Machine learning potential era of zeolite simulation
Abstract
Zeolites, owing to their great variety and complexity in structure and wide applications in chemistry, have long been the hot topic in chemical research. This perspective first presents a short retrospect of theoretical investigations on zeolites using the tools from classical force fields to quantum mechanics calculations and to the latest machine learning (ML) potential simulations. ML potentials as the next-generation technique for atomic simulation open new avenues to simulate and interpret zeolite systems and thus hold great promise for finally predicting the structure–functionality relation of zeolites. Recent advances using ML potentials are then summarized from two main aspects: the origin of zeolite stability and the mechanism of zeolite-related catalytic reactions. We also discussed the possible scenarios of ML potential application aiming to provide instantaneous and easy access of zeolite properties. These advanced applications could now be accomplished by combining cloud-computing-based techniques with ML potential-based atomic simulations. The future development of ML potentials for zeolites in the respects of improving the calculation accuracy, expanding the application scope and constructing the zeolite-related datasets is finally outlooked.
- This article is part of the themed collections: Machine Learning and Artificial Intelligence: A cross-journal collection and 2022 Chemical Science Perspective & Review Collection