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Dissolution-based plastic recycling is a promising approach to separate and recover high quality pure

polymer resins from multicomponent plastic waste by exploiting differences in polymer solubility. The

design of a dissolution-based polymer recycling process requires the selection of appropriate solvent

systems and operating temperatures to dissolve only target polymers. Determining these parameters

experimentally is challenging due to the wide range of solvents and temperatures possible for a given set

of target polymers. In this work, we report a computational scheme that employs molecular dynamics

simulations and the Conductor-like Screening Model for Realistic Solvents to predict polymer solubilities.

Using this scheme, we established a computational solubility database for 8 common polymers and 1007

solvents at multiple temperatures and measured selected solubilities experimentally to validate compu-

tational predictions. Analysis of functional groups within this large database then provides chemical heur-

istics relating the molecular structures of good and non-solvents for selected polymers. We further devel-

oped a tool that automates the selection of solvents for all possible sequences in which target polymers

can be selectively dissolved to guide the design of dissolution-based plastic recycling processes. We

demonstrate the application of these methods via multiple experimental case studies of representative

dissolution-based polymer recycling processes in which pure polymer resins were successfully recovered

from physical mixtures of polymers.

Introduction

Seven billion tons of plastic waste have been generated globally
to date, but less than 10% of these materials has been
recycled.1 The estimated annual loss due to plastic packaging,
which is the largest constituent of plastic waste, during sorting
and processing alone is 80–120 billion dollars.2 A key factor
that contributes to the low rate of plastic recycling is that
current plastic recycling technologies are mostly designed for
single-component plastics and are unable to deal with multi-
component plastics due to their complex compositions and
the incompatibility of different polymers.3–5 For example, mul-
tilayer plastic films are widely used in the packaging industry
and over 100 million tons are produced worldwide each
year.6,7 These films are made of several layers of different poly-
mers that each contributes useful functional properties (e.g.,
mechanical stiffness, barrier properties).8–10 However, the con-

comitant heterogeneity of such multicomponent materials
hinders their recycling.11 As a result, while over 29% of some
single-component plastic bottles was recycled in the U.S. in
2018, only 8.7% of all plastic municipal solid waste was
recycled and most multilayer films are diverted to landfills.12

A promising, near-term approach to recycle multicompo-
nent plastics is dissolution-based polymer recycling. In this
approach, differences in polymer solubility permit the separ-
ation and recovery of pure polymer resins from carefully
chosen solvent systems that dissolve only target polymers.11,13

Dissolution-based plastic recycling has several advantages over
chemical or mechanical recycling methods: it can process mul-
ticomponent plastic mixtures, it maintains the chemical struc-
tures and properties of recovered polymers, and it does not
require a high-purity input stream because impurities and
additives can be removed by selective dissolution.14–18

Dissolution-based recycling is also a green process that has
over 40% lower greenhouse gas emissions than producing
virgin resins, saving 3–6 tons CO2 for each ton of plastic
waste.19 In addition, dissolution-based technologies can
reduce emissions to an extent comparable to closed-loop
mechanical recycling, and have 65–75% less environmental
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impact than incineration.16,20,21 Recently, we proposed a dis-
solution-based process called Solvent-Targeted Recovery and
Precipitation (STRAP) to recycle multilayer plastic films.11,22 In
STRAP, a suitable solvent selectively dissolves a target polymer
from the multilayer film at a defined temperature, the mixture
is filtered to separate the dissolved polymer from the residual
film components, and the polymer is precipitated and recov-
ered by adding non-solvent (a solvent in which the polymer is
insoluble) and/or decreasing the temperature. This process is
then repeated sequentially for each target polymer until all
resins have been recovered from the film. We have demon-
strated the recovery of high-density polyethylene (HDPE), ethyl-
ene vinyl alcohol (EVOH), and polyethylene terephthalate
(PET) resins from post-industrial waste films via STRAP.11,22,23

We have previously performed process simulations and life-
cycle assessment to demonstrate the environmental benefits of
STRAP processes. For example, a STRAP process that recycles
PE, EVOH and PET from a multilayer plastic film generates
54% fewer emissions than producing the virgin films.17,22

Some dissolution-based plastic recycling technologies are also
being developed industrially, although limited information
about their process conditions and solvent selections is openly
available.5,13,16 These processes highlight the feasibility and
broad applicability of recycling polymers from complex input
streams via dissolution-based approaches.

The design of a successful dissolution-based polymer re-
cycling process requires the selection of an appropriate solvent
(and non-solvent in some cases) for each polymer of interest,
temperatures for dissolution and precipitation, and the
amount of solvent. These considerations affect the efficiency,
economics, and environmental impact of the process.17,22 The
key information needed to guide these choices is the tempera-
ture-dependent solubilities of polymers in different solvent
systems. Several past studies have reported known solvents
and non-solvents for some common polymers at various
temperatures;24,25 examples are included in Table S1 of the
ESI.† However, solvent selection for complex input streams
containing multiple polymers often requires consideration of a
broader range of possible solvents, and the experimental col-
lection of polymer solubility data at a large scale is prohibi-
tively time-consuming. Alternatively, computational methods
can enable effective, large-scale solvent screening which can
be valuable for process design as well as for evaluating alterna-
tive sets of solvents based on cost, sustainability, or toxicity.
For example, tabulated solubility parameters are often used to
identify possible solvents/non-solvents for a given polymer
with minimal computational effort. Examples of solubility
parameters include Hildebrand,26 Hansen,27 Kamlet–Taft,28

Gutmann,29 and Swain30 parameters. In particular, Hansen
solubility parameters (HSPs) are widely used to guide solvent
selection for polymers because tabulated HSP values are avail-
able for a great number of solvents and polymers. There are
many successful applications of solvent screening with
HSPs.27,31 Machine learning methods have also been devel-
oped for solvent selection. For example, a recent study trained
a deep neural network for binary solvents/non-solvent classifi-

cation with over 4500 homopolymers and 24 common solvents
with an accuracy of 93.8%.32 While valuable, these prior com-
putational methods generally focus on qualitatively dis-
tinguishing good and non-solvents for a given polymer at
room temperature as opposed to quantitatively predicting solu-
bility as a function of temperature. These drawbacks limit
their applicability to the design of dissolution-based processes,
which require quantitative values of polymer solubility (to
determine the amount of solvent needed) as a function of
temperature (to determine operating temperatures). Another
challenge with HSPs is uncertainty in the selection of HSPs for
specific polymer resins, as detailed further in the ESI.† The
lack of computational methods to predict temperature-depen-
dent polymer solubilities in a wide range of solvents, and for
specific polymer resins, is thus the gap that we seek to
address.

In this work, we address this gap by using molecular-scale
models to generate quantitative, temperature-dependent, and
large-scale solubility predictions for 8 common polymers in
1007 solvents at multiple temperatures.11,33 Our approach uti-
lizes classical molecular dynamics (MD) simulations to sample
representative oligomer conformations as input for Conductor-
like Screening Model for Real Solvents (COSMO-RS) solubility
calculations, which are calibrated by an experimentally
measured solubility for each polymer in a reference solvent.
We perform such solubility predictions for polymers that are
common components of plastic waste, including EVOH, PE,
PET, polypropylene (PP), polystyrene (PS), polyvinyl chloride
(PVC), nylon 6 and nylon 66. Experimental measurements are
subsequently performed to validate the computational predic-
tions. Using this database, we provide chemical insights into
solvent preferences for polymers based on functional group
analysis. We then show how computational tools can aid the
design of STRAP processes by evaluating feasible solvents for
all possible separation sequences (i.e., sequences of successive
solvent washes, each designed to selectively dissolve a single
target polymer) for systems representative of multicomponent
plastic waste. Specifically, we demonstrate the applicability of
the computational methods through the successful experi-
mental separation of three different physical mixtures of poly-
mers (PE/PS, PVC/PET, and PP/EVOH/PET) via multiple separ-
ation sequences. These computational methods have the
ability to rapidly guide the design of dissolution-based plastics
recycling processes to accelerate their application to new waste
feedstocks and have the potential to identify green solvents as
replacements for solvents utilized in existing selective dis-
solution processes.22,33–35

Methods
Summary of approach

Our approach employs a series of computational methods to
predict polymer solubilities in conjunction with experimental
measurements of solubility for calibration and validation. This
workflow is designed to address limitations with conventional
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solvent selection based on HSPs, which cannot provide quanti-
tative predictions of polymer solubility as a function of temp-
erature. Another challenge with HSPs addressed by our
approach is the potential uncertainty when selecting specific
HSP values for a given resin (as further discussed in the ESI†).
Like predictions based on HSPs, our approach does not expli-
citly use resin molecular weight or crystallinity as inputs for
solubility predictions; however, we do use experimental input
to calibrate the model, thereby accounting for these resin-
specific properties. Further discussion comparing our
approach to existing methods is included in the ESI.†

Fig. 1 summarizes the general workflow for solubility pre-
dictions and the application of these predictions to STRAP pro-
cesses in 5 steps:

1. Using the molecular structure of the chosen polymer
(modeled as an oligomer) and solvent, perform an MD simu-
lation of a single oligomer in dilute solution to obtain a simu-
lation trajectory that samples a wide range of chain
conformations.

2. Select a set of conformers from the MD trajectory to span
a range of representative oligomer structures.

3. Based on the selected conformers and a reference experi-
mentally measured solubility for the target polymer, perform
COSMO-RS solubility calculations to establish a polymer solu-
bility database.

4. Verify selected values from the database with experi-
mental measurements.

5. Based on the predicted solubilities, identify selective sol-
vents for STRAP processes for plastic waste that contains multiple
polymers. Test the proposed polymer recycling process by using
model systems consisting of physical mixtures of polymers.

The computational solubility database established via this
approach contains 8 common polymers (EVOH, PE, PP, PS,
PET, PVC, nylon 6, and nylon 66) and 1007 solvents. We then
demonstrate the STRAP polymer recycling processes for 3
different physical mixtures of polymers (PE/PS, PVC/PET, and
PP/EVOH/PET) which are common components of multilayer
films. Details of the specific methods for each step are
described in the following sections.

Computational simulations for solubility prediction

We first model the polymers as oligomer molecules and
perform MD simulations of these oligomers in dilute solutions
to obtain trajectories of representative oligomer confor-
mations, following the workflow established in our previous
work.33 Table 1 shows detailed information on the polymer
structures and number of monomers included in the corres-
ponding oligomers. Atomistic MD simulations were performed
in the isothermal-isobaric ensemble using Gromacs 2016.36

Each MD simulation contained 1 oligomer molecule and 216
solvent molecules. Solvents were selected for these simulations
based on literature reports of good solvents for the target
polymers.24,25 Specifically, EVOH was simulated in dimethyl
sulfoxide (DMSO); PE, PP and PS were simulated in toluene;
PVC and PET were simulated in dichloromethane; and nylon 6
and nylon 66 were simulated in tetrahydrofuran (THF). All
molecules were parameterized using Antechamber and the
Generalized AMBER force fields.37,38 The simulation system
was initialized with a cubic box containing a single polymer.
The system was then solvated, energy minimized, and equili-
brated for 2 ns in an NPT simulation at 300 K and 1 bar using
a velocity-rescale thermostat and Berendsen barostat. A 10 ns
NPT simulation was then performed at the same temperature
and pressure using the Nosé–Hoover thermostat and
Parrinello-Rahman barostat. All simulations were performed
using a leapfrog integrator with a 2 fs timestep. Verlet lists
were generated using a 1.2 nm neighbor list cutoff. van der
Waals interactions were modeled with a shifted Lennard-Jones
potential and Verlet cutoff-scheme that was smoothly shifted
to zero at 1.2 nm. Electrostatic interactions were calculated
using the smooth Particle Mesh Ewald method with a short-
range cutoff of 1.2 nm, grid spacing of 0.14 nm, and 4th order
interpolation. Bonds were constrained using the LINCS algor-
ithm. All thermostats used a 2.0 ps time constant and all baro-
stats used a 2.0 ps time constant with an isothermal compres-
sibility of 3.0 × 10−5 bar−1.

We then sampled representative oligomer structures
(referred to as conformers) from the MD trajectories based on

Fig. 1 Summary of computational and experimental approach for large-scale polymer solubility prediction, validation and application.
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two structural parameters: the radius of gyration (Rg) and the
solvent-accessible surface area (SASA). Sampling conformers
that cover a range values of these two parameters can provide
reliable input for COSMO-RS solubility estimations.33,39 We
thus selected conformers by superimposing a square grid over
the two-dimensional Rg-SASA scatter plot and choosing confor-
mers closest to grid intersections following our previous
work.33 The number of sampled conformers for each polymer
is listed in Table 1. The selected conformers were input to
density functional theory (DFT) calculations to obtain screen-
ing charge densities (COSMO files). The DFT calculations
included a geometry optimization in implicit water using the
conductor-like polarizable continuum model and a single-
point calculation in the infinite dielectric constant limit.
These DFT calculations were performed with Gaussian 16 at
the BVP86/TZVP/DGA1 level of theory.40 Precalculated COSMO
files for the solvents were obtained from the database
COSMObase-1901-BP-TZVP.

COSMO files from the DFT calculations were input to
COSMO-RS for solubility calculations. COSMO-RS predicts the
thermodynamic properties of multicomponent systems based
on quantum mechanical calculations and statistical thermo-
dynamics methods.41,42 The chemical properties of each mole-
cule are represented by the probability distribution of the
screening charge densities (called the σ-profile). σ-Profiles of
all oligomer conformations with deactivated terminal groups
were used to approximate the σ-profile of the corresponding
polymer.43 The σ-profiles were then used to calculate the
chemical potential of the polymer to enable predictions of
solubility via a solid–liquid equilibrium calculation.44 This cal-
culation requires the polymer melting temperature and an
experimentally measured solubility as reference input. Table 1
shows the reference experimental solubilities used in this

work (measured following the methods described below).
Melting temperatures were taken from literature sources.45,46

All COSMO-RS calculations were performed using the
COSMOtherm 19 software with the BP_TZVP_19
parameterization.47–49

Experimental solubility measurements and polymer
separations

Experimental solubility measurements for all eight polymers
in multiple solvents were performed to calibrate and validate
the computational solubility predictions. PP (isotactic, weight-
average molecular weight ∼12 000, number-average molecular
weight ∼5000) and PVC (high molecular weight) were pur-
chased from Sigma-Aldrich (St Louis, Missouri, USA). PS was
purchased from Goodfellow Cambridge Ltd (Huntingdon, UK).
Low density PE (DOW™ 608A), EVOH (32 mol% ethylene
content, CCP EV3251), PET (DAK Americas Laser+® C 9921),
nylon 6 (BASF Ultramid® B36), and nylon 66 (DuPont Zytel®
FG42A) resins were purchased and provided by Amcor
Flexibles. These resins were selected because they are used
commonly in industry and by major manufacturers.11,22

Consequently, we expect their solubilities to be representative
of the solubilities of components of common commercial
plastic materials. Each polymer was separately dissolved in a
reference solvent to support the creation of the computational
solubility database. To validate computational predictions,
each polymer was also dissolved in predicted good and non-
solvents.

Experiments to measure individual polymer solubilities
were performed in a three-necked 100 mL round bottom flask
which was equipped with a reflux condenser, a thermometer,
and a glass stopper. Approximately 40 g solvent and a mag-
netic stir bar were put into the flask, which was then immersed

Table 1 Modeling information and reference experimental input for each polymer

Polymer Modeling information Number of conformers

Reference experimental input

Solvent T (°C) Solub. (wt%)

EVOH 6-mer (4VA:2E), random copolymer structure 24 DMSO 95 19.4

PE 6-mer 31 Toluene 110 23.1

PP 6-mer, isotactic 25 Toluene 110 31.2

PS 6-mer, atactic 29 Toluene 110 41.2

PET 4-mer 22 DMSO 135 13.3

PVC 6-mer, atactic 27 THF 50 14.9

Nylon 6 4-mer 20 Acetic acid 90 10.8

Nylon 66 2-mer 28 DMSO 135 3.1
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in a 1000 mL silicon oil bath with continuous agitation and
heated to the target temperature. When the target temperature
was reached, 1 wt% (with respect to the solvent mass) of
polymer resin was added into the heated solvent and the
solvent and polymer were stirred for 0.5 h to permit dis-
solution. If the polymer resin dissolved completely, another
1 wt% of polymer resin was added, and the above process was
repeated until no further resin could be dissolved after 0.5 h
mixing. The undissolved resin was filtered from the solvent,
washed with DI water, dried in a vacuum oven at 100 °C for
3 h, and weighed to determine its mass after drying. The solu-
bility was then computed as shown in eqn (1).

Solubility wt%ð Þ ¼
Addedpolymermass� undissolved polymermass

mass of solution
� 100%

ð1Þ
It should be noted that for some polymer resins, the solubi-

lity is regarded as a lower limit because the high viscosity of
the solution at the measured value inhibited further dis-
solution. More details regarding experimental procedures are
available in the ESI.†

Physical mixtures of polymers were experimentally separated
by sequential dissolution to show the feasibility of our polymer
separation strategies. Three polymer mixtures were studied,
including a PE/PS mixture, PET/PVC mixture, and PP/EVOH/PET
mixture. Around 3 g of the desired mixtures (with a 1 : 1 mass
ratio for the 2-component mixtures and 1 : 1 : 1 mass ratio for the
3-component mixture) were added into ∼30 g of the selected sol-
vents in a round bottom flask and heated to the desired tempera-
ture under stirring using a 1000 mL silicon oil bath. After 1 h dis-
solution, the flask was removed from the oil bath and emptied
into a 250 mL beaker using a hot stainless wire cloth as the filter.
The undissolved polymer was collected from the surface of stain-
less wire cloth and washed with DI water. A same amount of the
non-solvent (if applicable) was added into the beaker to precipi-
tate the dissolved polymer. The precipitated polymer was filtered
with a Büchner funnel. Both dissolved and undissolved polymers
were dried at 100 °C for 3 h in a vacuum oven. The mass balance

was calculated based on the mass of dried polymers. For the
3-component mixture, the aforementioned dissolution step was
repeated twice with different solvents.

Results and discussion
Creation of the polymer solubility database

We developed a database of computationally predicted
polymer solubilities following the approach detailed in the
Methods section. We modeled polymers as short oligomers,
performed MD simulations of these oligomers in dilute solu-
tion to obtain various chain configurations, selected 20–31
conformers from the MD trajectories for each polymer
(Table 1), and calculated screening charges for each of these
conformers.33 Fig. 2 shows some example conformers sampled
from the MD simulations following this approach and their
corresponding screening charge densities. Screening charge
densities serve as the input to solid–liquid equilibrium calcu-
lations using COSMO-RS to evaluate polymer solubilities in
various solvents. Solubilities were calculated for each polymer–
solvent system at room temperature (RT) and a higher temp-
erature (Th) because solubilities generally increase with temp-
erature. The higher temperature is determined by the boiling
point of the solvent: if the boiling point is greater than 120 °C,
Th = 120 °C; otherwise, Th was selected as the temperature
1 °C lower than the boiling point. The upper bound on temp-
erature enables calculations of polymer solubility at elevated
temperatures while avoiding temperatures that are too high,
which may lead to melting or thermal degradation and thereby
influence the properties of the recovered materials.45,50 Using
this approach, we performed large-scale solubility predictions
for 8 polymers and 1007 solvents at both temperatures, estab-
lishing a solubility database with over 16 000 data points.
Table 2 shows some selected results from these solubility pre-
dictions for 25 common polymer–solvent systems. The com-
plete database is available in the ESI.†

To verify the computational predictions, we conducted
experimental measurements to determine polymer solubilities

Fig. 2 Some structures obtained from conformational sampling and corresponding COSMO-RS representations (colored surfaces) for 3 polymers:
(a) PP, (b) PS, and (c) PVC. End groups of these oligomer molecules (black atoms) are neglected in the COSMO-RS calculations (gray surfaces) to rep-
resent the chemical properties of longer polymer chains.
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in one predicted good solvent and one predicted non-solvent
for each polymer. We define good solvents of a polymer as sol-
vents with predicted solubilities >3 wt% and non-solvents as
those with predicted solubilities ≤3 wt%. For the experiments,
we prioritized common laboratory solvents to avoid concerns
of toxicity or safety.33

Table 3 summarizes the polymer–solvent systems and com-
pares solubilities measured experimentally and predicted com-
putationally. There are 2 experiments (nylon 6 and nylon 66 in
DMF) for which accurate solubilities could not be measured
due to the retention of the (good) solvent in the polymer.
These values thus qualitatively support the prediction of high
solubility, but numerical solubilities are not provided in the
table. Among the 14 systems that have available experimental
data points, 11 of them demonstrate good agreement between
computations and experiments with the average absolute
difference between predicted and experimental solubilities
equal to 1.3 wt%. Two systems (PP in THP and PS in THF)
have acceptable accuracy, as the computational predictions
correctly identify good/non-solvents but exhibit some devi-
ations from experimental data. Only 1 system (PET in DMF)
has a computational result that is qualitatively inconsistent
with the experiment. In this system, DMF was predicted to be
a good solvent for PET but proved to be a non-solvent experi-
mentally. However, we note that PET is known to be challen-
ging to dissolve and that it is possible that kinetic effects
associated with a slow rate of dissolution could inhibit accu-

rate solubility measurements.51,52 Overall, the experimental
verification of the database identified 11/14 good, 2/14 accep-
table, and 1/14 incorrect predictions. This overall good agree-
ment between computational and experimental solubilities
validates the suitability of the solubility database for further
investigation.

