Hydrazine-assisted water electrolysis system: performance enhancement and application expansion

Abstract

Powered by renewable energy sources, water electrolysis has emerged as a highly promising technology for energy conversion, attracting significant attention in recent years, but it faces severe challenges, especially at the anode. Accordingly, hydrazine-assisted water electrolysis, incorporating the electro-oxidation of hydrazine at the anode, holds great promise for greatly reducing the input voltage and optimizing the system by application expansion. In this review, we present an in-depth overview of hydrazine-assisted water electrolysis, introducing its reaction mechanisms, basic parameters, specific advantages compared with conventional water electrolysis and other hybrid water electrolysis systems, strategies for developing efficient electrocatalysts with enhanced electrocatalytic performances, and especially its potential application expansion. An analysis of its technical and economic aspects, feasibility studies, mechanistic investigations, and relevant comparisons are also presented for providing a deeper insight into hydrazine-assisted water electrolysis. Finally, the potential avenues and opportunities for future research on hydrazine-assisted water electrolysis are discussed.

Graphical abstract: Hydrazine-assisted water electrolysis system: performance enhancement and application expansion

Article information

Article type
Review Article
Submitted
20 jan 2025
Accepted
11 apr 2025
First published
14 apr 2025

Mater. Horiz., 2025, Advance Article

Hydrazine-assisted water electrolysis system: performance enhancement and application expansion

H. Wang and Z. Yuan, Mater. Horiz., 2025, Advance Article , DOI: 10.1039/D5MH00118H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements