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Machine learning-assisted surface-enhanced
raman spectroscopy for the rapid determination of
the glutathione redox ratio†

Wilson A. Garuba, a Brian A. Barth,b Adam E. Imel c and Bhavya Sharma *a

Rapid and accurate detection of glutathione in its reduced (GSH) and oxidized (GSSG) forms is essential

for monitoring oxidative stress in biological systems. Oxidative stress is a key indicator of various diseases,

and glutathione plays a vital role in maintaining the balance between oxidative and anti-oxidative pro-

cesses. Surface-enhanced Raman spectroscopy (SERS) offers a highly sensitive and selective analytical

approach for detecting biomolecules. However, complex biological matrices and molecules with similar

chemical structure (such as GSH and GSSG) often result in overlapping vibrational signatures, making it chal-

lenging to quantify the GSH :GSSG ratio. To address this challenge, we integrated machine learning (ML)

algorithms with SERS to accurately quantify the GSH :GSSG ratio in aqueous solutions. Three machine learn-

ing algorithms – support vector regression (SVR), extreme gradient boosting (XGBoost), and multilayer percep-

tron (MLP) were trained and evaluated using preprocessed SERS spectra of mixtures of various GSH :GSSG

ratios. Among these models, MLP exhibits the highest accuracy and robustness with correlation coefficient for

the test set (Q2) value of 0.966. This study highlights a practical protocol for leveraging machine learning and

SERS to achieve rapid, and accurate determination of glutathione redox ratios.

Introduction

A key biomarker of neurological health is oxidative stress.
Oxidative stress is caused by the exposure of cells to reactive
oxygen species (ROS).1 ROS are free radicals produced during
intense biochemical and physiological processes. These processes
increase internally generated oxidants, which can lead to oxi-
dative damage.2 To protect against this oxidative damage, the
body utilizes reduced glutathione (GSH) as an antioxidant to sca-
venge the free radicals and protect the body from oxidative stress.
GSH is the most abundant non-protein thiol in cells. It is used in
many biochemical functions in the body, including protein and
DNA synthesis, detoxification, regulation of cellular proliferation
and apoptosis, and antioxidant defense.3–5 The chemical struc-
ture of GSH consists of three amino acids: cysteine, glutamic
acid, and glycine. The linkage of the γ-carboxyl group of gluta-
mate to the amino group of cysteine distinguishes this bond from
peptide bonds in proteins.

The synthesis and degradation of GSH are important bio-
chemical processes regulated by oxidative stress responses.
During this process, GSH is oxidized to the disulfide form,
GSSG, with the aid of an enzyme, glutathione peroxidase. The
GSH to GSSG (GSH : GSSG) ratio has been investigated as a bio-
marker for diagnosing various diseases, including diabetes,
Parkinson’s disease, Alzheimer’s disease, and a host of neuro-
degenerative diseases.6–9 Under normal conditions, this ratio
is greater than 100; in cases of oxidative stress, it can fall
below 10.10–12

Traditional analytical techniques such as high-performance
liquid chromatography (HPLC),13 liquid chromatography-
tandem mass spectrometry,14 capillary electrophoresis,15 and
UV/vis spectrometry16 are generally used to determine the
GSH : GSSG ratio. While these methods have provided accurate
results, they are limited by multi-step sample preparation and
derivatization. For example, a general protocol for determining
this ratio requires masking agents such as N-ethylmaleimide
and 2-vinyl pyridine to mask GSH from a sample of total gluta-
thione before calculating the ratio. Alternatively, flow cytome-
try has been used to quantify GSH in blood cells.17 This
method involves the incorporation of fluorescence dyes that
strongly bind to the –SH group in GSH. Several fluorescence
dyes were assessed for glutathione staining, with monobromo-
bimane demonstrating the most significant potential for
human cell staining. However, monobromobimane can bind
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to other molecules besides GSH, thereby complicating the
ratio of GSH : GSSG measured. Here, we discuss the combi-
nation of machine learning (ML) and surface-enhanced
Raman spectroscopy (SERS) to address the need for a rapid,
highly specific and sensitive method for measuring the gluta-
thione redox ratio.

