Research Advances in the Diagnosis of Infectious Disease by Aptasensor Technology

Abstract

Infectious diseases remain a major challenge to public health. The accurate and timely detection of pathogens responsible for these diseases is essential for controlling their spread, supporting clinical diagnosis, and enabling the application of appropriate therapies. Traditionally, the antibody-based assay has been the primary method for pathogen detection. However, recent advancements in aptamer-based technologies have initiated a transformative shift in diagnostic approaches. Aptamer-based sensors (aptasensors) are characterized by lower production costs and greater flexibility, making them compatible with various detection techniques. This broad applicability facilitates multifaceted, high-throughput applications, significantly improving the capacity to monitor and detect infectious diseases. In this review, we introduce the pathogenic mechanisms and characteristics of pathogens, provide an overview of recent advancements in the development of aptasensors for pathogen detection and highlight their versatility in identifying various infectious disease pathogens, including viruses, bacteria, parasites and other microorganisms. We systematically categorize aptasensors according to their detection mechanisms, including colorimetry, fluorescence, chemiluminescence, surface-enhanced Raman spectroscopy (SERS), surface plasmon resonance (SPR), electrochemistry and incorporated field-effect transistor (FET). We further demonstrate how these platforms leverage pathogen-specific biological features to achieve ultrasensitive and rapid diagnostics. Further optimization and validation of aptasensor platforms are anticipated to accelerate their clinical translation and industrialization. Advancing these innovative technologies will be crucial to meeting the growing demand for rapid, accurate and reliable pathogen detection across diverse clinical and environmental conditions, ultimately strengthening the ability to respond effectively to infectious disease threats.

Article information

Article type
Review Article
Submitted
19 feb 2025
Accepted
11 apr 2025
First published
18 apr 2025

Nanoscale Horiz., 2025, Accepted Manuscript

Research Advances in the Diagnosis of Infectious Disease by Aptasensor Technology

H. Li, Q. Yang, X. Li, X. Fu, J. Li, Y. Zhan, P. Wang and W. Tan, Nanoscale Horiz., 2025, Accepted Manuscript , DOI: 10.1039/D5NH00098J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements