Issue 4, 2023

Thermocatalytic CO2 conversion by siliceous matter: a review

Abstract

Solid siliceous (silica/silicate) materials can substantially contribute to the strategic decarbonization and defossilization efforts based on carbon capture and utilization (CCU), where CO2 footprint is mitigated by its capture and conversion into a wide variety of value-added chemical commodities. Targeting CO2 utilization in particular, siliceous catalysts are widely utilized for thermal conversion of CO2 due to their tunable porosity and morphology, ideal physiochemical properties such as high thermal resistivity, and ease of preparation by green protocols. In terms of catalytic performance and reactivity (activity, selectivity, and stability), thermocatalytic CO2 conversion using siliceous-based catalysts is comparable to that with non-precious and precious pure metal–metal oxide catalysts, considering the inert nature of siliceous materials. Hence, in the current review, we focus on the recent advances in CO2 conversion facilitated by conventional and advanced silica/silicate-based catalysts by reviewing and comparing proof-of-principle experiments on catalyst activity and stability for thermocatalytic CO2 transformations. From this perspective, initially, we summarize the gas-phase thermocatalytic CO2 reduction pathways (mainly reforming and hydrogenation) to produce C1 and C2+ chemicals. Thereafter, we specifically outline the advanced design and synthesis techniques for silica/silicate-based catalysts having diverse focal, compositional, and structural features for these reactions. The categorized CO2 reactions are then examined with respect to different subdivisions including conventional, morphology-defined, structurally-defined, and atomically-defined siliceous-based catalysts. Furthermore, after highlighting their hierarchical and porosity merits for CO2 transformations, three important routes including CO2 conversion to hydrocarbons, alcohols, and fine/specialty organic substances using siliceous-based catalysts are exclusively emphasized. Finally, based on our personal perspective, potential areas for improvement and further research opportunities will be proposed.

Graphical abstract: Thermocatalytic CO2 conversion by siliceous matter: a review

Article information

Article type
Review Article
Submitted
28 sep 2022
Accepted
01 dec 2022
First published
06 dec 2022

J. Mater. Chem. A, 2023,11, 1593-1633

Thermocatalytic CO2 conversion by siliceous matter: a review

M. Kosari, A. M. H. Lim, Y. Shao, B. Li, K. M. Kwok, A. M. Seayad, A. Borgna and H. C. Zeng, J. Mater. Chem. A, 2023, 11, 1593 DOI: 10.1039/D2TA07613F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements