MXene–carbon based hybrid materials for supercapacitor applications
Abstract
Designing hybrid materials with superior electrochemical properties has attracted tremendous interest in recent years for energy-storage applications owing to a high demand for energy sources and the depletion of fossil fuel resources. In this regard, supercapacitors have attracted considerable interest considering their excellent characteristics and superior performance. Among these material families, one group that stands out, particularly in electrochemical energy-storage applications, is 2D transition metal carbides and nitrides, commonly referred to as MXenes, alongside carbon-based materials such as activated carbon (AC), carbon nanotubes (CNTs), conducting polymers (CPs), and graphene (GO, rGO) owing to their remarkable thermal, electrical, and mechanical properties. This comprehensive review encompasses the most recent advancements in the exploration of supercapacitors based on MXene/carbon-based composites. It delves into various aspects of these composites, such as material synthesis, electrode materials, electrochemical performance, and diverse applications, offering an in-depth analysis of this field. This article seeks to explore the practical implementation of MXene/carbon-based composites in the realm of supercapacitor research, offering valuable insights into these highly promising materials for future investigations. Accordingly, a detailed literature review was carried out. Finally, the current trends, limitations, and future perspectives of MXene–carbon-based materials for supercapacitor applications are proposed.
- This article is part of the themed collections: Energy Advances Recent Review Articles, Research advancing UN SDG 7: Affordable and clean energy and Supercapacitors– Topic Highlight