Analysis of polymer solubility trends

Based on the large-scale solubility prediction results, we next
analyzed the complete set of solvents to identify sets of good
and non-solvents for each polymer by rank-ordering predicted
solubilities. To provide heuristics regarding the feasibility of
dissolving different polymers, we first defined a set of “top”
solvents for each polymer. Here, we define the top solvents as
the top 5% of all solvents ranked by solubility. The statistics of
these solvents gives a general idea of the difficulty to dissolve
each polymer. Fig. 3 shows the distributions of polymer solubi-
lities in their top solvents at room temperature and at elevated
temperatures. As expected, polymer solubilities are mostly low
at room temperature and increase at higher temperatures.
Accordingly, dissolution-based recycling processes typically
dissolve the resins in a heated solvent and precipitate in a
cooled system.22 For example, Fig. 3 indicates that there are
very few good solvents for PE at room temperature but such
solvents are easy to identify at higher temperatures. As a com-
parison, PET, nylon 6 and nylon 66 have relatively low solubili-
ties even in their high-temperature top solvents. This compari-

Table 3 Experimental verification of solubility predictions. The solubility of each polymer is measured in a good solvent and a non-solvent (distin-
guished by a threshold of 3 wt% in predicted values). Among the 14 available test results, 11 computational predictions are in good agreement with
experimental data, 2 predictions are acceptable as they correctly identify good/non-solvents but have some deviations in solubility values (italics),
and 1 prediction is inconsistent with experiment (bold)

Polymer Good solvent T (°C) Pred solub (wt%) Expt solub (wt%) Non-solvent T (°C) Pred solub (wt%) Expt solub (wt%)

EVOH DMF 120 30.8 27.3 Acetone 55 0.2 0
PE Dodecane 120 32.5 30.1 Acetone 55 0.3 0
PP THP 87 20.9 6.4 Acetone 55 1.4 0
PS THF 25 14.0 24.4 2-Propanol 82 1.2 0.01
PET DMF 120 18.4 0.5 Acetone 55 0.7 0.01
PVC THP 87 17.9 14.7 Ethylene glycol 122 1.6 <0.46
Nylon 6 DMF 120 7.3 a Acetone 55 0.2 0.01
Nylon 66 DMF 120 4 a Acetone 55 0.1 0.01

aData unavailable due to solvent retention.

Table 2 Selected results from the solubility database. Each polymer–solvent system is studied at a room temperature (RT) and a higher temperature
(Th). Th is set as 1 °C lower than the boiling point of the solvent with an upper bound of 120 °C

Solvent Boiling point (°C)

Predicted polymer solubility (wt%)

EVOH PE PET PS PVC

RT Th RT Th RT Th RT Th RT Th

Methanol 64.6 0.0 0.8 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.8
Toluene 110.6 0.0 0.3 0.1 22.6 0.0 2.5 3.6 41.0 0.7 14.8
THF 65 0.1 0.9 0.1 1.7 0.0 0.8 14.0 31.3 8.9 19.1
Water 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Benzene 80 0.0 0.0 0.0 3.1 0.0 0.9 5.3 29.3 1.0 8.1
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son indicates that the dissolution of PET and nylons can be
challenging in general, and if possible, dissolution-based re-
cycling processes should be designed to avoid dissolving these
components. Indeed, we have recently developed STRAP pro-
cesses for multilayer plastic films containing PET which was
often the last in the separation sequence and thus was recov-
ered as a residual solid without being dissolved.11,22

The solubility database can also provide chemical heuristics
on polymer dissolution. To study the general relationship
between the molecular structures of polymers and solvents, we
analyzed the occurrence of different functional groups in the
top solvents of each polymer. For this comparison, we define
the top solvents of a polymer as those within the top 10% of
all solvents ranked by solubility while also having a minimum
solubility of 5 wt% at any temperature. The 5 wt% threshold is
to guarantee that the set of top solvents only includes solvents
with appreciable solubility values. We then performed func-
tional group analysis for these solvents based on their mole-
cular structures and assign each solvent to one or more classes

based on their functional groups. For example, toluene is con-
sidered to be part of the “aromatic” class and glycol is con-
sidered part of the “alcohol” class. This analysis was per-
formed with SMILES string representation of molecules and
SMARTS substructure matching syntax via RDKit.53–55

Table 4 summarizes the analysis of top solvent classes. We
first notice that the sets of top solvents for these polymers can
include a different number of solvents. PET, nylon 6 and nylon
66 have fewer top solvents than the other polymers, indicating
that the dissolution of these three polymers is generally more
challenging, which is consistent with our observations of
Fig. 3. The table also lists the top solvent classes and example
solvents for each polymer. Solvent classes are sorted by what
percentage of the top solvents are in each class; only solvent
classes that represent at least 10% of the top solvents are listed
in Table 4. The list of functional groups aligns with our chemi-
cal intuition of “like dissolves like” as many top solvent classes
share the same functional groups with the polymers. For
example, alcohol is the most common solvent class for EVOH,

Fig. 3 Polymer solubilities in their top 5% solvents at (a) room temperature (b) and elevated temperatures. The dataset for each polymer is displayed
as a box plot, which contains five horizontal lines that represent the minimum, lower quartile, median, upper quartile, and the maximum values. The
box denotes the range from lower quartile to higher quartile, which is the middle half of the dataset.

