared to HSE06 is attributed to additional non-local contributions such as vdW interactions that are not considered in HSE06.
The comparison of different theoretical approaches (see Table 1) indicates several contributions to the adsorption energy: comparing the PBE to the PBE+U results shows that the overestimation of the polarizability of the surface on the GGA level contributes about 0.2 eV, a similar increase as obtained by including vdW corrections. A third contribution stems from the underestimation of the HOMO–LUMO gap: since the charge state of the molecule changes, a correct description of the electron affinity, i.e., the cost to add an additional electron to the O2 molecule, plays a key role for the energy balance. Comparing the PBE and the HSE06 functional, advanced quantum-chemical (CCSD(T)) calculations48,49 show an electron affinity difference of gas phase O2 of 0.15 eV, which is close to the predicted difference in adsorption energy when comparing the DFT+U and the HSE06 results.
Computational method | Adsorption energy [eV] |
---|---|
PBE | 0.93 |
PBE+U (U − J = 4 eV) | 0.68 |
vdW-DF | 1.19 |
HSE06 | 0.59 |
RPA | 0.72 |
In X-ray photoelectron spectroscopy (XPS) the pristine surface exhibits an asymmetric O 1s peak at 529.1 eV binding energy (BE), broadened towards the high BE side, see Fig. 8b. According to vdW-DFT calculations the O 1s core level for the O atoms in the rock-salt like CaO planes is shifted to 0.7 eV higher BE compared to the RuO2 planes, which serve as DFT reference. On a structurally related Sr2RuO4 sample,28 two distinct O 1s peaks were observed and attributed to the apical and equatorial O atoms. The observation of only one asymmetric peak for Ca3Ru2O7 is attributed to the limited resolution of the experimental setup, the 3:4 ratio of O atoms in the CaO and RuO2 planes, and potentially the different electronic structure of these materials. Exposing the sample to 2.5 L O2 at 110 K results in a (2 × 1) overlayer and an O 1s peak at 532.6 eV BE; i.e. 3.5 eV above the peak of the pristine surface. In addition, the lattice oxygen peak shifts towards lower BE due to an upward band bending of 0.1 eV. The O2− peak lies approximately half way between reported BEs for physisorbed, neutral O2 of 536 to 538 eV (ref. 9 and 54) and the double negatively charged bulk O at 529.1 eV. Thus this XPS result is also consistent with a superoxo species. The calculation for the adsorbed O2− gives an initial-state shift of 1.3 eV (which would result in 530.4 eV BE), which is significantly lower than the experimental peak at 532.6 eV. Calculations including the final state approximation have been attempted but were ultimately not considered, as they resulted in an unphysical over-screening of the core-hole: the unoccupied O2 π* orbital calculated just above the Fermi level is pulled below it and localizes an additional electron at the molecule, which directly leads to an underestimation of the binding energy.55 While using a hybrid functional approach (such as HSE06) partially cures this problem by shifting the unoccupied O2 π* orbital away from the Fermi level, it also leads to an insulating substrate and therefore was not considered for the evaluation of the core level shifts.
For the superoxo species a double peak with a 1:3 ratio is expected due to the coupling of the O1s hole spin to the O2p valence states resulting in a single or triplet final state configuration. Similarly, adsorbed neutral O2 leads to a double peak with a 2:4 ratio (doublet and quadruplet) and a splitting of roughly 1 eV.9,54 The observation of only one broad peak in Fig. 8b is attributed to the relatively small splitting of 0.25 eV (estimated from DFT calculations) and the limited experimental resolution.
When annealing the O2− saturated sample to room temperature, the molecule desorbs, the band bending vanishes, and subsequent STM images show the pristine surface. The superoxo peak in the O 1s XPS starts to disappear at approximately 200 K, see Fig. 8b. The slight increase at higher binding energy is probably due to hydroxyls that accumulated during this experiment.29 A rough estimate for the adsorption energy based on the desorption temperature is 0.6 eV, which is in good agreement with the calculated adsorption energy of 0.72 eV (RPA).
The spectroscopic results and DFT calculations conclusively show that molecular oxygen readily adsorbs as O2− on the as-cleaved Ca3Ru2O7(001) surface. The calculated bond length of 1.35 Å and the internal stretching frequency of 1121 cm−1 agrees well to the values found for O2− on late transition metals.56 The source of electrons for charging the O2 are the Ru d-states in the RuO2 subsurface layer below the CaO-terminated surface. According to the calculations, in the metallic phase the electron is transferred from the valence band, while in the insulating phase it is transferred mainly from a neighboring RuO6 octahedron, which is also reflected in a stronger contraction of that octahedron (see Fig. S3a†). This charge transfer is crucial for the adsorption: on CaO(001) chemisorption is only observed after introducing Mo impurities that donate electrons to the oxide,18 while the RuO2 layers in Ca3Ru2O7 can be seen as intrinsic electron donors. Consequently a full monolayer of adsorbed O2− can form. The transfer of a second electron, i.e., the formation of a peroxo species, is hindered by a too weak hybridization of the states of the substrate and the molecule. This is supported by the density of states that shows that the remaining unoccupied π* state is located substantially above EF (Fig. 6).
In an earlier study it was found that O2 adsorbs as a neutral species on defect-free SrTiO3(001),23 but as an activated species on La2NiO4(001).24 This observation was correlated to the charge transferred from the A-site ions:24 while Sr2+ does not deviate from its formal ionic charge and no charge transfer is observed, the La charge changes from +3 to +2 for both adsorption modes (peroxo and superoxo), suggesting a covalent bond character between La and the charged molecule. In the present work no major charge transfer from the Ca ions is found: while the Ca ions are polarized, the Ca Bader charge stays +2, similarly to Sr2+ on SrTiO3(001),23 as the charge is transferred from the subsurface Ru to the ionically bonded O2− at the surface. Preliminary DFT calculations (not shown) show a similar charge transfer mechanism on the related, SrO-terminated Sr3Ru2O7(001) surface, suggesting that the difference is due to the energetic levels of the B-site ions.
Ultrathin oxide films that are only a few layers (L) thick are often considered as model systems for metal oxide surface chemistry. Calculations for ultrathin MgO films supported on a metal (Mo and Ag) concluded that charge can be transferred from the metal support through the oxide film to the adsorbed oxygen. A comparison of O2− adsorbed on MgO(2L)/Ag (Φ = 3.1 eV)57 and MgO(3L)/Mo (Φ = 2.05 eV)57 showed that the adsorption energy19 is smaller for the system with the higher work function. This suggests that the higher the work function the harder it is to transfer an electron to an adsorbate. The work function and O2− adsorption energy on Ca3Ru2O7(001) of 2.7 and 0.72 eV, respectively, are similar to the values for the MgO(2L)/Ag system, 3.1 and 0.64 eV.
The formation of a full, adsorbed overlayer of O2−, and the availability of atomically-resolved nc-AFM allows to directly inspect the configurations of the adsorbate, thus providing a tight connection to the theoretical calculations. At low coverage, single O2− could be imaged by AFM, but the application of a relatively low sample bias voltage (∼100 mV) already resulted in interactions between the scanning tip and the molecules (Fig. 3 and 4). The interactions occurred for positive as well as negative sample bias voltages, and the exact threshold varied between 100 and 150 mV depending on the tip-sample distance and the particular molecule. At higher sample bias voltages of roughly −1 and +2 V the O2− is desorbed by the tip and the pristine surface is revealed (see Fig. S2†). The desorption at negative sample bias voltage, where the electrons tunnel from the molecule to the tip, might be facilitated by discharging the O2− as shown on anatase TiO2(101).9
At increasing coverages the O2− form an ordered (2 × 1) overlayer up to an apparent (in STM) saturation coverage of close to 1 ML. In contrast to isolated O2− the molecules in the overlayer can be imaged by STM without perturbation by the tip, except for the overlayer domain boundaries (Fig. 5b). Within the ordered overlayer the molecules are not moved about by the STM tip, probably because they are locked in by adjacent molecules, while at the boundaries tip-induced movement of molecules is possible. This agrees with the observation that after desorbing the O2− from a specific area by scanning at higher bias voltage, molecules from the surrounding area diffuse back to the area again during subsequent STM images taken at the usual, lower sample bias voltage (see Movie S1†).
Applications utilizing the ORR usually operate at much higher temperatures than the experimental temperatures of the present work. Therefore it is interesting how the interaction with O2 would change at realistic working conditions. As the tilting/rotation of the RuO6 octahedra strongly influences the adsorption energy of O2− in the different adsorption sites (B1/B2 and B3/B4, see Fig. 2) it is appropriate to consider what happens to the RuO6 as the temperature is raised. The temperature dependence of the Ca3Ru2O7 structure was studied by Yoshida et al.58 using neutron scattering up to 292 K. Up to this temperature their data suggests that the RuO6 tilting angle slightly decreases but the structure does not undergo any dramatic changes. The orthorhombic structure of Ca2RuO4 and Ca3Ru2O7 is caused by RuO6 octahedral rotation and tilt. For Ca2RuO4, when both rotation and tilt disappear at elevated temperatures (>357 K), its structure becomes tetragonal.59 If Ca3Ru2O7 follows a similar trend (this has not been studied), adsorption of O2 as superoxo species would still be expected as it was calculated for tetragonal Sr3Ru2O7 (not published). However, due to the rather low adsorption energy of approximately 0.6 eV, the oxygen partial pressure would have to be substantially increased to achieve any O2− coverage at elevated temperatures: for example, if a simple Langmuir adsorption model is assumed, the O2 partial pressure necessary for a coverage of 0.5 ML at 900 K is 1 bar. Regarding a possible change of the surface termination at elevated temperatures it can only be speculated that a RuO2-terminated surface would reconstruct. This is based on the fact that the CaO termination is by far the lowest-energy configuration, and that SrTiO3 (the only perovskite, where a significant number of surface studies are available) is known to form a variety of complex reconstructions with a structure that is sensitively dependent on the composition.60 However, in the present work no different termination than CaO was observed and studies of different perovskite-type materials after high temperature (1000 °C) treatment under oxidizing conditions suggest that the surfaces are AO-terminated.61
Footnote |
† Electronic supplementary information (ESI) available: An STM movie in avi format is available (Movie S1). See DOI: 10.1039/c8ta00265g |
This journal is © The Royal Society of Chemistry 2018 |