Boosting Ethylene Yield via Synergistic 2D/0D Nanostructured VCu Layered Double Hydroxide/TiO2 Catalyst in Electrochemical CO2 Reduction

Abstract

The electrochemical conversion of CO2 into C1 to C2 hydrocarbon such as Methane and ethylene is a promising pathway towards to achieve net zero however due to high activation barrier for CO2 it remains a big challenge. In this work, an effective strategy has been developed through the synthesis of a low-cost Vanadium and Copper based layered double hydroxide (LDH) decorated with TiO2 nanoparticles (VCu LDH/TiO2) as a highly efficient electrocatalyst for the electrochemical CO2 reduction to ethylene. The structural and morphological study of the developed electrocatalyst was analyzed with the help of various analytical instruments such as X-ray diffractometer (XRD), Fourier Transform-Infrared (FT-IR), Scanning Electron Microscopy (FESEM), X-ray photoelectron microscopy (XPS) and Transmission Electron Microscopy (TEM) which confirmed the successful formation of VCu LDH/TiO2. The electrochemical CO2 reduction reaction (CO2RR) study was performed in 0.1 M KHCO3 using H-type cell and showed the formation of CO, CH4, and C2H4 value added end products. The highest faradaic efficiency of 92% for C2H4 was obtained at -0.4 V vs RHE. The above results suggest that the VCu LDH/TiO2 NPs electrocatalyst may be an excellent candidate for the CO2 reduction and can be also utilized in wide range of energy conversion and storage applications.

Supplementary files

Article information

Article type
Paper
Submitted
28 jun 2024
Accepted
16 sep 2024
First published
18 sep 2024
This article is Open Access
Creative Commons BY-NC license

Energy Adv., 2024, Accepted Manuscript

Boosting Ethylene Yield via Synergistic 2D/0D Nanostructured VCu Layered Double Hydroxide/TiO2 Catalyst in Electrochemical CO2 Reduction

S. Lavate and R. Srivastava, Energy Adv., 2024, Accepted Manuscript , DOI: 10.1039/D4YA00417E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements