State-of-the-art, opportunities, and challenges in bottom-up synthesis of polymers with high thermal conductivity

Yurui Liu a, Yijie Zhou a and Yanfei Xu *ab
aMechanical & Industrial Engineering Department, University of Massachusetts, Amherst, USA. E-mail: yanfeixu@umass.edu
bChemical Engineering Department, University of Massachusetts, Amherst, USA

Received 1st March 2022 , Accepted 12th June 2022

First published on 14th June 2022


Abstract

In contrast to metals, polymers are predominantly thermal and electrical insulators. With their unparalleled advantages such as light weight, turning polymer insulators into heat conductors with metal-like thermal conductivity is of substantial interest and technological importance for heat dissipation applications. However, engineering bulk polymers with ultrahigh thermal conductivity remains a difficulty currently. Moreover, thermal transport mechanisms are not fully understood. In this review, we first discuss the present understanding of thermal transport mechanisms in polymers. Then, we discuss various bottom-up strategies aimed at achieving highly thermally conductive polymers with representative examples. We investigate relationships between polymer structures and thermal transport properties. We highlight current challenges within the design and synthesis of highly thermally conductive polymers. We also suggest future endeavors regarding research challenges in thermally conductive polymers. Importantly, we emphasize the potential possibilities and inspiring opportunities for future applications of thermally conductive polymers with metal-like thermal conductivity.


image file: d2py00272h-p1.tif

Yurui Liu

Yurui Liu is currently a Ph.D. student in the Mechanical & Industrial Engineering Department at the University of Massachusetts Amherst. Liu received her B.E. in Materials Science & Engineering at Nankai University in 2020. Her research interest is thermally conductive polymers and polymer-based composites.

image file: d2py00272h-p2.tif

Yijie Zhou

Yijie Zhou is currently a Ph.D. student in the Mechanical & Industrial Engineering Department at the University of Massachusetts Amherst. Yijie Zhou completed his B.S. in Chemical Engineering at Central South University (China) in 2017 and received his M.S. in Chemical Engineering from South China University of Technology (China) in 2020. His current research focuses on engineered multifunctional polymers with controlled thermal conductivity.

image file: d2py00272h-p3.tif

Yanfei Xu

Yanfei Xu is currently an assistant professor in the Mechanical & Industrial Engineering Department at the University of Massachusetts Amherst. She is also an adjunct assistant professor in the Chemical Engineering Department. Before joining UMASS, from 2013 to 2018, she was a postdoctoral researcher in the Mechanical Engineering Department at Massachusetts Institute of Technology, where she was active in the pursuit of turning polymer insulators into heat conductors. She also worked as a Marie Curie Fellow for the European FP7 GENIUS project at BASF & Max Planck Institute for Polymer Research Joint Lab in Germany. She received Ph.D. in Chemistry from Nankai University in 2010.


Introduction

Polymers are attractive for heat dissipation applications, thanks to their unique combined properties that cannot be obtained from other materials.1 Polymers are light weight, chemical resistant, and easily processed, to name a few.1–3 However, common polymers are thermal insulators and have low thermal conductivities on the order of 0.1 W m−1 K−1.4–8 Bulk polymers have disordered chains and random defects such as chain entanglements and chain ends, which lead to low thermal conductivities in common polymers.9–15 These thermally insulative polymers could lead to overheating problems in modern high-power-density (or high-energy-density) electronics.16–20 To date, traditional heat conductors are metals (304-stainless steel ∼15 W m−1 K−1) and ceramics (aluminum oxide ∼30 W m−1 K−1).8 Thus, turning polymer insulators into heat conductors with metal-like thermal conductivity is needed.9,21–35 Thermally conductive polymers will open up new avenues toward advanced thermal management applications such as chip packaging, soft robotics, and organic light-emitting diodes.9,14,21,24,25,28,29,36–49

Conventional conjugated polymers (e.g., polythiophene), composed largely of conjugated carbon–carbon double bonds, possess characteristically low thermal conductivity on the order of ∼0.1 W m−1 K−1; notably, graphene is also composed of conjugated carbon–carbon double bonds.6,8 Graphene is one of the best thermal conductors with thermal conductivity greater than ∼2000 W m−1 K−1.50–53 This encourages research in developing thermally conductive polymers with ultrahigh thermal conductivity.9 Atomistic simulations have also suggested that crystalline polymer chains (e.g., polythiophene and polyethylene) can achieve very high—possibly divergent—thermal conductivity.54–57 This is in agreement with the non-ergodic characteristics of one-dimensional conductors discovered by Fermi, Pasta, and Ulam (FPU).58 However, to date, such divergent thermal conductivity suggested by simulations are not yet validated by experimental measurements.9 Many studies try to understand the underlying physics of how, why, and under what conditions the phenomena FPU discovered will persist.59–61 However, the synthesis of a single polymer chain is difficult.62 The thermal conductivity measurements on a single polymer chain could also be challenging.63

Although there are many challenges in probing thermal transport properties in polymers, there is also exciting progress in developing the highly thermally conductive polymers.9,10,25,28,29 For example, polyethylene,26,29,32,64–72 thiophene-based conjugated polymers,44,73–75 and epoxy-based polymers13,49,76–81 with increased thermal conductivities have been developed. Details in Tables 1 and 2 will be discussed below. A high thermal conductivity of ∼4.4 W m−1 K−1 in pure polythiophene nanofibers has been meassured.75 The thermal conductivity of ultradrawn polyethylene nanofibers has been found to be as high as ∼104 W m−1 K−1, which is larger than thermal conductivities of many metals;29 however, another challenge is finding ways to achieve scalable synthesis of bulk polymers with ultrahigh thermal conductivity larger than 100 W m−1 K−1.9,10 Thermal transport mechanisms in polymers have been theoretically studied, but they are not fully understood. Robust theoretical guidance for synthesizing polymers with ultrahigh thermal conductivity is lacking.9,82 More efforts are needed to further understand the thermal transport mechanisms and explore strategies for synthesizing bulk polymers with high thermal conductivity.

Table 1 Intermolecular interactions promote heat conduction in polymers. Selected polymers with strong noncovalent bonds (hydrogen bonds) and high thermal conductivities (κ) include a poly(N-acryloyl piperidine):poly(acrylic acid) blend (PAP:PAA),48 poly(acrylic acid) (PAA),33 polyacrylamide (PAM),33 poly(4-styrenesulfonic acid) (PSS),33 polyurea,35 poly(ethylene glycol):poly(vinyl alcohol) (PEG:PVA),178 PVA,179 polydehydroalanine (PDha),34 poly(2-(imidazole-1-yl)acrylic acid) (PImAA),34 and poly(2-(3-methylimidazolium-1-yl)acrylic acid) (PMeImAA).34 Selected polymers with high thermal conductivities due to strong noncovalent bonds (π–π interactions) between polymer chains include poly(3-hexylthiophene-2,5-diyl) (P3HT),44 co-polyester,109 and liquid crystal epoxies (LCEs)13,180
Intermolecular interactions Polymers Chemical structures κ (W m−1 K−1) Samples Methods Ref.
Hydrogen bonds PAP:PAA image file: d2py00272h-u1.tif 1.7 ± 0.5 Film Spin-coating 48
PAA image file: d2py00272h-u2.tif 0.37 ± 0.02 Film Spin-coating 33
PAM image file: d2py00272h-u3.tif 0.38 ± 0.02 Film Spin-coating 33
PSS image file: d2py00272h-u4.tif 0.38 ± 0.02 Film Spin-coating 33
Polyurea image file: d2py00272h-u5.tif 0.52 ± 0.01 Film Casting 35
PEG:PVA image file: d2py00272h-u6.tif 0.416 Film Casting 178
PVA image file: d2py00272h-u7.tif 0.56 + 0.03 Film Casting 179
PDha image file: d2py00272h-u8.tif 0.24 ± 0.008 Film Spin-coating 34
PImAA image file: d2py00272h-u9.tif 0.307 ± 0.03 Film Spin-coating 34
PMeImAA image file: d2py00272h-u10.tif 0.31 ± 0.005 Film Spin-coating 34
π–π interactions P3HT image file: d2py00272h-u11.tif 2.2 ± 0.67 Film Oxidative Chemical Vapor Deposition (oCVD) 44
Co-polyester image file: d2py00272h-u12.tif 0.381 Film Curing reaction 109
LCEs image file: d2py00272h-u13.tif 0.4 Disk Curing reaction 13
LCEs image file: d2py00272h-u14.tif 0.46 Disk Curing reaction 180


Table 2 Selected thermally conductive polymers developed by various bottom-up strategies including poly(3-hexylthiophene-2,5-diyl) (P3HT),44 poly(3,4-ethylenedioxythiophene) (PEDOT),193 poly(3,4-ethylenedioxythiophene):Tosylate (PEDOT:Tos),194 polythiophene (PT),75 poly(4,8-bis-alkyloxybenzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-(alkylthieno [3,4-b]thiophene-2-carboxylate)-2,6-diyl) (PBDTTT),185 copolymers of 3-butylthiophene and 3-butoxythiophene (PTD),74 high-density polyethylene (HDPE),195 epoxy based on crosslinking reactions,13,79,95,96 and poly(3-methylthiophene) (P3MT)-(6-(4-bromophenyl)hexyl)phosphonic acid (PHPA)121
Bottom-up synthesis Polymers Chemical structures κ (W m−1 K−1) Ref.
oCVD P3HT image file: d2py00272h-u15.tif 2.2 ± 0.67 44
PEDOT image file: d2py00272h-u16.tif 0.155 ± 0.05 193
PEDOT:Tos image file: d2py00272h-u17.tif 1.8 ± 0.2 194
Template-assisted method PT image file: d2py00272h-u18.tif 4.4 ± 0.3 75
Copoly merization PBDTTT image file: d2py00272h-u19.tif 0.29 ± 0.04 185
PTD image file: d2py00272h-u20.tif 0.374 74
Crosslinking reaction Epoxy and hardener image file: d2py00272h-u21.tif 0.27 ± 0.03 95
Epoxy and hardener image file: d2py00272h-u22.tif 0.34 ± 0.03 96
Epoxy and hardener image file: d2py00272h-u23.tif 0.4 13
Epoxy and hardener image file: d2py00272h-u24.tif 0.89 79
HDPE image file: d2py00272h-u25.tif 0.426 195
Surface-initiated polymerization P3MT-PHPA image file: d2py00272h-u26.tif 1.24 ± 0.48/0.26 121


The atomic-level design and synthesis of thermally conductive polymers by bottom-up approaches will provide new opportunities for making polymers with metal-like thermal conductivity, probing relationships between thermal transport properties and structures, and developing theory for better understanding thermal transport mechanisms.34,44,75 Thermal transport properties in polymers can be manipulated through tuning the monomer composition,4,9,10,31,83–85 crystallinity,9,10,37,86,87 molecular weight,88–93 type of cross-link,88,94–100 monomer sequence of the copolymer,101,102 intrachain and interchain interactions,13,33,48,97,103–112 chain orientation and assembly,12,15,21,32,36,40,65,69,75,113–124 functional group,12,34,82 density,125 and/or chain morphology.12,15,24,32,35,75,77,95,126–137 In contrast to bottom-up synthesis strategies, top-down methods, such as stretching,29 solution shearing,42 extrusion,5 and thermal annealing138 also provide new possibilities for engineering polymer chain structures and making polymers with high thermal conductivity.4,9,28 In this review and perspective, we first discuss the current understanding of thermal transport mechanisms in crystalline solids and amorphous polymers at multiple levels ranging from the atomic level to nanoscale level. We will then highlight the strategies, progress, and challenges in designing and synthesizing highly thermally conductive polymers by bottom-up approaches at the atomic level. We also discuss the characterization techniques for measuring the thermal conductivity of bulk polymers and nanoscale polymers. We propose future research directions related to thermal transport mechanisms in polymers. Future applications of thermally conductive polymers are also highlighted. Future endeavors regarding research challenges in thermally conductive polymers are needed.

Thermal transport mechanisms in solids

Thermal conductivity characterizes materials’ heat-conducting ability, which spans five orders of magnitude (∼0.01–1000 W m−1 K−1).7,8 Diamond and graphene are among the best heat conductors and have a thermal conductivity of ∼2000 W m−1 K−1 at room temperature.7,8,11

Heat in solids is mostly conducted by electrons or atomic vibrations.7 Electrons are the main heat carriers in metals.7,139 The electron contribution to thermal conductivity is directly related to electrical conductivity via the Wiedemann–Franz law (eqn (1)).7

 
κe = σLT(1)
where σ is electrical conductivity, L is the Lorentz number, and T is temperature.7 Phonons are the main heat carriers in dielectric solid crystals. Phonons are quantized modes of lattice vibrations. Thermal conductivity in dielectric solid crystals is generally written as an integration over the phonon spectrum (eqn (2)).
 
image file: d2py00272h-t1.tif(2)
where τ(ω) is the relaxation time, υ(ω) is the velocity of heat carriers, C(ω) is the volumetric specific heat at frequency ω and temperature T, and ω is the phonon frequency. The relaxation time of the longitudinal phonons is critical to efficient heat transport.7,32,140 The mean free path (Λ(ω)) of heat carriers is calculated using eqn (3).
 
Λ(ω) = υ(ω)τ(ω)(3)

Peierls described phonon transport in dielectric materials as motion and scattering of gas particles using the Boltzmann transport equation.141 Such a kinetic phonon gas model has laid the foundation for understanding heat conduction in semiconductor and insulator crystals (Fig. 1). Eqn (2) simply converts to eqn (4) when τ(ω) and υ(ω) are isotropic and are independent of frequency.

 
image file: d2py00272h-t2.tif(4)
where C is the volumetric specific heat of heat carriers, υ is the velocity of heat carriers, and Λ is the mean free path. In polymer single crystals, phonons can be scattered at polymer chain ends, which are boundary scattering.9,25,92,140,142,143 Higher thermal conductivity is observed in polyethylene chains with fewer chain ends.92 In addition to chain ends, there can also be other heat carrier scattering events such as phonon–phonon scattering.7,9,25


image file: d2py00272h-f1.tif
Fig. 1 Schematics of fundamental differences between diffuson and phonon models for thermal transport in solids.144 The defining characteristics of phonon-based models include the mean free path (Λ) in thermal conductivity (κ): eqn (3) and (4). C is the volumetric specific heat, a is an interatomic distance.145 The Ioffe–Regel limit of phonons suggest that lattice vibrations do not represent enough periodicity of the lattice to be a well-defined phonon (Λa).145 The diffuson-based model relies on thermal diffusivity coming from random walk considerations, which leads to the jump attempt frequency (2ω/2π) and the probability of a successful jump (P) as the operative theoretical inputs in eqn (5). Slack and Cahill et al. have proposed a minimum thermal conductivity theory of disordered solids based on a phonon gas model, assuming that the phonon mean free paths cannot be smaller than one phonon wavelength (λ) by Slack146,147 or half the phonon wavelength (λ/2) by Cahill.148

In reality, bulk polymer single crystals are rare.62 Phonons are ill-defined in common polymers due to the lack of periodicity.149,150 The presence of chain entanglements, voids, impurities, and other defects in common polymers leads to significant heat carrier scattering that hinders heat conduction.14,151 Vibrational modes in amorphous solids have been classified into propagating and non-propagating modes. Allen and Feldman have introduced the terminology of “locons, diffusons, and propagons” to classify vibrational modes of disordered solids and their contributions to thermal transport.152,153 The propagating modes are like phonons.150,153 Diffusons exhibit a diffusive-like nature, where the vibrations are neither localized nor propagating.144,153 Locons are localized vibrations. Fig. 1 shows fundamental differences between phonon and diffuson models of thermal transport.144,152–157 In diffusive thermal transport mechanisms, heat is quantified by diffusons and is characterized by the diffusivity. Diffuson-based models described thermal diffusivity with random walk considerations, which leads to the jump attempt frequency (2ω/2π) and the probability of a successful jump (P) being the operative theoretical inputs (Fig. 1).

In the random walk diffuson picture, the thermal conductivity may be estimated using eqn (5). The thermal conductivity of glass has been investigtated both theoretically and experimentally.158,159

 
image file: d2py00272h-t3.tif(5)
where κdiff is diffusive thermal conductivity, C(ω) is the volumetric specific heat, a is an interatomic distance, ω is the frequency, and P is the probability of a successful jump. In the phonon-gas model, this will correspond to aΛ, which is too small to justify the use of the phonon-gas model.153

Cahill and Pohl have developed a minimum thermal conductivity model for predicting thermal conductivity in amorphous solids (eqn (6)).19,33,142,148,160 This model is based on the Debye model of vibrations and assumes the lifetime of each oscillator to be half its period of vibration.148 The minimum thermal conductivity model was originally proposed by Einstein.157

 
image file: d2py00272h-t4.tif(6)
where κmin is the predicted minimum thermal conductivity, kB is the Boltzmann constant, n is the number density of atoms, the sum is taken over the three sound modes with speeds of sound vi (two transverse and one longitudinal), Θi is the cutoff temperature, Θi = vi (ħ/kB) (6π2n)1/3 and ħ is the reduced Plank's constant. The models developed by Kittel,159 Clarke,161 Slack,146 and Cahill148 have shown good approximations for amorphous materials’ thermal conductivities particularly at low temperatures.

In the high temperature limit, the minimum thermal conductivity has been indicated by eqn (7).142

 
image file: d2py00272h-t5.tif(7)
where kB is the Boltzmann constant, n is the number density of atoms, vl is the longitudinal speed of sound, and vt is the transverse speed of sound. Eqn (7) suggests that materials with a high number density of atoms and high sound velocity tend to possess higher thermal conductivities.25,142 A nearly linear relationship between measured thermal conductivity and average sound velocity is shown in Fig. 2.142 However, at room temperature, experimental thermal conductivities in fullerene derivatives have been found below the minimum thermal conductivity suggested by Cahill models.33,162 Measured thermal conductivities in epoxy resins are found to be 10–40% lower than the predicted minimum thermal conductivity.95 Thus, to date, thermal transport mechanisms in amorphous solids have not yet been fully understood.25 In order to improve the predictive power for experimentalists and explain the experimental results of ultralow thermal conductivity in polymers, different models and theories are needed.


image file: d2py00272h-f2.tif
Fig. 2 (a) Relationships between measured thermal conductivities and average sound velocities of selected polymers and polymer salts, which include polystyrene (PS), polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA), poly(acrylic acid) (PAA), poly(vinylphosphonic acid) (PVPA), poly(acrylic acid calcium salt) (PVPCa), poly(acrylic acid lithium salt) (PALi), poly(vinylphosphonic acid calcium salt) (PVPCa), and poly(vinylphosphonic acid lithium salt) (PVPLi).142 These selected polymers and polymer salts have similar backbone structures with different interchain interactions. (b) Chemical structures of polymers and polymer salts.142

A phenomenological diffusive thermal conductivity (κdiff) has recently been derived by Agne, Hanus and Snyder,144 and it is also based on the diffusion theory of Allen and Feldman.152–156 A diffusive thermal conductivity (κdiff) could be defined as the limit of entirely diffusive thermal transport, which has been estimated using eqn (8).144

 
image file: d2py00272h-t6.tif(8)
where kB is the Boltzmann constant, n is the number density of atoms, vl and vt are the longitudinal speed of sound and transverse speed of sound, respectively. Compared with the minimum thermal conductivity for glass calculated with the Cahill model in eqn (6) and (7), κdiff in eqn (8) could be a better estimation of a minimum thermal conductivity for materials with ultralow thermal conductivity at high temperature.144 The relationships between thermal conductivity, the number density of atoms, and average sound velocity in eqn (6)–(8) may provide practical guides for observing the upper and/or lower limits of the thermal conductivity of amorphous solids.107,142,144 Theoretical predictions on thermal conductivity are lacking, which causes the need for further development.14

Thermal conductivity gap between theory and experimental measurements of polymers

As mentioned above, polythiophene can have ultrahigh thermal conductivity along chain directions.54,56 Atomistic simulations have suggested that an individual crystalline polythiophene chain can achieve very high—possibly divergent—thermal conductivity, in agreement with the non-ergodic characteristics of one-dimensional thermal conductors discussed by Fermi et al.58 The thermal conductivity of bulk polythiophene is much lower than the simulated value (∼198 W m−1 K−1, Fig. 3) for polythiophene's thermal conductivity. However, the thermal conductivity of polythiophene has been enhanced through bottom-up strategies. For example, pure polythiophene nanofibers show a thermal conductivity of ∼4.4 W m−1 K−1, which is more than 20 times higher than that of bulk polythiophene.75 This thermal conductivity enhancement results from the significant molecular chain orientation along the fiber axis that is obtained during electropolymerization using nanoscale templates, which will be discussed below.75 Unlike drawn crystalline fibers, in these polythiophene fibers, the dominant phonon-scattering processes at room temperature is still related to structural disorders.75 However, to date, there are no precise mechanisms that account for the discrepancy between experimental and simulated values. Efforts to synthesize thermally conductive polymers and understand thermal transport mechanisms are needed. In the section below, progress in the bottom-up synthesis of polymers with high thermal conductivity is discussed.
image file: d2py00272h-f3.tif
Fig. 3 Measured thermal conductivities of bulk polythiophene75 and polythiophene nanofibers75 at room temperature that include ∼0.2 W m−1 K−1 of bulk polythiophene, ∼0.6 ± 0.1 W m−1 K−1 of polythiophene nanofibers (diameter: 245 ± 5 nm), ∼0.8 ± 0.1 W m−1 K−1 of polythiophene nanofibers (diameter: 204 ± 10 nm), ∼0.1 ± 0.1 W m−1 K−1 of polythiophene nanofibers (diameter: 145 ± 2 nm), ∼1.6 ± 0.3 W m−1 K−1 of polythiophene nanofibers (diameter: 84 ± 14 nm), ∼2.9 ± 0.4 W m−1 K−1 of polythiophene nanofibers (diameter: 84 ± 12 nm), and ∼4.4 ± 0.3 W m−1 K−1 of polythiophene nanofibers (diameter: 71 ± 3 nm). Simulated thermal conductivities of polythiophene that include ∼62.9 ± 2.5 W m−1 K−1 of polythiophene fibers at room temperature,163 ∼129 ± 30 W m−1 K−1 along the polythiophene chain with 150 unit cells,54 and ∼198 W m−1 K−1 along the polythiophene chain axis.164

Common polymers have intrinsic structural disorders and random defects that act as heat carrier scattering cites.16,27,29,165 Crystal-amorphous interfaces, chain entanglements, random coils, kinks, and chain ends in polyethylene limit macroscopic thermal properties, which result in low thermal conductivity.26,166–169 The thermal conductivity in polymers may be crystallinity dependent. From the amorphous domains to crystalline domains, the thermal conductivity of semicrystalline polyethylene has been predicted to increase from 0.3 W m−1 K−1 to 50 W m−1 K−1 by molecular dynamics simulations.122 However, there are exceptions. For example, polypropylene is highly crystalline but has a low thermal conductivity.170 To achieve high thermal conductivity, methods to avoid heat carrier scattering events in polymers are needed.171 The strength of intrachain (or interchain) interactions and conformational energy are also critical to the polymer's thermal conductivity.9,108 High thermal conductivity has been reported in polymers with rigid backbones, for example, polyacetylene and poly-(p-phenylene). This is because rigid backbones can suppress segmental rotations, which can further reduce heat carrier scattering.163,170,172 Rigid conjugated polymers such as polyacetylene173 and poly-(p-phenylene)163 could have high thermal conductivity. Conjugated ladder polymer backbones have fused rings that are π-conjugated.174 Thus, conjugated ladder polymers may also have promising high thermal conductivities.175 General bottom-up design strategies such as covalent annulation and noncovalent conformational control could be employed to build new rigid coplanar π systems with potential high thermal conductivities, such as thermally conductive conjugated ladder polymers.176 Relationships between structures and thermal conductivity in these polymers need to be further investigated. Understanding these relationships could provide important principles for new polymer design and thermal management applications. Weak van der Waals forces can lead to inefficient thermal transport between polymer chains.14,83,84,177 Thus, strong interatomic forces and intermolecular interactions may promote the exchange of thermal energy.25,83,84Table 1 shows the enhanced thermal conductivities observed with increasing intermolecular interactions (noncovalent bonds).

Bottom-up strategies for synthesizing polymers with high thermal conductivity

Typical strategies for enhancing efficient thermal transport in polymers are to improve chain orders (e.g., chain alignments and inter-polymer chain packing),29,56,75,106,128,163,172,181–186 to decrease interface scattering,187–190 to increase interchain bonding (e.g., hydrogen bonds and π–π interactions),13,44,109–111,180,191 and to reduce anharmonicity/bond strength inhomogeneity.14,146,152,192 Thus, thermally conductive polymers synthesized at monomer levels by various bottom-up approaches have been developed. The bottom-up methods include chemical vapor deposition,44,193,194 template-assisted electrochemical polymerization,75 copolymerization,74,185 cross-linking reaction,13,79,95,96,195 and surface-initiated polymerization,121 which will be discussed below (Table 2).

Chemical vapor deposition (CVD) strategies for synthesizing thermally conductive polymers

Chemical vapor deposition is a powerful technology for precisely producing high-quality polymeric conformal coatings.196,197 Step-growth polymerization mechanisms in oxidative chemical vapor deposition (oCVD) guide the atomic-level synthesis of polymers with controllable polymer structures and well-defined chemical compositions.198,199 As mentioned above, reducing polymer disorders and enhancing intermolecular interactions may enable efficient thermal transport in polymers. Thermally conductive conjugated poly(3-hexylthiophene) (P3HT) thin films with ordered polymer chains have been synthesized using the oCVD technique (Fig. 4).44
image file: d2py00272h-f4.tif
Fig. 4 (a) Schematic of an oCVD reactor for P3HT synthesis.44 (b) Oxidants and monomers used for the synthesis of thermally conductive P3HT.44 (c) Schematic of the microstructures of a doped P3HT film. Ordered chain grains are π–π stacking assemblies, whereas disordered chain grains have rigid backbones with suppressed distortions.44 (d) Methanol rinsing removes excess oxidants and de-dopes (reducing) P3HT backbones. Schematic of the microstructures of the de-doped P3HT film showing ordered chain assemblies via π–π stacking and extended chains with suppressed distortions which originate from the quinoid structures.44

By simultaneously harnessing the strong conjugated bonds along polymer chains and the π–π interactions between them (Fig. 4d), P3HT thin films have achieved high thermal conductivities of ∼2.2 W m−1 K−1 near room temperature, which is 10 times higher than that of conventional polymers.44 Rigid polymer chains have π–π stacking structures (Fig. 4d). The 45 °C-grown P3HT film has a thermal conductivity 10 times higher than that of the 85 °C-grown P3HT film. The thermal conductivity of the 45 °C-grown P3HT increases from ∼1.3 W m−1 K−1 at 200 K to ∼2.2 W m−1 K−1 at 280 K and then flattens out around 300 K (Fig. 5, 45 °C-grown P3HT oCVD), which suggested the “polycrystalline” nature of the P3HT film. At low temperatures, heat carrier propagations inside the crystalline region are limited by interface scattering, and thermal conductivity increases with increasing heat carrier populations (Fig. 5, 45 °C-grown P3HT oCVD and 85 °C-grown P3HT oCVD). At higher temperatures, however, intrinsic heat carrier scattering is dominant, which could lead to decreasing thermal conductivity.44 Poly(3,4-ethylenedioxythiophene) (PEDOT) thin films with tailored morphologies have been synthesized using oCVD to show thermal conductivities of ∼0.16 W m−1 K−1.193 The time-domain thermoreflectance (TDTR) technique has been used for measuring the thermal conductivity of these P3HT thin films synthesized by the oCVD technique (Table 3).200 The differential 3ω method has been used to measure the thermal conductivity of oCVD grown PEDOT films (Table 3).193


image file: d2py00272h-f5.tif
Fig. 5 Temperature-dependent thermal conductivity of poly(3-hexylthiophene-2,5-diyl) (P3HT)201 and polythiophene (PT)75 at near room temperature. Thermal conductivities as a function of temperatures are shown for 45 °C-grown P3HT film44 and 85 °C-grown P3HT film44 developed by oCVD strategies in a range from 200 to 300 K. Thermal conductivities as a function of temperatures are shown for PT fibers developed by AAO template-assisted electropolymerization with a diameter of ∼71 ± 3 nm from 61 K to 310 K and PT fibers75 with a diameter of 204 ± 10 nm from 40 K to 280 K.
Table 3 Selected techniques suitable for measuring thermal conductivities of bulk, thin film, and fiber materials
  Bulk material Thin film Fiber
Steady-state techniques Steady-state, absolute technique227,229,266 Steady-state, thermometry techniques for measuring in-plane thermal conductivities227,229,267 Steady-state, parallel conductance method227,269
Steady-state, radial heat flow method227,270 Steady-state methods for measuring cross-plane thermal conductivity of thin films227,268
Steady-state, parallel conductance method227
Transient techniques Frequency-domain transient technique, pulsed power technique227,271 Frequency-domain transient technique, 3ω technique for measuring cross-plane thermal conductivities272 TDTR32
Fiber aligned frequency-domain thermoreflectance technique273 FDTR for measuring in-plane thermal conductivities235,274–276 and cross-plane thermal conductivities274,276
FDTR (frequency-domain thermoreflectance technique, pump probe spectroscopy)231 TDTR for measuring in-plane thermal conductivities26,47,277,278 and cross-plane thermal conductivities235
TDTR (time-domain thermoreflectance technique, pump probe spectroscopy)231
Time-domain transient techniques, hot-wire method227,279
Time-domain transient techniques, laser flash method233


Template-assisted electropolymerization strategies for synthesizing thermally conductive polymers

Electropolymerization with templates is a straightforward method to grow functional polymers at monomer levels with controlled chemical compositions, structures, and architectures (Fig. 6).75,202–204 Anodic aluminum oxide (AAO) hard templates are widely used for electropolymerization.205 The morphologies of polymers (e.g., nanofiber diameter and length shown in Fig. 5) can be controlled by the pore diameter in AAO templates and the total charges passed through the electrochemical cell. Polythiophene nanofibers with oriented chains have been synthesized by the AAO template-assisted electropolymerization approach (Fig. 6a and b).75 The obtained polythiophene nanofibers have controlled diameters (∼71 ± 3 nm, Fig. 6c) and thermal conductivities up to ∼4.4 W m−1 K−1 which is more than 20 times higher than the bulk polymer value.75 This increased thermal conductivity of polythiophene nanofibers results from the significant molecular chain orientation along the fiber axis by AAO template-assisted electropolymerization at the nanoscale. The synthesized polymer chains in the nanofibers remain amorphous.75
image file: d2py00272h-f6.tif
Fig. 6 (a) Schematic of the electrochemical cell for template-assisted electropolymerization with three-electrodes.75 A metal layer (gold) coated on one side of the nanoporous anodic aluminum oxide (AAO) template is used as the working electrode.75 Stainless steel foil is used as the counter electrode. The anodic potential is measured versus an Ag/AgCl reference electrode.75 (b) Fabrication process of polymer nanofibers (e.g., polythiophene nanofibers).75 Instantaneous nucleation and subsequent two-dimensional growth occur within nanochannels of electrodes. Nanofibers are formed by electropolymerization. To dissolve the AAO template and obtain free-standing nanofiber arrays, a subsequent template etching process is introduced.75 (c) Subsequent vertically aligned array of amorphous polymer nanofibers liberated from the AAO template with an extended conformation and improved orientation.75 Isolated nanofiber arrays were obtained by extra neutralization and washing processes.75 Thermal conductivities of polythiophene fibers made by AAO template-assisted electropolymerization are shown in Fig. 5.

Temperature-dependent thermal conductivities of PT fibers with different diameters (∼71 ± 3 nm and 204 ± 10 nm) have been measured (Fig. 5).75 The thermal conductivity of individual nanofibers was measured using a suspended microbridge technique.206 The measured thermal conductivities of nanofibers increase with decreasing diameters (PT fiber: 71 nm and PT fiber: 204 nm in Fig. 5). Thermal conductivities of nanofibers with diameters of ∼204 nm and ∼71 nm increase monotonically from 100 K to 350 K (Fig. 5). Dominant phonon-scattering mechanisms are interchain scattering that is due to chain disorder.75 Template-assisted electropolymerization methods may provide special opportunities for synthesizing polythiophene without side chains. Although these polythiophenes without side chains have poor solubility, they might have high thermal conductivity, because there may be less heat carrier scattering by flexible alkyl side chains. A series of poly3-alkylthiophenes with different side chain lengths have been synthesized by oxidative polymerization.74 As the length of the side chain decreases, an increased thermal conductivity is observed and the maximum thermal conductivity reaches 0.320 W m−1 K−1 in thiophene-based polymers.74

In the thermal conductivity measurement experiments, Singh et al. have noted that the thermal conductance of nanofiber samples is low, which is on the order of 1 nW K−1.75 It is necessary to account for the background heat transfer during the thermal conductivity measurement process.75 Neglecting this background conductance that is comparable to the sample conductance can lead to an overestimation of the thermal conductivity.75 The background heat transfer is between the two platinum resistance thermometers via residual gas molecules and radiation. To eliminate the background conductance, the temperature rise on the sensing membrane was measured relative to the temperature rise on the sensing membrane of a blank device with no nanostructure. Such background elimination is carried out either with a separate background conductance measurement of a blank reference device75,207 or simultaneously with a new differential measurement method. Details of this differential measurement are found in the references.75,208 The background thermal conductance makes a relative contribution of 5% for nanofibers with diameters greater than 200 nm and between 15% and 50% for smaller nanofibers.44,75,121

Surface-initiated controlled polymerization strategies for growing thermally conductive polymers

The generation of polymer brushes by surface-initiated controlled radical polymerization methods has become a powerful strategy for tailoring the chemical and physical properties of interfaces. This has given rise to great advances in thermal interface materials engineering.121,209–211Fig. 7a shows a schematic of surface-initiated polymerization. Poly(3-methylthiophene) brushes grafted from phosphonic acid monolayers using surface-initiated polymerization have a through-plane thermal conductivity greater than ∼2 W m−1 K−1.121 This is a 6-fold increase compared to spin-coated poly(3-hexylthiophene) samples.121 It has been noted that the films’ thicknesses are between 10 nm and 40 nm, which may be less than most application requirements. Surface-initiated controlled polymerization methods may demonstrate efficient routes toward engineering higher thermal conductivity in covalently grafted, aligned polymer films.121
image file: d2py00272h-f7.tif
Fig. 7 (a) Schematic of surface-initiated polymerization. The substrates with a reactive initiator monolayer were immersed in monomer solution. “Polymer brushes” are grafted from the substrate through chain polymerization perpendicular to the substrate. (b) Common initiator candidates include 6-(4-bromo-2,5-dimethylphenyl)hexylphosphonic acid (DMPHPA)121 and (6-(4-bromophenyl)hexyl)phosphonic acid (PHPA).121 Schematic and chemical structure of a poly(3-methylthiophene) (P3MT) monomer. (c) Thermal conductivity of a poly(3-methylthiophene) (P3MT) brush initiated by 6-(4-bromo-2,5-dimethylphenyl) hexylphosphonic acid (DMPHPA) based on surface-initiated polymerization.121 Batch 1 and batch 2 refer to P3MT samples made using the same processing at different times.121