Table 4 Analysis of functional groups associated with the top solvents for each polymer. Top solvents are defined as those ranked within the top
10% of solvents ranked by solubility and with a minimum predicted solubility of at least 5 wt% at any temperature

Polymer EVOH PE PP PS PET PVC Nylon 6 Nylon 66

Number of
top solvents

100 100 100 100 95 100 84 49

Top solvent
classes

Alcohol Aromatic Aromatic Aromatic Aromatic Ether Aromatic Carboxylic acid

Amine Ester Alkane Ketone Amine Ketone Carboxylic acid Aromatic

Aromatic Ether Ketone Alkene Nitrile Alcohol Alkyl halide Nitrogen

Carboxylic acid Ketone Ether Ester Alkyl halide Amide Alcohol Alkene

Amide Alkene Alkene Ether Alkene Amine Alkyl halide

Ether Alkane Ester Sulfide

Example
solvents

Glycol Toluene p-Xylene Styrene 1-Naphthol 1,4-Dioxane 2-Chlorophenol Acrylic acid

Triethylamine Dibutyl ether Cycloheptane Toluene 3-Chloroaniline Ethoxyethanol Formic acid m-Cresol

Phenol 4-Heptanone 4-Heptanone Cyclohexanone Butyronitrile Cyclohexanone Chloroform Pyrrole
Octene Dibutyl ether
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which is a polymer with hydroxy groups; alkane and alkene are
top classes for PE and PP; and aromatic compounds are the
best for PS and PET. These solvent class rankings provide a
general solvent selection guide for polymer dissolution and
can also serve to guide the selection or design of new solvent
systems with tuned chemical moieties. However, we note that
these ranking results do not assert any absolute conclusion
such as which class is always better for dissolution, since
ranking classes by what percentage of the top solvents are in
each class is not sufficiently comprehensive. For example, the
aromatic class ranks quite high for multiple polymers, which
can be partially attributed to the fact that it is the most
common class (23%) in the solvent library.

Polymer separation sequence and solvent screening

A typical STRAP process employs a sequential series of solvent
washes with each solvent selected to selectively dissolve a
target polymer from the mixture. An important consideration
in designing such a process is the sequence in which polymers
are dissolved and separated because different separation
sequences for the same mixture of polymers lead to different
requirements for selectivity. For example, a STRAP process
involving sequential dissolution of each component of mixed
plastic waste containing 3 polymers can have 6 possible
sequences. As noted above, each sequence can impact the
selection of solvents (e.g., by leading to a small number of
possible options for sequences that target hard-to-dissolve
polymers first) and similarly influence process economics and
life cycle metrics.

To guide the design of dissolution-based plastic recycling
processes and automate solvent screening, we developed a tool
to generate all possible sequence and screen suitable solvents
for each solvent based on the computational solubility predic-
tions. Fig. 4 shows an example of generating separation
sequences for a polymer mixture containing PE, EVOH and
PET, which are the constituents of a multilayer plastic packa-
ging film studied in our previous work.11 The tool first gener-
ates all 6 possible separation sequences for the polymer
mixture under the assumption that only one polymer is to be
selectively dissolved in each step. It then provides ranked lists
of solvent candidates for all steps in all separation sequences.
For example, in the first separation sequence, EVOH is the first
polymer to be dissolved, PE is the second, and PET is then

recovered as a residual component that is not dissolved
because solvents for its dissolution are rare (Fig. 3). Step 1 of
this sequence requires a solvent that selectively dissolves
EVOH but not PE or PET and Step 2 requires a solvent that dis-
solves PE but not PET. A few top-ranked solvents for each of
these steps are shown in Fig. 4 as an example. This ranking is
based on the solubility difference between the target polymer
and other polymers; detailed criteria are available in the ESI.†
Each separation sequence has its own selectivity requirements
and therefore leads to different sets of eligible solvents. Some
separation sequences will have a wide range of solvent candi-
dates, while some sequences have few possible solvents (e.g.,
when a rarely soluble polymer like PET is the first in the
sequence). Our program can thus provide results as input for
process simulation and technoeconomic analysis to compare
and determine suitable separation sequences and selective sol-
vents. Below, we further demonstrate the applicability of this
tool in several experimental case studies.

Experimental case studies: separation of binary polymer
mixtures

To demonstrate the applicability of our computational
approaches in dissolution-based polymer recycling, we
perform case studies on the experimental separation of several
physical mixtures of polymers. These mixtures include PE/PS,
PVC/PET and a 3-component mixture of EVOH/PP/PET which
are representative of common real-world plastic products or
application scenarios. For example, PE/PS is the composition
of a commercial laminated plastic sheet,56 the PVC/PET
mixture represents a typical separation challenge in water
bottle recycling processes where PVC is often a contaminant in
PET,57,58 and EVOH/PP/PET can be made into a food packa-
ging material.59 We use physical mixtures for these case
studies to ensure that the system composition is controlled.
Our past studies of multilayer plastic packaging materials have
demonstrated that computational tools for solubility predic-
tion can be applied to more realistic plastic materials.11,22,23

We note that the time required for the dissolution of physical
mixtures may differ from that of manufactured plastic
materials (e.g., multilayer films) that may have components in
nanoscale contact, but we focus only on solubility as opposed
to dissolution kinetics in this work.

Fig. 4 An example of generating separation sequences for polymer mixtures.

Green Chemistry Paper

This journal is © The Royal Society of Chemistry 2023 Green Chem., 2023, 25, 4402–4414 | 4409

Pu
bl

is
he

d 
on

 0
9 

m
ei

 2
02

3.
 D

ow
nl

oa
de

d 
by

 F
ai

l O
pe

n 
on

 7
/0

5/
20

25
 9

:1
5:

00
. 

View Article Online

https://doi.org/10.1039/d3gc00404j


In these case studies, we first select solvents and dis-
solution temperatures for different mixtures and separation
sequences based on computational solubility predictions. To
achieve selective dissolution, solvents are selected to have a
high solubility for the target polymer and a low solubility for
the other polymers in the mixture. As in the prior validation
experiments, we preferentially select common laboratory sol-
vents (even if they are not optimal according to computational
predictions) to avoid concerns with toxicity. We then conduct
experiments to perform the separation of polymers. The separ-
ation result is evaluated by the yield and Fourier transform
infrared spectroscopy (FTIR) of virgin and recovered resins to
confirm resin purity.

The PE/PS mixture is separated in two different sequences.
In the first sequence (PE → PS), dodecane at 120 °C is used to
selectively dissolve PE but not PS. After 1 h of dissolution, the
solid PS is separated by filtering it from the liquid solution of
PE. Isopropyl alcohol is then added as a non-solvent (i.e., a
solvent with low predicted solubility for the target polymer) to
precipitate the PE. Fig. 5 shows photos and FTIR spectra of the

virgin and recovered resins. The physical morphologies of the
recovered resins change due to the dissolution and precipi-
tation processes, as shown in the photos; the PE resin changes
from pellets to flakes while the PS resin changes from a
powder to a chunk. However, the FTIR spectra of the recovered
resins are highly consistent with the virgin ones, indicating
that the chemical structures of the polymers remain unaffected
and that the recovered resins each contain a single polymer
component as expected. The yields of the recovered PE and PS
are 99.18% and 99.96%, respectively. In the other separation
sequence, ethyl acetate is used to selectively dissolve PS, and
isopropyl alcohol is used for precipitation. Changing the order
of dissolution leads to different yields of 100.21% of PE and
93.84% of PS (Table 5). FTIR analysis further indicates that the
recovered resins are similar to the virgin resins (ESI Fig. S3†).
This example shows how separation sequence impacts the per-
formance of the dissolution-based recycling process.

Similar experiments and analysis were performed for the
PVC/PET mixture. Only one separation sequence (PVC → PET)
was experimentally tested because the other sequence involves

Fig. 5 Results from the separation of physical mixtures of PE and PS via selective dissolution. The separation sequence is PE → PS. Dodecane at
120 °C is used to selectively dissolve PE. FTIR spectrum verified the purity of both recovered polymers.

Table 5 Results from all separation case studies. Additional FTIR spectra and images of resins before and after dissolution are reported in the ESI†

Polymer
mixture

Separation
sequence Selective solvent

Temperature
and time Precipitation Recovery yield

PE/PS PE → PS Dodecane (PE) 120 °C, 1 h Non-solvent: isopropyl
alcohol

PE: 99.18%; PS: 99.96%

PS → PE Ethyl acetate (PS) 75 °C, 20 min Non-solvent: isopropyl
alcohol

PE: 100.21%; PS: 93.84%

PVC/PET PVC → PET THF (PVC) 65 °C, 2 h Non-solvent: water PVC: 90.61%; PET: 94.25%
EVOH/PP/PET EVOH → PP → PET EG (EVOH); THP (PP) 120 °C, 1 h; 88 °C, 1.5 h Evaporation EVOH: 97.6%; PP: 78.3%;

PET: 100.95%
PP → EVOH → PET THP (PP); EG (EVOH) 88 °C, 1 h; 120 °C, 2 h Evaporation EVOH: 98.61%;

PP: 96.77%; PET: 94.23%
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the selective dissolution of PET, which has a very limited
number of solvent candidates, and most of them are quite
uncommon and hazardous (e.g., hexafluoro-2-propanol).
Table 5 summarizes the selected solvents and conditions with
corresponding photos and FTIR spectra available in the ESI.†
We obtain over 90% yield of both polymers using THF as a
selective solvent at a relatively low temperature (65 °C), which

eliminates concerns with thermal degradation and the pro-
duction of potentially hazardous products from PVC.60,61

Experimental case study: separation of ternary polymer
mixtures

For the 3-component mixture (EVOH/PP/PET), we first study
the separation sequence EVOH → PP → PET, in which ethylene
glycol (EG) is used as an EVOH-selective solvent in the first
step, then tetrahydropyran (THP) is used as the PP-selective
solvent in the second step. With this sequence, it was found
that the yield of PP is low (78.3%) and we observe an undis-
solved solid which clearly differs from the PET resin. Photos
and FTIR spectra of the undissolved solid are included in the
ESI.† The FTIR spectra suggest that the undissolved solid is a
mixture of PP and EVOH. We speculate that some EVOH and
PP agglomerate in the presence of EG at the first step and
remain undissolved throughout the remaining selective dis-
solution process. Therefore, a different separation sequence
(PP → EVOH → PET) was tested with the same solvents and
temperatures. In this sequence, PP is the first to be separated
to avoid its contact with EG. With this sequence, we observe
no undissolved solid and the yields for all three polymers are
excellent (>94%, Table 5). This example shows how unexpected
effects can arise during selective dissolution processes to
further demonstrate the value of assessing alternative separ-
ation sequences.

There are multiple other possible separation sequences for
this 3-polymer mixture EVOH/PP/PET. We did not test all
sequences experimentally, but instead propose some appli-
cable solvent selections here. Table 6 presents four more sep-
aration strategies for this polymer mixture. In these strategies,
we specifically focus on enabling temperature-controlled pre-
cipitation, in which a target polymer is dissolved at a high
temperature and precipitated at a low temperature (as opposed
to being precipitated through addition of a non-solvent).
Temperature-controlled precipitation has been shown to be
preferred in STRAP processes based on prior technoeconomic
analysis.17,22 We selected solvents from those that satisfy the
following rules: the predicted solubility of the polymer to be
dissolved must be greater than 5 wt% while the solubility of

Table 6 Examples of other possible separation strategies for PP/EVOH/
PET mixture. Selective solvents and the corresponding solubility predic-
tions are listed for 4 different separation sequences. Each solvent selec-
tively dissolves a target polymer at a high temperature and precipitates
the polymer at room temperature

Separation
sequence

Predicted solubilities

Solvent Polymer
T
(°C)

Solubility
(wt%)

EVOH → PET → PP Resorcinol EVOH 120 31.2
25 3.7

PET 120 2.2
PP 120 0.2

Pyrrole PET 120 15.8
25 0.1

PP 120 1.3
PP → PET → EVOH Cycloheptane PP 117 44.7

25 3.0
PET 117 0.0
EVOH 117 0.1

Methyl isothiocyanate PET 118 19.8
25 0.1

EVOH 118 1.6
PET → PP → EVOH Propionitrile PET 96 9.1

25 0.1
PP 96 1.4
EVOH 96 2.0

1-Octene PP 120 42.0
25 2.3

EVOH 120 0.1
PET → EVOH → PP Dibromomethane PET 96 6.9

25 0.4
EVOH 96 0.1
PP 96 0.5

DMSO EVOH 120 35.3
25 1.3

PP 120 1.7

Fig. 6 Schematic of a proposed separation process for the PP/EVOH/PET mixture using solvents and temperatures optimized for selective
dissolution.
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other polymers must be lower than 3 wt%, the difference in
the predicted solubilities must be greater than 5 wt% to
achieve selectivity, and the predicted solubility of the dissolved
polymer at room temperature must be 80% lower than its solu-
bility at high temperature to assure the feasibility of tempera-
ture-controlled precipitation. Fig. 6 provides an illustrative
example of the workflow of the first proposed separation strat-
egy, in which EVOH is first dissolved in resorcinol and PET is
then dissolved in pyrrole. These examples demonstrate the
capability of the computational methods to rapidly generate
potential separation sequences for further evaluation experi-
mentally or as input for further technoeconomic/life cycle
analysis.

Conclusions

In this work, we established a computational workflow for
guiding the design of dissolution-based polymer recycling pro-
cesses using large-scale, temperature-dependent polymer solu-
bility predictions. Our method integrates MD simulations, con-
formational sampling, COSMO-RS calculations, as well as
experimental calibration. Using MD simulations, we modeled
polymers as oligomers in dilute solution and selected repre-
sentative conformers from the resulting MD trajectories. These
conformers, along with an experimentally measured solubility
in a reference solvent, were input to COSMO-RS solid–liquid
equilibrium calculations to predict polymer solubilities in
numerous solvents. We established a solubility database for 8
polymers and 1007 solvents at multiple temperatures and
experimentally verified computational predictions for a
selected subset of systems. Based on the database, we studied
the relationship between polymers and their top solvents via
functional group analysis of solvent molecular structures. We
further developed a computational tool to automatically select
suitable solvents for sequential selective dissolution-based
plastic recycling processes (like the STRAP process) while eval-
uating all possible separation sequences. We demonstrated the
applicability of the method using multiple experimental case
studies in which physical mixtures of polymers were success-
fully separated via sequential selective dissolution. This com-
putational approach thus has promise for guiding the design
of STRAP processes for multicomponent plastic waste, and
could further be used to optimize existing STRAP processes by
selecting alternative solvents (e.g., green solvents).

While the approach in this work was demonstrated for
sequential selective dissolution processes in which only one
polymer was dissolved at each step, future work will continue
to develop a combinatorial optimization model that allows for
the dissolution of multiple polymers at a time in order to
search for the best separation sequence of a STRAP process.
The model will also account for factors such as the densities of
solvents and the percentage of each polymer in the waste
stream when considering challenges that may be faced while
scaling up dissolution-based processes. We will further
combine these models with technoeconomic analysis and life-

cycle assessment tools to evaluate the comprehensive impact
of solvents and identify tradeoffs between possible separation
sequences, which will facilitate the design of economically
feasible and environmentally friendly STRAP processes.
Finally, we envision further expanding the database to con-
sider new classes of green or designer solvents with potential
value in polymer dissolution, such as ionic liquids or deep
eutectic solvents.62,63
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