GSH has previously been detected with SERS.18–22 Here, we
introduce the use of gold core silver shell nanoparticles
(Au@AgNPs) as the SERS substrate for the SERS spectra of
various GSH : GSSG ratios in aqueous solutions. The enhance-
ment in the analytical signal due to the metal nanostructures
can be quantified using the analytical enhancement factor
(AEF), defined by the ratio of SERS intensity to the normal
Raman intensity, normalized by the respective concen-
trations.23 EF is used to characterize the enhancement capa-
bilities of plasmonic materials and largely depends on the
material’s shape, size, and composition. While single metal
nanoparticles provide high EFs, bimetallic core–shell plasmo-
nic nanoparticles have been reported to demonstrate signifi-
cantly improved optical, electrical, and magnetic
properties.24–26 The SERS spectra were pre-processed prior to
training the machine learning models. The pre-processed
SERS spectra were then tested with three ML algorithms, SVR,
XGBoost, and MLP. To the best of our knowledge, this work
reports, for the first time, the application of machine learning
and SERS for determining the glutathione redox ratio.

Experimental methods
Materials

Tetrachloroauric(III) acid trihydrate (AuCl4), trisodium citrate
dihydrate (99%), L(+)-ascorbic acid (99%), L-glutathione,
and glutathione disulfide were all purchased from Fischer
Scientific. All glassware was cleaned with aqua regia and de-
ionized (DI) water (18.2 MΩ cm) before use. DI water was also
used in all syntheses and sample preparation.

Synthesis of SERS substrates

Previous work in our group established the suitability of
60 nm AuNPs for SERS enhancements of neurochemicals.27–30

In this work, we compared the enhancement ability of two
SERS substrates: 60 nm gold nanoparticles (AuNPs) and gold
core-silver shell nanoparticles (Au@AgNPs). AuNPs and
Au@AgNPs were synthesized using a citrate reduction method.
For the AuNPs, 5 mg of HAuCl4 was dissolved in 50 mL of de-
ionized water (DI water), and the solution was brought to a
boil. Subsequently, 350 µL of a 1% (w/v) sodium citrate solu-
tion was added while stirring continuously for approximately
5 minutes. This led to a reddish color, indicating the success-
ful synthesis of AuNPs with an average diameter of 60 nm. To
synthesize the Au@AgNPs, 30 nm gold core nanoparticles were
prepared using the same citrate reduction method, with
615 µL of 1% (w/v) citrate solution as the reducing agent. To
form a silver shell around the gold cores, 3 mL of 0.1 M
ascorbic acid (AA) was added to 20 mL of the gold core nano-

particle solution, followed by the gradual addition of 16 mL of
1 mM AgNO3. The solution was centrifuged at 5000 rpm for
15 minutes to obtain the core–shell nanoparticles.

Nanoparticle characterization

To test for their SERS activity, 2 mL aliquots of both the AuNP
and Au@AgNP solutions were centrifuged (AuNPs at 4200 rpm
and Au@AgNPs at 5000 rpm), and the collected pellets were
each tested using 200 µL of 2 mM GSH and GSSG solutions.
The Au@AgNPs demonstrated enhanced SERS activity com-
pared to the 60 nm AuNPs, making them more suitable for
subsequent mixture experiments. The synthesized colloidal
solutions were characterized using UV-visible extinction spec-
troscopy (Cary 5000, Agilent) to confirm their optical pro-
perties, and transmission electron microscopy (TEM, JEOL
JEM-1400 Flash, 0.2 nm lateral resolution) was employed to
analyze the morphology, core nanoparticle diameter, and
silver shell thickness of the Au@AgNPs.

To further characterize the size distributions of the as-pre-
pared nanoparticles, we employed dynamic light scattering
(DLS) and small-angle X-ray scattering (SAXS). DLS measure-
ments were performed on a Litesizer DLS 500 system (Anton
Paar) equipped with a 40 mW, 658 nm semiconductor laser
diode. SAXS experiments were performed using the Xenocs
Xeuss 3.0 instrument at the University of Tennessee–Knoxville
Polymer Characterization Laboratory. Suspensions of AuNPs
and Au@AgNPs were analysed at a detector distance of
900 mm from the sample, providing access to a scattering
vector range of q ≈ 0.01–0.1 Å−1 using 1.54 Å X-rays. Data were
acquired with a collection time of 600 s for each sample.
Borosilicate glass capillaries (1.5 mm outer diameter) were
used for all measurements. Scattering curve model fitting was
conducted using SasView 6.0.0 (https://www.sasview.org/), an
open-source scattering analysis software. Sphere models were
applied to Au nanoparticles, while core–shell sphere models
were used for Au core–Ag shell particles. The sphere model
assumes a single scattering length density (SLD) for the nano-
particle core, while the core–shell sphere model includes a
core surrounded by a shell with a different SLD. Both core and
shell SLDs, as was the shell thickness, were allowed to vary
during fitting. Size polydispersity was also incorporated to esti-
mate nanoparticle size distributions. Detailed fitting para-
meters and theoretical descriptions are provided in the
SasView 6.0.0 documentation.

Sample preparation

Under normal physiological conditions, the ratio of GSH to
GSSG is typically above 100, whereas, under oxidative stress,
this ratio drops to less than 10. Based on these conditions, we
prepared duplicate samples with glutathione ratios ranging
from normal to oxidative stress levels, specifically at 1 : 1, 5 : 1,
10 : 1, 15 : 1, 20 : 1, 25 : 1, 30 : 1, 35 : 1, 40 : 1, 45 : 1, 50 : 1, 55 : 1,
60 : 1, 65 : 1, 70 : 1, 75 : 1, 80 : 1, 85 : 1, 90 : 1, 95 : 1 and 100 : 1.
We prepared 2 mM solutions of GSH and GSSG. Au@AgNPs
(2 mL) were centrifuged at 5000 rpm, the excess solution was
removed, and the pellet combined with 200 µL the prepared
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solutions for each ratio. SERS spectra of these prepared
samples were collected immediately.

Data collection

SERS spectra were collected using a homebuilt confocal Raman
microscope. A 785 nm diode laser produced the excitation wave-
length (IPS lasers). This light was directed into an inverted
Nikon Ti-U microscope with a 40× objective (Nikon, NA 0.60).
The 180° backscattered Raman light was collected through the
same objective and then directed through a dichroic mirror
(Chroma Technology Corporation). The Raman scattered light is
directed through a Razor Edge long-pass filter (Semrock) to the
100 µm slit of an IsoPlane SCT-320 spectrometer (Princeton
Instruments), where the light is dispersed and detected with a
PIXIS 400 CCD camera (Princeton Instruments). Spectra were
collected using 10 seconds acquisition times.

Pre-processing SERS spectra

SERS spectra were pre-processed utilizing functions available
in Python open-source libraries. Baseline correction was per-
formed using the penalized spline version of the asymmetri-
cally reweighted penalized least squares (arPLS) algorithm,
improving the visibility of the Raman spectral features of inter-
est. A Savitzky–Golay filter was implemented for spectral
smoothing, as shown in Fig. 1. SERS spectra were truncated
from 400–1600 cm−1 to 400–800 cm−1 to focus on the wave-
number region of the spectra relevant to GSH and GSSG. We
also implemented and compared the effect of standardizing
and normalizing algorithms on the performance of our
models. Standard normal variate (SNV) scales the spectra with
a mean of 0 and a standard deviation of 1, and max–min
scaling works by scaling the data to 0 and 1.

Machine learning models

Machine learning (ML) algorithms analyse and identify pat-
terns in complex datasets. ML algorithms such as support
vector machines (SVM), tree-based algorithms such as

Random Forest (RF), extreme gradient boosting (XGBoost),
unsupervised ML algorithms like principal component ana-
lysis (PCA), t-distributed stochastic neighbour embedding
(t-SNE) and neural networks, such as multilayer perceptron
(MLP) or convolutional neural networks (CNN), can be
adapted for analysis of Raman spectra. These models can also
be combined to improve model accuracy and reduces overfit-
ting of data. For example, PCA-SVM was implemented to clas-
sify breast cancer31 and in artificial cerebrospinal fluid, the
SERS spectra of dopamine was differentiated from DOPAC, one
of its metabolites, in mixtures.30

Here, we incorporated three regression models capable of
analysing Raman spectra and predicting the ratio of GSH to
GSSG in aqueous solutions. These models are support vector
regression (SVR),32 extreme gradient boosting (XGBoost),33 and
a feedforward artificial neural network called multilayer per-
ceptron (MLP).34 While MLP is often considered a generic
neural network, it can be optimized for specialized tasks par-
ticularly when data, such as SERS spectra, are continuous.
Here, the MLP was chosen over more complex neural networks
because while it is simpler, it is more suitable for regression
analysis. These models will be used to estimate quantitative
outcomes based on the spectral features observed in Raman
spectral data. The models were carefully selected based on the
size of our dataset and the available computational resources.
Unlike deep learning models that require large datasets (for
example, 10 s of thousands of spectra) and are computationally
expensive, these selected models are computationally efficient
and learn complex relationships from smaller datasets.