High thermal conductivity in epoxy resins by bottom-up cross linking

New epoxy resin thermosets with tuned thermal conductivities have been designed and synthesized.13,24,49,95,96,113,117,119,212–214 For example, to systematically investigate the relationships between thermal conductivities and molecular structures of the epoxides and hardeners, different epoxy resin thermosets from one aliphatic epoxide and one aromatic epoxide with seven amine hardeners have been developed (Fig. 8).96 In general, aromatic structures may have higher thermal conductivities than aliphatic structures. Epoxy resin thermosets with naphthalene-based hardeners provide the highest thermal conductivity at ∼0.34 W m−1 K−1 which is ∼230% higher than the lowest thermal conductivity among the 14 epoxy resin thermosets (Fig. 8a).96 The cross-linking density is controlled by mixing different molar ratios of diamine and triamine and does not influence the thermal conductivity (or longitudinal speed of sound).96 The measured thermal conductivities of 14 epoxy resins are between ∼50 and 115% of the prediction of the minimum thermal conductivity model.96,113,212–214 Liquid crystalline epoxy resins with enhanced thermal conductivity have also been developed.119 Conventional amine cross-linkers have been replaced by cationic initiators.119 The cationic initiators are linearly woven epoxy groups tethered on microscopically aligned liquid crystal mesogens, resulting in freezing of the ordered microstructures after curing.119 Owing to ordered structures for reducing phonon scattering during heat transport, a dramatic improvement in the thermal conductivity of neat cation-cured liquid crystalline epoxy resin has been achieved. The measured thermal conductivity is ∼0.48 W m−1 K−1 which is ∼141% higher than that of the amorphous amine-cured liquid crystalline epoxy resin.119
image file: d2py00272h-f8.tif
Fig. 8 (a) Thermal conductivities are shown for thermosets made by epoxy and different hardeners in (c).95,96 (b) Thermal conductivities of ampholytic polymers including poly(methylmethacrylate),34 (PMMA),34 polydehydroalanine (PDha),34 and poly(2-(3-methylimidazolium-1-yl)acrylic acid) (PMeImAA).34 (c) Chemical structures of the selected epoxide (resorcinol diglycidyl ether) and hardeners with various functional group structures and positions. Selected hardeners include hardener 1 (p-phenylenediamine), hardener 2 (o-phenylenediamine), hardener 3 (5-chloro-m-phenylenediamine), and hardener 4 (1,8-diaminonaphthalene).95,96 (d) Chemical structures of ampholytic polymers including poly(methylmethacrylate) (PMMA),34 polydehydroalanine (PDha),34 and poly(2-(3-methylimidazolium-1-yl)acrylic acid) (PMeImAA).34

Ampholytic polymers with high thermal conductivity

Hydrogen bonding being ∼100–1000 times greater than van der Waals interactions enables efficient thermal transport in polymers,215 although hydrogen bonds are relatively weak compared with covalent bonds.9,35 Thermally conductive polymers with strong hydrogen bonding have been developed (Table 1).33–35,39,48,178,179,216,217 To investigate the relationships between thermal conductivity and interchain interactions (hydrogen bonds), several ampholytic polymers have been synthesized (Fig. 8b).34 For the dry ampholytic polymers, Hummel et al. found a correlation between hydrogen bond strength and thermal conductivity.34 Hummel et al. have also investigated the influence of hydration under various relative humidity conditions which mostly led to an increased thermal conductivity.34 This increased thermal conductivity could be rationalized by the formation of a water–polymer nanocomposite material and can be described by volume-weighted mixing models.34Fig. 8b shows measured effective thermal conductivities of selected samples.34

Copolymers with high thermal conductivity

Copolymers with different segment ratios have been synthesized and their thermal transport properties have been studied (Fig. 9).102,128 Both experimental and molecular dynamics simulation results show that the thermal conductivity of pentiptycene-based poly(o-hydroxyimide) increases as the ratio of the bulky pentiptycene segment increases (Fig. 9).128 The experimental in-plane thermal conductivity is ∼6 times higher than the out-of-plane value, which is due to the chain alignments in the in-plane direction.128 The in-plane thermal conductivity at 0.982 W m−1 K−1 has been measured.128 Experimental results show that the volumetric heat capacity increases with the bulky segment ratios which should have a positive impact on the thermal conductivity.128 Molecular dynamics results further show that bulky segments lead to increased thermal conductivity because of polymer chain extensions and the amount of strong interatomic forces related to the aromatic carbon atoms.128 In addition, the fractional free volume in the pentiptycene-based poly(o-hydroxyimide) copolymers decreases as the bulky segment ratio increases. This leads to an increase in thermal conductivity.128
image file: d2py00272h-f9.tif
Fig. 9 (a) Relationships between the bulky segment ratio and thermal conductivity for pentiptycene-based poly(o-hydroxyimide) copolymers. Thermal conductivities are calculated by molecular dynamic simulation (MD simulation)128 and experimental results for the in-plane direction and out-of-plane direction.128 (b) Chemical structures of pentiptycene-based poly(o-hydroxyimide) copolymers and schematic of bulky and flexible segments.128

As discussed above, high thermal conductivities have been measured in polymers, which are made by the bottom-up methods including chemical vapor deposition,44,193,194 template-assisted electrochemical polymerization,75 copolymerization,74,185 cross-linking reaction,13,79,95,96,195 and surface-initiated polymerization.121 However, thermal transport mechanisms in these polymers are not fully understood. Molecular structural features that most influence thermal transport need to be further identified. The solid-state characterization of polymer structures will play key roles in understanding relationships between structures and thermal transport properties in polymers. For example, the synchrotron wide-angle X-ray scattering (WAXS) technique is critical to determining the atomic-scale structural features of polymers, including crystallinity and crystallite orientation.218 The small-angle X-ray scattering (SAXS) technique is essential for identifying the larger dimension features such as chain conformations.218 The inelastic neutron scattering technique plays an important role in studying atomic vibrations and molecular motion.218–220 Solid-state nuclear magnetic resonance (NMR) spectroscopy is important for determining molecular structures such as internuclear distances.221–223 Raman and infrared spectroscopy play key roles in identifying vibrational modes.224–226

Common thermal conductivity measurement techniques

Accurate measurements of thermal conductivities of materials are important. Not only are they of fundamental scientific importance, but they are also driven by the needs of modern technology. In general, techniques applied for thermal conductivity measurements can be categorized based on the time dependence of the thermal response as steady-state methods or transient methods (Fig. 10).227,228 The steady-state techniques measure thermal conductivity when a temperature difference between two faces of a material does not change with time.227,229 In general, steady-state methods determine thermal conductivity directly from the proportionality between heat flow and an applied temperature difference (Fig. 10a), when a tested material's thermal state reaches complete equilibrium.227,229 Macroscopically, the thermal conductivity of a bulk material is calculated using Fourier's law (eqn (9)).
 
q = −κT(9)
where q is the heat flux, κ is the thermal conductivity, and ∇T is the gradient of the temperature.229

image file: d2py00272h-f10.tif
Fig. 10 (a) Schematic of a steady-state thermal conductivity measurement system.26 A small temperature difference (ThTc) across the film sample is created and maintained using Joule heating and thermoelectric cooling inside a high vacuum chamber. Please see ref. 26 for more details.26 (b) Schematic of the laser flash method: a laser pulse heats the sample on the bottom side and a detector detects the time-dependent temperature on the top side of the sample.230 (c) Schematic of a time-domain thermoreflectance (TDTR) system. An aluminum-coated sample could be first heated with a 100 fs-wide pump laser pulse (400 nm, red) and subsequently monitored with a time-delayed low-power probe pulse (800 nm, yellow). The change in aluminum reflectance is proportional to surface temperature variation in the linear regime.26,231 (d) Schematic of a scanning thermal microscopy system, which uses a nanoscale heated probe to qualitatively measure the thermal conductivity of nanomaterials.230,232

In contrast to steady-state techniques, transient techniques usually measure the time-dependent energy dissipation process of a sample.227,230,233–238 For example, the laser flash method is a transient technique that is one of the earliest noncontact optical techniques for measuring thermal conductivity (Fig. 10b).233 The heat source is a short duration laser pulse. This approximates an instantaneous heat source heating one side of a sample. The thermal energy diffuses across the sample resulting in a temperature rise on the opposite side, usually measured with a thermocouple or an infrared thermometer. From the transient temperature rise, the thermal conductivity of the sample can be determined using eqn (10).

 
κ = αρCp(10)
where κ is the thermal conductivity, α is the thermal diffusivity, ρ is density, and Cp is the mass specific heat capacity.

Laser flash techniques, which are transient techniques, have been used as ASTM standardized methods for measuring the thermal diffusivity of materials, which include polymer thin films (14–250 μm thick),238,239 glass,240 metals (18 μm–1 mm thick),241–243 materials with anisotropy (e.g., highly oriented thin films and graphite foil),243 and even liquids244,245 at both low (T > −268 °C)246 and high temperatures (>1000 °C).241

Time-domain thermoreflectance (TDTR) is another transient, optical pump–probe technique that can measure the thermal conductivity of thin films (Fig. 10c)230,247,248 with directionality.32,200,249–252 The pump beam thermally excites a surface of a sample; then, the probe beam measures the time-resolved thermoreflectance of a sample.230,236 For example, a pump beam (spot size 10–20 μm) produces an ultrashort train of pulses (∼100 fs) rapidly heating the sample surface. The surface subsequently cools down after each pulse at a specific rate depending on the thermal conductivity of the sample. This surface temperature drop changes the optical reflectance of the sample surface (thermoreflectance). After a suitable time delay (<100 ps), the probe beam irradiates the surface and its reflection is detected by an optical sensor.230,234 By monitoring the change in reflectance, the optical sensor measures the temperature change and ultimately the thermal conductivity using a suitable thermal transport model. A simple one-dimensional Cartesian heat transfer model can be used if the penetration depth is smaller than the pump beam spot size (∼10–100 μm).247,248,252,253 In the case of biomaterials, the penetration depth at ultrashort time scales (∼100–1000 ps) corresponds to ∼100–600 nm in biomaterials.230

Scanning thermal microscopy methods use a nanoscale heated probe to measure the thermal conductivity of nanoscale samples,230,232,254–258 or temperature259–262 on the sample surface in the range of hundreds of nanometer to micrometer range (Fig. 10d). The probe at a nanoscale of ∼100 nm can be microfabricated to simultaneously function as a heater and a thermometer.263 As shown in Fig. 10d, the probe is attached to a cantilever; the sample is on a stage. A mirror attached to a cantilever reflects light onto a photodiode to suggest the vertical and horizontal movements of the probe. As the probe scans the surface, the sample surface displaces the probe depending on its topography. The stage moves the sample to maintain a constant gap between the probe and the sample surface. During the scan, a constant current heats the probe, while the sample surface cools it, resulting in temperature decay (Fig. 10d).232 This transient temperature change in the probe is monitored to determine the thermal conductivity of the sample near the surface.230 To measure the thermal conductivity of an individual polyethylene fiber with diameters of 50–500 nm, Sheng Shen et al. have developed a general approach for thermal measurements of compliant nanofibers or nanowires using a sensitive bi-material AFM cantilever, which can resolve power measurements as low as 0.1 nW and energy measurements down to 0.15 pJ.29,264,265

Prospective thermal management applications of thermally conductive polymers

Thermally conductive polymers have unparalleled properties such as light weight, corrosion resistance, tunable thermal conductivity, high durability and flexibility. Thermally conductive polymers will provide new possibilities for future thermal management applications. For example, thermally conductive and electrically insulative polymers will provide new possibilities for chip packaging without overheating problems. Thermally conductive and corrosion-resistant polymer films will replace metallic heat exchangers in a wide range of applications. Thermally conductive polymers could have biological applications. Thermally conductive polymer fibers and textiles additionally will provide new opportunities for enhanced temperature control in clothing.

