Research Advances in the Diagnosis of Infectious Disease by Aptasensor Technology
Abstract
Infectious diseases remain a major challenge to public health. The accurate and timely detection of pathogens responsible for these diseases is essential for controlling their spread, supporting clinical diagnosis, and enabling the application of appropriate therapies. Traditionally, the antibody-based assay has been the primary method for pathogen detection. However, recent advancements in aptamer-based technologies have initiated a transformative shift in diagnostic approaches. Aptamer-based sensors (aptasensors) are characterized by lower production costs and greater flexibility, making them compatible with various detection techniques. This broad applicability facilitates multifaceted, high-throughput applications, significantly improving the capacity to monitor and detect infectious diseases. In this review, we introduce the pathogenic mechanisms and characteristics of pathogens, provide an overview of recent advancements in the development of aptasensors for pathogen detection and highlight their versatility in identifying various infectious disease pathogens, including viruses, bacteria, parasites and other microorganisms. We systematically categorize aptasensors according to their detection mechanisms, including colorimetry, fluorescence, chemiluminescence, surface-enhanced Raman spectroscopy (SERS), surface plasmon resonance (SPR), electrochemistry and incorporated field-effect transistor (FET). We further demonstrate how these platforms leverage pathogen-specific biological features to achieve ultrasensitive and rapid diagnostics. Further optimization and validation of aptasensor platforms are anticipated to accelerate their clinical translation and industrialization. Advancing these innovative technologies will be crucial to meeting the growing demand for rapid, accurate and reliable pathogen detection across diverse clinical and environmental conditions, ultimately strengthening the ability to respond effectively to infectious disease threats.
- This article is part of the themed collection: Recent Review Articles