To ensure robust generalization capabilities of the SVR
model for unseen data, we carefully selected the appropriate
kernel, tolerance levels (ε), and the regularization parameter C.
The kernel was manually selected after evaluating several
options, including linear, polynomial, and radial basis func-
tion (RBF) kernels, to identify the one that provided the best
performance. Then, cross-validation was employed with
GridSearchCV to fine-tune the tolerance level (ε) and the regu-
larization parameter C, optimizing the trade-off between the
model’s sensitivity, error margin, and ability to avoid overfit-
ting. This comprehensive approach ensured the model per-
formed well during the training and inference phases,
enabling effective generalization to new, unseen data.35

XGBoost, a powerful ensemble machine learning and
specialized decision tree method, was also implemented in
this study. It operates within the gradient boosting framework,
sequentially optimizing multiple weak models into a robust
predictive model. We developed the XGBoost regression algor-
ithm in a Jupyter Notebook alongside the SVR model. We sys-
tematically searched key hyperparameters to optimize the
XGBoost model’s performance, including the maximum depth
of decision trees, the number of trees in the ensemble, and
the learning rate. GridSearchCV was also employed to identify
the optimal combination of parameters, ensuring the best
possible predictive performance.

For the Multilayer Perceptron (MLP), a feedforward artificial
neural network used for a wide range of machine learning

Fig. 1 Pre-processing of Raman spectra using Python 3.12.0. Baseline
correction was performed using the penalized spline version of the
asymmetrically reweighted penalized least squares (arPLS) algorithm.
Savitzky–Golay filtering was applied for denoising, and cosmic ray
removal was achieved using the zap function implemented with SciPy.
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tasks, we utilized the scikit-learn library (Python 3.12.0) to
build the model within the same Jupyter Notebook as the SVR.
The hyperbolic tangent (tanh) function was chosen as the acti-
vation function because it converged more rapidly and with
better accuracy than other functions such as the rectified
linear unit function (ReLU) for this application. We employed
GridSearchCV to iterate over various values for each hyperpara-
meter, as detailed in Table 1, to select the optimal configur-
ation for the MLP model.

Performance evaluations

The SERS spectral dataset includes over 2000 SERS spectra, with
approximately 100 SERS spectra collected for each mixture ratio.
The SERS spectra of selected mixture ratios (5 : 1, 25 : 1, 45 : 1,
65 : 1, 85 : 1, and 95 : 1) were separated out for testing, while the
models were trained with the remaining data. SERS spectra of
the first and last ratio (1 : 1 and 100 : 1) were strategically
included in the training data to avoid extrapolation during
evaluation. The training set was used to train the models
employing K-fold cross-validation (K = 5) to optimize the per-
formance. The trained models were then evaluated using the
independent test set. We evaluated the performance of the opti-
mized model using the coefficient of determination (R2) and
root mean square error (RMSE) metrics. R2 measures the pro-
portion of the variance in the dependent variable that is predict-
able from the independent variable. The RMSE measures the
mean error between the actual and predicted values. The
equations for both metrics are shown below.

R2 ¼ 1�
Pn
i¼1

ðyi � ŷiÞ2

Pn
i¼1

ðyi � ȳÞ2
ð1Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

ðyi � ŷiÞ2

n

vuuut ð2Þ

where yi is the actual value, ŷi is the predicted value,(y)̅ is the
mean of the actual value, and n is the number of observations.

Results and discussion

Model generalization, reduced overfitting, and high accuracy
are the primary benchmarks for evaluating the performance of
ML models. The model needs to be trained with high-quality

data to achieve this. To this end, we synthesized two SERS sub-
strates, 60 nm gold nanoparticles (AuNPs) and a 30 nm AuNP
coated with Ag shell (Au@AgNPs). AuNPs are widely used for
SERS because of their relative stability and tunability; however,
they provide a lower enhancement than Ag, which provides a
stronger localized surface plasmon resonance (LSPR) effect in
the visible region of electromagnetic fields. With the
Au@AgNPs, we utilized the combined advantages of both plas-
monic metals, the stability of the AuNPs with the higher
enhancement of silver. ESI Fig. 1A† shows the LSPR spectra of
three SERS substrates, AuNPs (30 nm diameter), AuNPs (60 nm
diameter) and Au@AgNPs. The maximum LSPR peak of the
Au@AgNPs is at λmax = 409 nm with a shoulder at approxi-
mately 500 nm, which arises from the gold core. The gold core
LSPR λmax blue-shifts in the core–shell system from the LSPR
λmax = 531 nm of the 30 nm Au core. In ESI Fig. 1B,† the TEM
image of the as-prepared Au@AgNPs is shown, with a higher
resolution TEM image (ESI Fig. 1C†), that shows the silver
shell (∼10 nm) surrounding the Au core. We compared the
SERS activity of the Au@AgNPs with 60 nm AuNPs to deter-
mine which substrate provides Raman spectra with a higher
signal-to-noise ratio (SNR).

