Issue 3, 2023

Protein-mimetic peptoid nanoarchitectures for pathogen recognition and neutralization

Abstract

Recent outbreaks of both new and existing infectious pathogens have threatened healthcare systems around the world. Therefore, it is vital to detect and neutralize pathogens to prevent their spread and treat infected patients. This consideration has led to the development of biosensors and antibiotics inspired by the structure and function of antibodies and antimicrobial peptides (AMPs), which constitute adaptive and innate immunity, efficiently protecting the human body against invading pathogens. Herein, we provide an overview of recent advances in the detection and neutralization of pathogens using protein-mimetic peptoid nanoarchitectures. Peptoids are bio-inspired and sequence-defined polymers composed of repeating N-substituted glycine units. They can spontaneously fold into well-defined three-dimensional nanostructures that encode chemical information depending on their sequences. Loop-functionalized peptoid nanosheets have been constructed by mimicking antibodies containing chemically variable loops as binding motifs for their respective target pathogen. Furthermore, by mimicking the cationic amphipathic features of natural AMPs, helical peptoids and their assemblies have been developed to achieve selective anti-infective activity owing to their intrinsic ability to interact with bacterial membranes and viral envelopes. We believe that this mini-review furnishes in-depth insight into how to construct protein-like nanostructures via the self-assembly of peptoids for application in the detection of pathogens and the treatment of infectious diseases for future healthcare applications.

Graphical abstract: Protein-mimetic peptoid nanoarchitectures for pathogen recognition and neutralization

Article information

Article type
Minireview
Submitted
27 sep 2022
Accepted
25 nov 2022
First published
21 dec 2022

Nanoscale, 2023,15, 975-986

Protein-mimetic peptoid nanoarchitectures for pathogen recognition and neutralization

W. Yang, J. Seo and J. H. Kim, Nanoscale, 2023, 15, 975 DOI: 10.1039/D2NR05326H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements