Polyoxometalate–peptide hybrid materials: from structure–property relationships to applications
Abstract
Organo-functionalisation of polyoxometalates (POMs) represents an effective approach to obtain diverse arrays of functional structures and materials, where the introduction of organic moieties into the POM molecules can dramatically change their surface chemistry, charge, polarity, and redox properties. The synergistic combination of POMs and peptides, which perform a myriad of essential roles within cellular biochemistry, including protection and transport in living organisms, leads to functional hybrid materials with unique properties. In this Perspective article, we present the principal synthetic routes to prepare and characterise POM–peptide hybrids, together with a comprehensive description of how their properties – such as redox chemistry, stereochemistry and supramolecular self-assembly – give rise to materials with relevant catalytic, adhesive, and biomedical applications. By presenting the state-of-the-art of the POM–peptide field, we show specifically how emerging chemical approaches can be harnessed to develop tailored POM–peptide materials with synergistic properties for applications in a variety of disciplines.
- This article is part of the themed collections: 2023 Chemical Science Perspective & Review Collection, 2023 Chemical Science HOT Article Collection, 2023 ChemSci Pick of the Week Collection and 2023 Chemical Science Covers