Conclusion

In this paper, we have discussed the state-of-the-art bottom-up strategies for synthesizing thermally conductive polymers at monomer levels. We have highlighted the basic physics of thermal transport in polymers. Both simulated and experimental results have indicated stiffer and ordered chains that may have higher thermal conductivity in the chain directions. However, the thermal conductivities of polymers are not solely controlled by bond strength. Other key structural factors play key roles in determining polymer thermal conductivities. These include crystal structures, crystallinity, monomer structures, chain conformations, and chain morphologies. To date, thermal transport mechanisms in polymers are not fully understood. A deep understanding of the relationships between thermal transport properties and structure parameters is necessary. Investigating temperature-dependent thermal conductivity in polymers is essential for a better understanding of thermal transport physics. Advancements in the fundamental understanding of thermal transport in polymers, combined with innovative bottom-up synthesis methods, will enable the production of thermally conductive polymers at large scales. We believe that thermally conductive polymers, with their unique combination of characteristics, will play key roles in many existing and unforeseen applications.

Author contributions

Yurui Liu: writing – original draft, methodology, investigation, and visualization. Yijie Zhou: investigation and visualization. Yanfei Xu: conceptualization, supervision, investigation, methodology, resources, writing – review & editing, visualization, project administration, and funding acquisition.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors thank the Faculty Startup Fund Support from the University of Massachusetts Amherst. The authors thank Ms Deanna Conti, Mr Ian Goodine, and Mr Ethan Walko for proofreading the manuscript.

Notes and references

  1. M. Peplow, Nature, 2016, 536, 266–268 CrossRef CAS PubMed .
  2. A. J. Heeger, Chem. Soc. Rev., 2010, 39, 2354–2371 RSC .
  3. A. J. Heeger, Angew. Chem., Int. Ed., 2001, 40, 2591–2611 CrossRef CAS PubMed .
  4. D. R. Anderson, Chem. Rev., 1966, 66, 677–690 CrossRef CAS .
  5. C. L. Choy, Polymer, 1977, 18, 984–1004 CrossRef CAS .
  6. L. H. Sperling, Introduction to physical polymer science, John Wiley & Sons, Inc., 2005 Search PubMed .
  7. G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons, Oxford University Press, 2005 Search PubMed .
  8. J. H. Lienhard IV and J. H. Lienhard V, A Heat Transfer Textbook, Dover Publications, 5th edn, 2019 Search PubMed .
  9. Y. Guo, Y. Zhou and Y. Xu, Polymer, 2021, 233, 124168 CrossRef CAS .
  10. Y. Xu, X. Wang and Q. Hao, Compos. Commun., 2021, 24, 100617 CrossRef .
  11. X. Qian, J. Zhou and G. Chen, Nat. Mater., 2021, 20, 1188–1202 CrossRef CAS PubMed .
  12. J. Lee, Y. Kim, S. R. Joshi, M. S. Kwon and G.-H. Kim, Polym. Chem., 2021, 12, 975–982 RSC .
  13. Y. Kim, H. Yeo, N. H. You, S. G. Jang, S. Ahn, K. U. Jeong, S. H. Lee and M. Goh, Polym. Chem., 2017, 8, 2806–2814 RSC .
  14. A. Henry, Annu. Rev. Heat Transfer, 2014, 17, 485–520 CrossRef .
  15. D. Yorifuji and S. Ando, Macromolecules, 2010, 43, 7583–7593 CrossRef CAS .
  16. J. E. Mark, Physical Properties of Polymers Handbook, Springer, 2007 Search PubMed .
  17. P. Ball, Nature, 2012, 492, 174–176 CrossRef CAS PubMed .
  18. A. L. Moore and L. Shi, Mater. Today, 2014, 17, 163–174 CrossRef CAS .
  19. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin and S. R. Phillpot, J. Appl. Phys., 2002, 93, 793–818 CrossRef .
  20. D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop and L. Shi, Appl. Phys. Rev., 2014, 1, 011305 Search PubMed .
  21. H. Ko, D. G. Kang, M. Rim, J. Koo, S. I. Lim, E. Jang, D. Yu, M. J. Yoo, N. Kim and K. U. Jeong, Polym. Chem., 2022, 13, 1152–1157 RSC .
  22. H. Zhang, T. Shi and A. Ma, Polymers, 2021, 13, 2797 CrossRef CAS PubMed .
  23. W. Zhao and R. Hu, Matter, 2021, 4, 3799–3801 CrossRef CAS .
  24. G. Lv, E. Jensen, C. M. Evans and D. G. Cahill, ACS Appl. Polym. Mater., 2021, 3, 4430–4435 CrossRef CAS .
  25. X. Xu, J. Zhou and J. Chen, Adv. Funct. Mater., 2020, 30, 1904704 CrossRef CAS .
  26. Y. Xu, D. Kraemer, B. Song, Z. Jiang, J. Zhou, J. Loomis, J. Wang, M. Li, H. Ghasemi, X. Huang, X. Li and G. Chen, Nat. Commun., 2019, 10, 1771 CrossRef PubMed .
  27. R. Shrestha, P. Li, B. Chatterjee, T. Zheng, X. Wu, Z. Liu, T. Luo, S. Choi, K. Hippalgaonkar, M. P. de Boer and S. Shen, Nat. Commun., 2018, 9, 1664 CrossRef PubMed .
  28. X. Xu, J. Chen, J. Zhou and B. Li, Adv. Mater., 2018, 30, 1705544 CrossRef PubMed .
  29. S. Shen, A. Henry, J. Tong, R. Zheng and G. Chen, Nat. Nanotechnol., 2010, 5, 251–255 CrossRef CAS PubMed .
  30. C. T'Joen, Y. Park, Q. Wang, A. Sommers, X. Han and A. Jacobi, Int. J. Refrig., 2009, 32, 763–779 CrossRef .
  31. M. Xiao and B. X. Du, High Voltage, 2016, 1, 34–42 CrossRef .
  32. X. Wang, V. Ho, R. A. Segalman and D. G. Cahill, Macromolecules, 2013, 46, 4937–4943 CrossRef CAS .
  33. X. Xie, D. Li, T. H. Tsai, J. Liu, P. V. Braun and D. G. Cahill, Macromolecules, 2016, 49, 972–978 CrossRef CAS .
  34. P. Hummel, A. M. Lechner, K. Herrmann, P. Biehl, C. Rössel, L. Wiedenhöft, F. H. Schacher and M. Retsch, Macromolecules, 2020, 53, 5528–5537 CrossRef CAS .
  35. M. Hashimoto, H. Imoto, K. Matsukawa and K. Naka, Macromolecules, 2020, 53, 2874–2881 CrossRef CAS .
  36. K. Ruan, Y. Guo and J. Gu, Macromolecules, 2021, 54, 4934–4944 CrossRef CAS .
  37. H. Liu, X. Yu, M. Ji, H. Chen, G. Yang, C. Zhu and J. Xu, Polymer, 2021, 229, 123975 CrossRef CAS .
  38. A. M. Evans, A. Giri, V. K. Sangwan, S. Xun, M. Bartnof, C. G. Torres-Castanedo, H. B. Balch, M. S. Rahn, N. P. Bradshaw, E. Vitaku, D. W. Burke, H. Li, M. J. Bedzyk, F. Wang, J. L. Brédas, J. A. Malen, A. J. H. McGaughey, M. C. Hersam, W. R. Dichtel and P. E. Hopkins, Nat. Mater., 2021, 20, 1142–1148 CrossRef CAS PubMed .
  39. V. P. Nguyen, D. Kim and S. M. Lee, ACS Omega, 2021, 6, 29054–29059 CrossRef CAS PubMed .
  40. Y. Zhang, C. Lei, K. Wu and Q. Fu, Adv. Sci., 2021, 8, 2004821 CrossRef CAS PubMed .
  41. R. Ma, H. Zhang and T. Luo, ACS Appl. Mater. Interfaces, 2022, 14, 15587–15598 CrossRef CAS PubMed .
  42. Z. Li, L. An, S. Khuje, J. Tan, Y. Hu, Y. Huang, D. Petit, D. Faghihi, J. Yu and S. Ren, Sci. Adv., 2021, 7, eabi7410 CrossRef CAS PubMed .
  43. Y. Cui, M. Li and Y. Hu, J. Mater. Chem. C, 2020, 8, 10568–10586 RSC .
  44. Y. Xu, X. Wang, J. Zhou, B. Song, Z. Jiang, E. M. Y. Lee, S. Huberman, K. K. Gleason and G. Chen, Sci. Adv., 2018, 4, eaar3031 CrossRef PubMed .
  45. L. Dong, Q. Xi, D. Chen, J. Guo, T. Nakayama, Y. Li, Z. Liang, J. Zhou, X. Xu and B. Li, Natl. Sci. Rev., 2018, 5, 500–506 CrossRef CAS .
  46. A. R. J. Hussain, A. A. Alahyari, S. A. Eastman, C. Thibaud-Erkey, S. Johnston and M. J. Sobkowicz, Appl. Therm. Eng., 2017, 113, 1118–1127 CrossRef CAS .
  47. J. Liu, X. Wang, D. Li, N. E. Coates, R. A. Segalman and D. G. Cahill, Macromolecules, 2015, 48, 585–591 CrossRef CAS .
  48. G. H. Kim, D. Lee, A. Shanker, L. Shao, M. S. Kwon, D. Gidley, J. Kim and K. P. Pipe, Nat. Mater., 2015, 14, 295–300 CrossRef CAS PubMed .
  49. A. I. Olamilekan and H. Yeo, ACS Appl. Polym. Mater., 2021, 3, 4147–4155 CrossRef CAS .
  50. A. A. Balandin, Nat. Mater., 2011, 10, 569–581 CrossRef CAS PubMed .
  51. J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff and L. Shi, Science, 2010, 328, 213–216 CrossRef CAS PubMed .
  52. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, Nano Lett., 2008, 8, 902–907 CrossRef CAS PubMed .
  53. S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao and C. N. Lau, Appl. Phys. Lett., 2008, 92, 151911 CrossRef .
  54. W. Lv, R. M. Winters, F. DeAngelis, G. Weinberg and A. Henry, J. Phys. Chem. A, 2017, 121, 5586–5596 CrossRef CAS PubMed .
  55. N. Shulumba, O. Hellman and A. J. Minnich, Phys. Rev. Lett., 2017, 119, 185901 CrossRef PubMed .
  56. A. Henry and G. Chen, Phys. Rev. Lett., 2008, 101, 235502 CrossRef PubMed .
  57. J. J. Freeman, G. J. Morgan and C. A. Cullen, Phys. Rev. B: Condens. Matter Mater. Phys., 1987, 35, 7627–7635 CrossRef CAS PubMed .
  58. E. Fermi, P. Pasta, S. Ulam and M. Tsingou, Studies of the nonlinear problems, University of California, 1955 Search PubMed .
  59. G. P. Berman and F. M. Izrailev, Chaos, 2005, 15, 015104 CrossRef CAS PubMed .
  60. M. Toda, Phys. Rep., 1975, 18, 1–123 CrossRef .
  61. R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione and A. Vulpiani, Phys. Rev. A, 1985, 31, 1039–1045 CrossRef PubMed .
  62. B. Lotz, T. Miyoshi and S. Z. D. Cheng, Macromolecules, 2017, 50, 5995–6025 CrossRef CAS .
  63. L. Cui, S. Hur, Z. A. Akbar, J. C. Klöckner, W. Jeong, F. Pauly, S.-Y. Jang, P. Reddy and E. Meyhofer, Nature, 2019, 572, 628–633 CrossRef CAS PubMed .
  64. Q. Zhang, L. Lan, Z. Zheng, P. Liu, H. Wu, S. Guo, C. Lin and G. He, Polymer, 2022, 241, 124532 CrossRef CAS .
  65. A. A. Candadai, J. A. Weibel and A. M. Marconnet, ACS Appl. Polym. Mater., 2020, 2, 437–447 CrossRef CAS .
  66. Y. F. Huang, Z. G. Wang, W. C. Yu, Y. Ren, J. Lei, J. Z. Xu and Z. M. Li, Polymer, 2019, 180, 121760 CrossRef CAS .
  67. R. C. Zhang, Z. Huang, D. Sun, D. Ji, M. Zhong, D. Zang, J. Z. Xu, Y. Wan and A. Lu, Polymer, 2018, 154, 42–47 CrossRef CAS .
  68. S. Ronca, T. Igarashi, G. Forte and S. Rastogi, Polymer, 2017, 123, 203–210 CrossRef CAS .
  69. Y. Lu, J. Liu, X. Xie and D. G. Cahill, ACS Macro Lett., 2016, 5, 646–650 CrossRef CAS PubMed .
  70. C. L. Choy, Y. W. Wong, G. W. Yang and T. Kanamoto, J. Polym. Sci., Part B: Polym. Phys., 1999, 37, 3359–3367 CrossRef CAS .
  71. D. Hansen and G. A. Bernier, Polym. Eng. Sci., 1972, 12, 204–208 CrossRef CAS .
  72. C. L. Choy, W. H. Luk and F. C. Chen, Polymer, 1978, 19, 155–162 CrossRef CAS .
  73. W. Liu, Z. Lei, R. Yang, W. Xing, P. Tao, W. Shang, B. Fu, C. Song and T. Deng, ACS Appl. Mater. Interfaces, 2022, 14, 10605–10615 CrossRef CAS PubMed .
  74. H. Zheng, K. Wu, W. Chen, B. Nan, Z. Qu and M. Lu, Macromol. Chem. Phys., 2021, 222, 2000418 CrossRef CAS .
  75. V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry and B. A. Cola, Nat. Nanotechnol., 2014, 9, 384–390 CrossRef CAS PubMed .
  76. D. G. Kang, H. Ko, J. Koo, S. I. Lim, J. S. Kim, Y. T. Yu, C. R. Lee, N. Kim and K. U. Jeong, ACS Appl. Mater. Interfaces, 2018, 10, 35557–35562 CrossRef CAS PubMed .
  77. S. J. Ge, T. P. Zhao, M. Wang, L. L. Deng, B. P. Lin, X. Q. Zhang, Y. Sun, H. Yang and E. Q. Chen, Soft Matter, 2017, 13, 5463–5468 RSC .
  78. J. Shin, M. Kang, T. Tsai, C. Leal, P. V. Braun and D. G. Cahill, ACS Macro Lett., 2016, 5, 955–960 CrossRef CAS PubMed .
  79. M. Harada, M. Ochi, M. Tobita, T. Kimura, T. Ishigaki, N. Shimoyama and H. Aoki, J. Polym. Sci., Part B: Polym. Phys., 2003, 41, 1739–1743 CrossRef CAS .
  80. A. Hammerschmidt, K. Geibel and F. Strohmer, Adv. Mater., 1993, 5, 107–109 CrossRef .
  81. K. Kanari and T. Ozawa, Polym. J., 1973, 4, 372–378 CrossRef CAS .
  82. K. Utimula, T. Ichibha, R. Maezono and K. Hongo, Chem. Mater., 2019, 31, 4649–4656 CrossRef CAS .
  83. Y. Guo, K. Ruan, X. Shi, X. Yang and J. Gu, Compos. Sci. Technol., 2020, 193, 108134 CrossRef CAS .
  84. C. Huang, X. Qian and R. Yang, Mater. Sci. Eng., R, 2018, 132, 1–22 CrossRef .
  85. X. Wei and T. Luo, Phys. Chem. Chem. Phys., 2018, 20, 20534–20539 RSC .
  86. J. Yu, B. Sundqvist, B. Tonpheng and O. Andersson, Polymer, 2014, 55, 195–200 CrossRef CAS .
  87. D. Greig, Cryogenics, 1988, 28, 243–247 CrossRef CAS .
  88. J. M. Rinehart, J. R. Reynolds and S. K. Yee, ACS Appl. Polym. Mater., 2022, 4, 1218–1224 CrossRef CAS .
  89. Y. Du, S. Liu, S. Yuan, H. Zhang and S. Yuan, Colloids Surf., A, 2021, 618, 126409 CrossRef CAS .
  90. A. Kiessling, D. N. Simavilla, G. G. Vogiatzis and D. C. Venerus, Polymer, 2021, 228, 123881 CrossRef CAS .
  91. X. Pan, A. H. P. J. Schenning, L. Shen and C. W. M. Bastiaansen, Macromolecules, 2020, 53, 5599–5603 CrossRef CAS PubMed .
  92. B. Zhang, P. Mao, Y. Liang, Y. He, W. Liu and Z. Liu, ES Energy Environ., 2019, 5, 37–55 Search PubMed .
  93. Y. Zhang, X. Zhang, L. Yang, Q. Zhang, M. L. Fitzgerald, A. Ueda, Y. Chen, R. Mu, D. Li and L. M. Bellan, Soft Matter, 2018, 14, 9534–9541 RSC .
  94. S. Rbihi, L. Laallam, O. Bayousfi, A. Moubarik, A. Liba and A. Jouaiti, J. Therm. Anal. Calorim., 2022 DOI:10.1007/s10973-021-11189-0 .
  95. G. Lv, E. Jensen, C. Shen, K. Yang, C. M. Evans and D. G. Cahill, ACS Appl. Polym. Mater., 2021, 3, 259–267 CrossRef CAS .
  96. G. Lv, E. Jensen, N. Shan, C. M. Evans and D. G. Cahill, ACS Appl. Polym. Mater., 2021, 3, 1555–1562 CrossRef CAS .
  97. G. Lv, B. Soman, N. Shan, C. M. Evans and D. G. Cahill, ACS Macro Lett., 2021, 10, 1088–1093 CrossRef CAS PubMed .
  98. S. Li, X. Yu, H. Bao and N. Yang, J. Phys. Chem. C, 2018, 122, 13140–13147 CrossRef CAS .
  99. O. Yamamoto, Polym. J., 1971, 2, 509–517 CrossRef CAS .
  100. O. Yamamoto and H. Kambe, Polym. J., 1971, 2, 623–628 CrossRef CAS .
  101. T. Zhou, Z. Wu, H. K. Chilukoti and F. Müller-Plathe, J. Chem. Theory Comput., 2021, 17, 3772–3782 CrossRef CAS PubMed .
  102. R. Li, J. A. Ton Loontjens and Z. Shan, Eur. Polym. J., 2019, 112, 423–432 CrossRef CAS .
  103. X. Ran, Y. Wang, J. Lu, R. Sun, J. B. Xu, N. Yang, H. Yin and C. P. Wong, Comput. Mater. Sci., 2022, 205, 111191 CrossRef CAS .
  104. T. Meng, Y. Sun, C. Tong, P. Zhang, D. Xu, J. Yang, P. Gu, J. Yang and Y. Zhao, Nano Lett., 2021, 21, 3843–3848 CrossRef CAS PubMed .
  105. Y. Ouyang, C. Yu, G. Yan and J. Chen, Front. Phys., 2021, 16, 43200 CrossRef .
  106. A. Chen, Y. Wu, S. Zhou, W. Xu, W. Jiang, Y. Lv, W. Guo, K. Chi, Q. Sun, T. Fu, T. Xie, Y. Zhu and X. G. Liang, Mater. Adv., 2020, 1, 1996–2002 RSC .
  107. X. Wei, R. Ma and T. Luo, J. Phys. Chem. C, 2020, 124, 4483–4488 CrossRef CAS .
  108. M. X. Zhu, H. G. Song, Q. C. Yu, J. M. Chen and H. Y. Zhang, Int. J. Heat Mass Transfer, 2020, 162, 120381 CrossRef CAS .
  109. W. Chen, K. Wu, Z. Qu and M. Lu, Eur. Polym. J., 2019, 121, 109275 CrossRef .
  110. A. Shanker, C. Li, G. H. Kim, D. Gidley, K. P. Pipe and J. Kim, Sci. Adv., 2017, 3, e1700342 CrossRef PubMed .
  111. X. Wei, T. Zhang and T. Luo, Phys. Chem. Chem. Phys., 2016, 18, 32146–32154 RSC .
  112. E. Lussetti, T. Terao and F. Müller-Plathe, J. Phys. Chem. B, 2007, 111, 11516–11523 CrossRef CAS PubMed .
  113. X. Zhong, X. Yang, K. Ruan, J. Zhang, H. Zhang and J. Gu, Macromol. Rapid Commun., 2022, 43, 2100580 CrossRef CAS PubMed .
  114. T. Wu, J. Zhu, H. Yu, S. Qu and W. Yang, Int. J. Heat Mass Transfer, 2022, 185, 122445 CrossRef CAS .
  115. S. Deng, J. Yuan, Y. Lin, X. Yu, D. Ma, Y. Huang, R. Ji, G. Zhang and N. Yang, Nano Energy, 2021, 82, 105749 CrossRef CAS .
  116. A. A. Candadai, E. J. Nadler, J. S. Burke, J. A. Weibel and A. M. Marconnet, Sci. Rep., 2021, 11, 8705 CrossRef CAS PubMed .
  117. Q. Zhang, T. Zhang, Y. Zhou, C. Li, H. Wu and S. Guo, Polym. J., 2021, 53, 1371–1381 CrossRef CAS .
  118. B. F. Donovan, R. J. Warzoha, T. Cosby, A. Giri, A. A. Wilson, A. J. Borgdorff, N. T. Vu, E. A. Patterson and E. P. Gorzkowski, Macromolecules, 2020, 53, 11089–11097 CrossRef CAS .
  119. A. M. Islam, H. Lim, N. H. You, S. Ahn, M. Goh, J. R. Hahn, H. Yeo and S. G. Jang, ACS Macro Lett., 2018, 7, 1180–1185 CrossRef CAS PubMed .
  120. C. Lu, S. W. Chiang, H. Du, J. Li, L. Gan, X. Zhang, X. Chu, Y. Yao, B. Li and F. Kang, Polymer, 2017, 115, 52–59 CrossRef CAS .
  121. A. Roy, T. L. Bougher, R. Geng, Y. Ke, J. Locklin and B. A. Cola, ACS Appl. Mater. Interfaces, 2016, 8, 25578–25585 CrossRef CAS PubMed .
  122. T. Zhang and T. Luo, ACS Nano, 2013, 7, 7592–7600 CrossRef CAS PubMed .
  123. D. C. Venerus and D. N. Kolev, Macromolecules, 2009, 42, 2594–2598 CrossRef CAS .
  124. M. D. Losego, L. Moh, K. A. Arpin, D. G. Cahill and P. V. Braun, Appl. Phys. Lett., 2010, 97, 011908 CrossRef .
  125. A. Leroy, B. Bhatia, J. Sircar and E. N. Wang, Int. J. Heat Mass Transfer, 2022, 184, 122307 CrossRef CAS .
  126. P. S. Jadhav, G. M. Joshi, S. S. Humbe, R. S. Dubey and S. Kaleemulla, Polym. Int., 2022 DOI:10.1002/pi.6385 .
  127. M. Antlauf, N. Boulanger, L. Berglund, K. Oksman and O. Andersson, Biomacromolecules, 2021, 22, 3800–3809 CrossRef CAS PubMed .
  128. X. Wei, Z. Huang, S. Koch, M. Zamengo, Y. Deng, M. L. Minus, J. Morikawa, R. Guo and T. Luo, ACS Appl. Polym. Mater., 2021, 3, 2979–2987 CrossRef CAS .
  129. E. Selezneva, R. D. Pietro, X. Jiao, C. R. McNeill and H. Sirringhaus, APL Mater., 2019, 7, 081118 CrossRef .
  130. J. A. Tomko, A. Pena-Francesch, H. Jung, M. Tyagi, B. D. Allen, M. C. Demirel and P. E. Hopkins, Nat. Nanotechnol., 2018, 13, 959–964 CrossRef CAS PubMed .
  131. J. C. Williams, B. N. Nguyen, L. McCorkle, D. Scheiman, J. S. Griffin, S. A. Steiner and M. A. B. Meador, ACS Appl. Mater. Interfaces, 2017, 9, 1801–1809 CrossRef CAS PubMed .
  132. B. Zhu, J. Liu, T. Wang, M. Han, S. Valloppilly, S. Xu and X. Wang, ACS Omega, 2017, 2, 3931–3944 CrossRef CAS PubMed .
  133. J. Liu, Z. Xu, Z. Cheng, S. Xu and X. Wang, ACS Appl. Mater. Interfaces, 2015, 7, 27279–27288 CrossRef CAS PubMed .
  134. Z. Guo, D. Lee, J. Strzalka, H. Gao, L. Huang, A. M. Khounsary and T. Luo, Phys. Chem. Chem. Phys., 2014, 16, 26359–26364 RSC .
  135. W. N. dos Santos, J. A. de Sousa and R. Gregorio, Polym. Test., 2013, 32, 987–994 CrossRef CAS .
  136. S. Okamoto and H. Ishida, Macromolecules, 2001, 34, 7392–7402 CrossRef CAS .
  137. Y. Kawamura, Polym. J., 1970, 1, 480–484 CrossRef CAS .
  138. H. Prajapati, D. Chalise, D. Ravoori, R. M. Taylor and A. Jain, Addit. Manuf., 2019, 26, 242–249 CAS .
  139. Y. Quan, S. Yue and B. Liao, Nanoscale Microscale Thermophys. Eng., 2021, 25, 73–90 CrossRef .
  140. J. Liu and R. Yang, Phys. Rev. B: Condens. Matter Mater. Phys., 2012, 86, 104307 CrossRef .
  141. R. Peierls, Ann. Phys., 1929, 395, 1055–1101 CrossRef .
  142. X. Xie, K. Yang, D. Li, T. H. Tsai, J. Shin, P. V. Braun and D. G. Cahill, Phys. Rev. B, 2017, 95, 035406 CrossRef .
  143. N. W. Ashcroft and N. D. Mermin, Solid state physics, Holt, Rinehart and Winston, New York, 1976 Search PubMed .
  144. M. T. Agne, R. Hanus and G. J. Snyder, Energy Environ. Sci., 2018, 11, 609–616 RSC .
  145. A. Ioffe and A. Regel, Prog. Semicond., 1960, 6, 237–291 Search PubMed .
  146. G. A. Slack, J. Phys. Chem. Solids, 1973, 34, 321–335 CrossRef CAS .
  147. G. A. Slack, in Solid State Phys, ed. H. Ehrenreich, F. Seitz and D. Turnbull, Academic Press, 1979, vol. 34, pp. 1–71 Search PubMed .
  148. D. G. Cahill, S. K. Watson and R. O. Pohl, Phys. Rev. B: Condens. Matter Mater. Phys., 1992, 46, 6131–6140 CrossRef CAS PubMed .
  149. Q. Xi, J. Zhong, J. He, X. Xu, T. Nakayama, Y. Wang, J. Liu, J. Zhou and B. Li, Chin. Phys. Lett., 2020, 37, 104401 CrossRef CAS .
  150. S. Kommandur and S. K. Yee, J. Polym. Sci., Part B: Polym. Phys., 2017, 55, 1160–1170 CrossRef CAS .
  151. S. Lin, Z. Cai, Y. Wang, L. Zhao and C. Zhai, npj Comput. Mater., 2019, 5, 26 CrossRef .
  152. P. B. Allen and J. L. Feldman, Phys. Rev. B: Condens. Matter Mater. Phys., 1993, 48, 12581–12588 CrossRef CAS PubMed .
  153. P. B. Allen, J. L. Feldman, J. Fabian and F. Wooten, Philos. Mag. B, 1999, 79, 1715–1731 CrossRef CAS .
  154. J. L. Feldman, P. B. Allen and S. R. Bickham, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 59, 3551–3559 CrossRef CAS .
  155. J. L. Feldman, M. D. Kluge, P. B. Allen and F. Wooten, Phys. Rev. B: Condens. Matter Mater. Phys., 1993, 48, 12589–12602 CrossRef PubMed .
  156. P. B. Allen and J. L. Feldman, Phys. Rev. Lett., 1989, 62, 645–648 CrossRef CAS PubMed .
  157. A. Einstein, Ann. Phys., 1911, 340, 679–694 CrossRef .
  158. A. F. Birch and H. Clark, Am. J. Sci., 1940, 238, 529–558 CrossRef .
  159. C. Kittel, Phys. Rev., 1949, 75, 972–974 CrossRef CAS .
  160. D. G. Cahill and R. O. Pohl, Phys. Rev. B: Condens. Matter Mater. Phys., 1987, 35, 4067–4073 CrossRef CAS PubMed .
  161. D. R. Clarke, Surf. Coat. Technol., 2003, 163–164, 67–74 CrossRef CAS .
  162. L. Chen, X. Wang and S. Kumar, Sci. Rep., 2015, 5, 12763 CrossRef CAS PubMed .
  163. T. Zhang, X. Wu and T. Luo, J. Phys. Chem. C, 2014, 118, 21148–21159 CrossRef CAS .
  164. P. Cheng, N. Shulumba and A. J. Minnich, Phys. Rev. B, 2019, 100, 094306 CrossRef CAS .
  165. P. Dashora and G. Gupta, Polymer, 1996, 37, 231–234 CrossRef CAS .
  166. M. Schulz, M. Schäfer, K. Saalwächter and T. Thurn-Albrecht, Nat. Commun., 2022, 13, 119 CrossRef CAS PubMed .
  167. S. Datta, S. Takahashi and S. Yagai, Acc. Mater. Res., 2022, 3, 259–271 CrossRef CAS .
  168. X. Duan, Z. Li, J. Liu, G. Chen and X. Li, J. Appl. Phys., 2019, 125, 164303 CrossRef .
  169. R. C. Savage, N. Mullin and J. K. Hobbs, Macromolecules, 2015, 48, 6160–6165 CrossRef CAS .
  170. H. Chen, V. V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du and B. Chen, Prog. Polym. Sci., 2016, 59, 41–85 CrossRef CAS .
  171. H. R. Seyf, L. Yates, T. L. Bougher, S. Graham, B. A. Cola, T. Detchprohm, M. H. Ji, J. Kim, R. Dupuis, W. Lv and A. Henry, npj Comput. Mater., 2017, 3, 49 CrossRef .
  172. T. Zhang and T. Luo, J. Phys. Chem. B, 2016, 120, 803–812 CrossRef CAS PubMed .
  173. L. Piraux, M. Kinany-Alaoui, J. P. Issi, D. Begin and D. Billaud, Solid State Commun., 1989, 70, 427–429 CrossRef CAS .
  174. T. M. Swager, Macromolecules, 2017, 50, 4867–4886 CrossRef CAS .
  175. J. Lee, A. J. Kalin, T. Yuan, M. Al-Hashimi and L. Fang, Chem. Sci., 2017, 8, 2503–2521 RSC .
  176. C. Zhu, A. J. Kalin and L. Fang, Acc. Chem. Res., 2019, 52, 1089–1100 CrossRef CAS PubMed .
  177. T. Luo and G. Chen, Phys. Chem. Chem. Phys., 2013, 15, 3389–3412 RSC .
  178. N. Mehra, L. Mu and J. Zhu, Compos. Sci. Technol., 2017, 148, 97–105 CrossRef CAS .
  179. J. Zhou, S. Lin, H. Zeng, J. Liu, B. Li, Y. Xu, X. Zhao and G. Chen, Mater. Horiz., 2020, 7, 2936–2943 RSC .
  180. I. Jeong, C. B. Kim, D. G. Kang, K. U. Jeong, S. G. Jang, N. H. You, S. Ahn, D. S. Lee and M. Goh, J. Polym. Sci., Part A: Polym. Chem., 2019, 57, 708–715 CrossRef CAS .
  181. S. Sæther, M. Falck, Z. Zhang, A. Lervik and J. He, Macromolecules, 2021, 54, 6563–6574 CrossRef .
  182. H. Subramanyan, W. Zhang, J. He, K. Kim, X. Li and J. Liu, J. Appl. Phys., 2019, 125, 095104 CrossRef .
  183. Y. Xue, S. Lofland and X. Hu, Polymers, 2019, 11, 456 CrossRef PubMed .
  184. D. Luo, C. Huang and Z. Huang, J. Heat Transfer, 2017, 140, 031302 CrossRef .
  185. Z. Guo, D. Lee, Y. Liu, F. Sun, A. Sliwinski, H. Gao, P. C. Burns, L. Huang and T. Luo, Phys. Chem. Chem. Phys., 2014, 16, 7764–7771 RSC .
  186. T. Luo, K. Esfarjani, J. Shiomi, A. Henry and G. Chen, J. Appl. Phys., 2011, 109, 074321 CrossRef .
  187. J. He and J. Liu, J. Appl. Phys., 2021, 130, 225101 CrossRef CAS .
  188. Y. Zhao, X. Zeng, L. Ren, X. Xia, X. Zeng and J. Zhou, Mater. Chem. Front., 2021, 5, 5617–5638 RSC .
