Innovative Engineering Strategies and Mechanistic Insights for Enhanced Carbon-Based Electrocatalysts in Sustainable H₂O₂ Production
Abstract
Hydrogen peroxide (H2O2) plays a crucial role in various industrial sectors and everyday applications. Given the energy-intensive nature of the current anthraquinone process for its production, the quest for cost-effective, efficient, and stable catalysts for H2O2 synthesis is paramount. A promising sustainable approach lies in small-scale, decentralized electrochemical methods. Carbon nanomaterials have emerged as standout candidates, offering low costs, high surface areas, excellent conductivity, and adjustable electronic properties. This review presents a thorough examination of recent strides in engineering strategies of carbon-based nanomaterials for enhanced electrochemical H2O2 generation. It delves into tailored microstructures (e.g., 1D, 2D, porous architectures), defect/surface engineering (e.g., edge sites, heteroatom doping, surface modification), and heterostructure assembly (e.g., semiconductor-carbon composites, single-atom, dual-single-atom catalysts). Moreover, the review explores structure-performance interplays in these carbon electrocatalysts, drawing from advanced experimental analyses and theoretical models to unveil the mechanisms governing selective electrocatalytic H2O2 synthesis. Lastly, this review identifies challenges and charts future research avenues to propel carbon electrocatalysts towards greener and more effective H2O2 production methods.
- This article is part of the themed collection: Recent Review Articles