DLS and SAXS results align closely with the expected sizes
of the Au core and bimetallic nanoparticles, as shown in
Table 2. Using a spherical model, SAXS analysis estimated the
Au nanoparticle diameter (dNP) at 29.8 nm with a polydisper-
sity of 20%. Adopting a core–shell model for the bimetallic
nanoparticles yielded a core–shell diameter (dNP) of 37.4 nm
with a shell thickness of 8.0 nm, with polydispersities of 22%
for the core and 56% for the core–shell. DLS measurements
further corroborated these findings, indicating diameters of
27.3 nm for the Au core and 36.1 nm for the Au@Ag nano-
particles, accompanied by polydispersities of 27.8% and
26.1%, respectively. The zeta potential shifted from −24.8 mV
for the Au core to −31.7 mV after Ag deposition, suggesting
improved colloidal stability in the bimetallic nanoparticles.

Table 1 Model hyperparameters are optimized via a comprehensive grid search (GridSearchCV) to determine the optimal values from a predefined
range, ensuring robust model performance

SVR XGB MLP

Regularization parameter, C: 1000 Number of trees: 500 Number of hidden layers :3
Epsilon, ε: 0.1 Max. depth: 6 Hidden layer sizes: 50, 50, 30
Gamma, γ: 0.1 Learning rate: 0.1 Activation function: tanh
Kernel: RBF Optimizer: Adam

Learning rate: adaptive

Table 2 Nanoparticle characterization data

Nanoparticle
Type

Methods

LSPR
(λmax,nm)

DLS dNP
(nm)

SAXS dNP
(nm)

Zeta potential
(mV)

AuNPs 535 27.3 29.8 −24.8
Au@AgNPs 409 (shell) 36.1 37.4 −31.7

500 (core)
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Representative DLS and SAXS data plots are provided in ESI
Fig. 2.†

For the measurements of GSH : GSSG, we first collected
individual SERS spectra of GSH and GSSG to identify their dis-
tinctive spectral features (Fig. 2). We compared the SERS
spectra of GSH and GSSG collected with the 60 nm AuNPs
(green and red) to those collected with the Au@AgNPs (purple
and blue). The core–shell nanoparticles resulted in higher
signal-to-noise SERS spectra. In the SERS spectrum of GSSG,
the 503 cm−1 Raman band arises from the S–S stretching
vibration, which is the primary characteristic peak of the di-
sulfide bond. The SERS spectrum of GSH shows two promi-
nent Raman bands at 647 cm−1 and 720 cm−1. The band at
647 cm−1 is attributed to the vibrational modes of the sulphur
atom in the cysteine (Cys) residue, specifically the C–S stretch-
ing mode. The 720 cm−1 band in GSH is associated with the
deformation of the –COO− group. In GSSG, the disulfide bond
formation significantly alters the molecular geometry. This dis-
ulphide linkage restricts the conformational freedom of the
molecule, which can affect the vibrations of the –COO−

groups, preventing them from undergoing changes in struc-
ture in the same manner as in GSH. This alteration can reduce
the intensity of the –COO− deformation mode or shift its fre-
quency, making it less prominent.36,37 Other prominent peak

assignments are shown in Table 3. The spectral differences
between GSH and GSSG provide the basis for distinguishing
varying ratios of their mixtures. Before model training, the
spectra were truncated to the 400–800 cm−1 range to focus on
the informative regions of the spectral range.

To validate this approach, we performed Principal
Component Analysis (PCA) on the entire dataset to identify the
major contributors to the variation (ESI3†). The results show
that the first principal component (PC1), which arises from
the 647 cm−1 and 720 cm−1 bands, strongly correlates with the
GSH : GSSG ratio.

Machine learning models for predicting GSH : GSSG ratios

Selecting an appropriate pre-processing strategy can signifi-
cantly improve model performance. These datasets were sub-
jected to a pre-processing strategy, which included background
subtraction, smoothing, and removing cosmic rays. The base-
line removal and smoothing steps used were essential in
removing the background and increasing the signal-to-noise
ratio of the datasets. Normalizing Raman spectra reduces data
variability arising from fluctuations in experimental conditions
and instrumental differences. Max–min scaling (normaliza-
tion) effectively reduces intensity variations, allowing for a
direct comparison of spectral features between the glutathione
redox couple molecules, substantially improving model per-

Table 4 Machine learning model performance for predicting
GSH : GSSG ratios before applying dimensionality reduction. MLP
achieved the highest accuracy (Q2 = 0.966, RMSE = 5.220)

Model Q2 RMSE

SVR 0.939 6.970
XGB 0.951 6.230
MLP 0.966 5.220

Fig. 2 SERS spectra of pure GSH and GSSG with the 60 nm AuNP and
the Au@AgNPs. The dominant peaks for GSH and GSSG are 503 cm−1

and 720 cm−1, respectively.

Table 3 SERS peak positions and assignments for GSH and GSSG

GSH GSSG Peak assignments

503 –S–S– stretch
527 N–C–C deformation
625, 644 647 –C–S– stretch
720 –COO– deformation
790 786 –COO– bend
909 910 –C–COO– stretch
1010 1008 –C–C– stretch
1242 1251 Amide III
1378, 1413 1392 –COO– stretch

Fig. 3 A plot of training and test root mean squared error (RMSE)
versus the number of iterations for an MLP. The errors drop sharply in
the first few iterations and then stabilize, indicating successful model
convergence.
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formance. Contrarily, our findings suggest that SNV (standard-
ization) may degrade the ML performance of Raman spectra of
glutathione, potentially leading to information loss and
reduced model accuracy (ESI4†). This is because SNV which

works by subtracting the data by their mean (0) and dividing
with a standard deviation of one (1) may alter the proportional
difference between peak intensities. Peaks with higher intensi-
ties may become lower and vice versa. This consequently mask
features that can contribute to model predictions.38

We trained and tested the models with the normalized data-
sets. The max–min normalization was applied to scale the
intensities to a range of 0 and 1. Table 4 presents the corre-
lation coefficient for the test sets (Q2) and the RMSE values.
While all the models perform relatively well, the MLP performs
better with a Q2 value of 0.966 and RMSE of 5.22.

Hyperparameters tuning and model optimization

Hyperparameter optimization is important in ensuring gener-
alizability and preventing overfitting machine learning
models. We employed the GridSearchCV algorithm to systema-
tically search a predefined range of hyperparameter values and
identify the optimal combination that yields maximum accu-
racy. This approach enables the development of robust and
high-performing models. For example, Table 1 presents the
optimal regularization parameter (C = 1000) for the SVR
model, selected from a range of values to achieve optimal per-
formance. Fig. 3 displays the iteration versus RMSE plot for the
MLP model.

Determining GSH : GSSG ratios

The three models demonstrated robust generalization when
tested on the unseen test data. The MLP model shows an
improved performance with an Q2 of 0.966. This can be
attributed to MLP’s ability to more effectively capture
complex non-linear relationships with the datasets. The
linear regression plot (Fig. 4) provides a visual representation
of the predictive performance of the models, confirming the
reliability of the application of ML for determining the
GSH : GSSG ratio.

Conclusions

We successfully developed and validated novel methods by
combining SERS and ML for determining the glutathione
redox ratio, an important biomarker for assessing oxidative
stress. Our results demonstrated bimetallic SERS substrates,
with the gold core silver shell (Au@AgNPs), produce Raman
scattering signals with significantly higher signal-to-noise
ratios (SNR) compared to gold nanoparticles (AuNPs). Also, we
highlighted the importance of appropriate pre-processing
strategies to improve the performance of ML models. By har-
nessing the strengths of three ML algorithms – SVR, XGBoost,
and MLP – we established a rapid and accurate approach
for quantifying reduced (GSH) and oxidized (GSSG) gluta-
thione. Notably, MLP demonstrated superior performance in
terms of generalization and accuracy. This methodology offers
a promising tool for assessing oxidative stress and holds
potential for applications in various fields, including mole-
cular diagnostics.

Fig. 4 Experimental vs. predicted ratios for three regression models—
SVR, XGBoost, and MLP—each plotted with a dashed line representing
perfect prediction. The MLP achieves the highest Q2 (0.966), outper-
forming XGBoost (Q2 = 0.951) and SVR (Q2 = 0.939).
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