  189. A. B. Robbins, S. X. Drakopoulos, I. Martin-Fabiani, S. Ronca and A. J. Minnich, Proc. Natl. Acad. Sci. U. S. A., 2019, 116, 17163–17168 CrossRef CAS PubMed .
  190. S. E. Regan and D. Greig, Phys. B: Condens. Matter, 1990, 165–166, 909–910 CrossRef .
  191. G. Kikugawa, T. G. Desai, P. Keblinski and T. Ohara, J. Appl. Phys., 2013, 114, 034302 CrossRef .
  192. A. B. Robbins and A. J. Minnich, Appl. Phys. Lett., 2015, 107, 201908 CrossRef .
  193. P. M. Smith, L. Su, W. Gong, N. Nakamura, B. Reeja-Jayan and S. Shen, RSC Adv., 2018, 8, 19348–19352 RSC .
  194. A. Weathers, Z. U. Khan, R. Brooke, D. Evans, M. T. Pettes, J. W. Andreasen, X. Crispin and L. Shi, Adv. Mater., 2015, 27, 2101–2106 CrossRef CAS PubMed .
  195. S. Yu, C. Park, S. M. Hong and C. M. Koo, Thermochim. Acta, 2014, 583, 67–71 CrossRef CAS .
  196. L. Sun, G. Yuan, L. Gao, J. Yang, M. Chhowalla, M. H. Gharahcheshmeh, K. K. Gleason, Y. S. Choi, B. H. Hong and Z. Liu, Nat. Rev. Dis. Primers, 2021, 1, 5 CrossRef CAS .
  197. M. E. Alf, A. Asatekin, M. C. Barr, S. H. Baxamusa, H. Chelawat, G. Ozaydin-Ince, C. D. Petruczok, R. Sreenivasan, W. E. Tenhaeff, N. J. Trujillo, S. Vaddiraju, J. Xu and K. K. Gleason, Adv. Mater., 2010, 22, 1993–2027 CrossRef CAS PubMed .
  198. D. Bilger, S. Z. Homayounfar and T. L. Andrew, J. Mater. Chem. C, 2019, 7, 7159–7174 RSC .
  199. A. Asatekin, M. C. Barr, S. H. Baxamusa, K. K. S. Lau, W. Tenhaeff, J. Xu and K. K. Gleason, Mater. Today, 2010, 13, 26–33 CrossRef CAS .
  200. A. J. Schmidt, X. Chen and G. Chen, Rev. Sci. Instrum., 2008, 79, 114902 CrossRef PubMed .
  201. J. C. Duda, P. E. Hopkins, Y. Shen and M. C. Gupta, Appl. Phys. Lett., 2013, 102, 251912 CrossRef .
  202. S. Chen, T. Luan, C. Di, M. H. Lu, X. J. Yan, C. Song and T. Deng, RSC Adv., 2022, 12, 1897–1903 RSC .
  203. J. Heinze, B. A. Frontana-Uribe and S. Ludwigs, Chem. Rev., 2010, 110, 4724–4771 CrossRef CAS PubMed .
  204. C. R. Martin, Acc. Chem. Res., 1995, 28, 61–68 CrossRef CAS .
  205. W. Lee and S. J. Park, Chem. Rev., 2014, 114, 7487–7556 CrossRef CAS PubMed .
  206. L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim and A. Majumdar, J. Heat Transfer, 2003, 125, 881–888 CrossRef CAS .
  207. M. T. Pettes and L. Shi, Adv. Funct. Mater., 2009, 19, 3918–3925 CrossRef CAS .
  208. A. Weathers, K. Bi, M. T. Pettes and L. Shi, Rev. Sci. Instrum., 2013, 84, 084903 CrossRef PubMed .
  209. W. Sha, H. Wang and F. Guo, J. Mater. Sci., 2022, 57, 5346–5357 CrossRef CAS .
  210. J. O. Zoppe, N. C. Ataman, P. Mocny, J. Wang, J. Moraes and H.-A. Klok, Chem. Rev., 2017, 117, 1105–1318 CrossRef CAS PubMed .
  211. A. Olivier, F. Meyer, J. M. Raquez, P. Damman and P. Dubois, Prog. Polym. Sci., 2012, 37, 157–181 CrossRef CAS .
  212. X. Yang, X. Zhong, J. Zhang and J. Gu, Mater. Sci. Technol., 2021, 68, 209–215 CrossRef CAS .
  213. K. Ruan, X. Zhong, X. Shi, J. Dang and J. Gu, Mater. Today Phys., 2021, 20, 100456 CrossRef CAS .
  214. Q. Zhang, G. Chen, K. Wu, J. Shi, L. Liang and M. Lu, J. Appl. Polym. Sci., 2020, 137, 49143 CrossRef CAS .
  215. T. Steiner, Angew. Chem., Int. Ed., 2002, 41, 48–76 CrossRef CAS .
  216. N. Mehra, M. Jeske, X. Yang, J. Gu, M. A. Kashfipour, Y. Li, J. A. Baughman and J. Zhu, ACS Appl. Polym. Mater., 2019, 1, 1291–1300 CrossRef CAS .
  217. L. Mu, J. He, Y. Li, T. Ji, N. Mehra, Y. Shi and J. Zhu, J. Phys. Chem. C, 2017, 121, 14204–14212 CrossRef CAS .
  218. R. J. Roe, Methods of X-ray and Neutron Scattering in Polymer Science, Oxford University Press, 2000 Search PubMed .
  219. C. Andreani, D. Colognesi, J. Mayers, G. Reiter and R. Senesi, Adv. Phys., 2005, 54, 377–469 CrossRef CAS .
  220. B. S. Hudson, J. Phys. Chem. A, 2001, 105, 3949–3960 CrossRef CAS .
  221. A. A. Shcherbakov, J. Medeiros-Silva, N. Tran, M. D. Gelenter and M. Hong, Chem. Rev., 2022, 122, 9848–9879 CrossRef CAS PubMed .
  222. S. P. Danielsen, H. K. Beech, S. Wang, B. M. El-Zaatari, X. Wang, L. Sapir, T. Ouchi, Z. Wang, P. N. Johnson and Y. Hu, Chem. Rev., 2021, 121, 5042–5092 CrossRef CAS PubMed .
  223. M. R. Hansen, R. Graf and H. W. Spiess, Chem. Rev., 2016, 116, 1272–1308 CrossRef CAS PubMed .
  224. J. Koenig, Appl. Spectrosc. Rev., 1971, 4, 233–305 CrossRef CAS .
  225. A. Kuptsov and G. N. Zhizhin, Handbook of Fourier Transform Raman and Infrared Spectra of Polymers, Elsevier, 1998 Search PubMed .
  226. V. Bershtein and V. Ryzhov, in Polymer Analysis and Characterization, Springer, 1994, pp. 43–121 Search PubMed .
  227. D. Zhao, X. Qian, X. Gu, S. A. Jajja and R. Yang, J. Electron. Packag., 2016, 138, 040802 CrossRef .
  228. B. Abad, D. A. Borca-Tasciuc and M. Martin-Gonzalez, Renewable Sustainable Energy Rev., 2017, 76, 1348–1370 CrossRef .
  229. D. Kraemer and G. Chen, Rev. Sci. Instrum., 2014, 85, 025108 CrossRef CAS PubMed .
  230. H. Natesan and J. C. Bischof, ACS Biomater. Sci. Eng., 2017, 3, 2669–2691 CrossRef CAS PubMed .
  231. D. H. Olson, J. L. Braun and P. E. Hopkins, J. Appl. Phys., 2019, 126, 150901 CrossRef .
  232. R. J. Pylkki, P. J. M. P. J. Moyer and P. E. W. P. E. West, Jpn. J. Appl. Phys., 1994, 33, 3785–3790 CrossRef CAS .
  233. W. Parker, R. Jenkins, C. Butler and G. Abbott, J. Appl. Phys., 1961, 32, 1679–1684 CrossRef CAS .
  234. D. G. Cahill, MRS Bull., 2018, 43, 782–789 CrossRef .
  235. X. Qian, Z. Ding, J. Shin, A. J. Schmidt and G. Chen, Rev. Sci. Instrum., 2020, 91, 064903 CrossRef CAS PubMed .
  236. P. Jiang, X. Qian and R. Yang, J. Appl. Phys., 2018, 124, 161103 CrossRef .
  237. C. Dames, Annu. Rev. Heat Transfer, 2013, 16, 7–49 CrossRef .
  238. W. N. dos Santos, P. Mummery and A. Wallwork, Polym. Test., 2005, 24, 628–634 CrossRef .
  239. C. Choy, W. Leung and Y. Ng, J. Polym. Sci., Part B: Polym. Phys., 1987, 25, 1779–1799 CrossRef CAS .
  240. H. Mehling, G. Hautzinger, O. Nilsson, J. Fricke, R. Hofmann and O. Hahn, Int. J. Thermophys., 1998, 19, 941–949 CrossRef CAS .
  241. R. Rudkin, R. Jenkins and W. Parker, Rev. Sci. Instrum., 1962, 33, 21–24 CrossRef CAS .
  242. H. Ohta, H. Shibata and Y. Waseda, Rev. Sci. Instrum., 1989, 60, 317–321 CrossRef CAS .
  243. H. Shibata, H. Ohta and Y. Waseda, Mater. Trans., JIM, 1991, 32, 837–844 CrossRef CAS .
  244. Y. Tada, M. Harada, M. Tanigaki and W. Eguchi, Rev. Sci. Instrum., 1978, 49, 1305–1314 CrossRef CAS PubMed .
  245. R. Coquard and B. Panel, Int. J. Therm. Sci., 2009, 48, 747–760 CrossRef CAS .
  246. Y. Kogure, T. Mugishima and Y. Hiki, J. Phys. Soc. Jpn., 1986, 55, 3469–3478 CrossRef .
  247. C. A. Paddock and G. L. Eesley, J. Appl. Phys., 1986, 60, 285–290 CrossRef CAS .
  248. W. Capinski, H. Maris, T. Ruf, M. Cardona, K. Ploog and D. Katzer, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 59, 8105 CrossRef CAS .
  249. X. Wang, C. D. Liman, N. D. Treat, M. L. Chabinyc and D. G. Cahill, Phys. Rev. B: Condens. Matter Mater. Phys., 2013, 88, 075310 CrossRef .
  250. J. P. Feser and D. G. Cahill, Rev. Sci. Instrum., 2012, 83, 104901 CrossRef PubMed .
  251. J. Zhu, H. Park, J. Y. Chen, X. Gu, H. Zhang, S. Karthikeyan, N. Wendel, S. A. Campbell, M. Dawber and X. Du, Adv. Electron. Mater., 2016, 2, 1600040 CrossRef .
  252. D. G. Cahill, Rev. Sci. Instrum., 2004, 75, 5119–5122 CrossRef CAS .
  253. A. Schmidt, M. Chiesa, X. Chen and G. Chen, Rev. Sci. Instrum., 2008, 79, 064902 CrossRef PubMed .
  254. M. Nonnenmacher and H. Wickramasinghe, Appl. Phys. Lett., 1992, 61, 168–170 CrossRef CAS .
  255. S. Gomès, P. Newby, B. Canut, K. Termentzidis, O. Marty, L. Frechette, P. Chantrenne, V. Aimez, J. M. Bluet and V. Lysenko, Microelectron. J., 2013, 44, 1029–1034 CrossRef .
  256. D. I. Florescu, L. Mourokh, F. H. Pollak, D. C. Look, G. Cantwell and X. Li, J. Appl. Phys., 2002, 91, 890–892 CrossRef CAS .
  257. M. J. Assael, C. F. Chen, I. Metaxa and W. A. Wakeham, Int. J. Thermophys., 2004, 25, 971–985 CrossRef CAS .
  258. Y. Gu, X. Ruan, L. Han, D. Zhu and X. Sun, Int. J. Thermophys., 2002, 23, 1115–1124 CrossRef CAS .
  259. A. Majumdar, J. Carrejo and J. Lai, Appl. Phys. Lett., 1993, 62, 2501–2503 CrossRef CAS .
  260. C. Williams and H. Wickramasinghe, in Photoacoustic and Photothermal Phenomena, Springer, 1988, pp. 364–369 Search PubMed .
  261. K. Kim, W. Jeong, W. Lee and P. Reddy, ACS Nano, 2012, 6, 4248–4257 CrossRef CAS PubMed .
  262. W. Lee, K. Kim, W. Jeong, L. A. Zotti, F. Pauly, J. C. Cuevas and P. Reddy, Nature, 2013, 498, 209–212 CrossRef CAS PubMed .
  263. K. Luo, Z. Shi, J. Lai and A. Majumdar, Appl. Phys. Lett., 1996, 68, 325–327 CrossRef CAS .
  264. A. Majumdar, Annu. Rev. Mater. Sci., 1999, 29, 505–585 CrossRef CAS .
  265. J. Barnes, R. Stephenson, M. Welland, C. Gerber and J. Gimzewski, Nature, 1994, 372, 79–81 CrossRef CAS .
  266. A. Pope, B. Zawilski and T. Tritt, Cryogenics, 2001, 41, 725–731 CrossRef CAS .
  267. N. J. Hines, L. Yates, B. M. Foley, Z. Cheng, T. L. Bougher, M. S. Goorsky, K. D. Hobart, T. I. Feygelson, M. J. Tadjer and S. Graham, Rev. Sci. Instrum., 2021, 92, 044907 CrossRef CAS PubMed .
  268. T. Borca-Tasciuc and G. Chen, in Thermal Conductivity, Springer, 2004, pp. 205–237 Search PubMed .
  269. B. M. Zawilski, R. T. Littleton IV and T. M. Tritt, Rev. Sci. Instrum., 2001, 72, 1770–1774 CrossRef CAS .
  270. D. R. Flynn, in Compendium of Thermophysical Property Measurement Methods, Springer, 1992, pp. 33–75 Search PubMed .
  271. O. Maldonado, Cryogenics, 1992, 32, 908–912 CrossRef .
  272. J. Lee, Z. Li, J. P. Reifenberg, S. Lee, R. Sinclair, M. Asheghi and K. E. Goodson, J. Appl. Phys., 2011, 109, 084902 CrossRef .
  273. J. A. Malen, K. Baheti, T. Tong, Y. Zhao, J. A. Hudgings and A. Majumdar, J. Heat Transfer, 2011, 133, 081601 CrossRef .
  274. D. Rodin and S. K. Yee, Rev. Sci. Instrum., 2017, 88, 014902 CrossRef PubMed .
  275. J. Yang, E. Ziade, C. Maragliano, R. Crowder, X. Wang, M. Stefancich, M. Chiesa, A. K. Swan and A. J. Schmidt, J. Appl. Phys., 2014, 116, 023515 CrossRef .
  276. J. Zhu, D. Tang, W. Wang, J. Liu, K. W. Holub and R. Yang, J. Appl. Phys., 2010, 108, 094315 CrossRef .
  277. P. Jiang, X. Qian and R. Yang, Rev. Sci. Instrum., 2018, 89, 094902 CrossRef PubMed .
  278. M. Li, J. S. Kang and Y. Hu, Rev. Sci. Instrum., 2018, 89, 084901 CrossRef PubMed .
  279. A. Z. Zhao, M. C. Wingert and J. E. Garay, J. Chem. Eng. Data, 2020, 66, 262–270 CrossRef .

This journal is © The Royal Society of Chemistry 2022
Click here to see how this site uses Cookies. View our privacy policy here.