View Article Online

Journal of Materials Chemistry A

Materials for energy and sustainability

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: S. Kumar, S. M. Zain Mehdi, M. Taunk, S. Kumar, A. Aherwar, S. Singh and T. Singh, *J. Mater. Chem. A*, 2025, DOI: 10.1039/D4TA08094G.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/materials-a

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Synergistic Impacts on Properties, Stability, and Applications of MXenes via Polymer Integration

Sunil Kumar^{#*1}, Syed Muhammad Zain Mehdi^{#1,2}, Manish Taunk³, Sanjeev Kumar³, Amit Aherwar⁴, Sudhanshu Singh5, Tej Singh⁶

¹Department of Nanotechnology and Advanced Materials Engineering and HMC, Sejong University, Seoul-05006, South Korea

²School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea

³Department of Physics, Chandigarh University, Gharuan, Mohali-140413, India ⁴³Department of Mechanical Engineering, School of Automobile, Mechanical & Mechatronics Engineering, Manipal University, Jaipur 303007, India

⁵Department of Computer Science and Engineering, Parul University, Vadodara, Gujarat, 391760, India.

⁶Savaria Institute of Technology, Faculty of Informatics, ELTE Eötvös Loránd University, Szombathely 9700, Hungary

> *Corresponding author: skumar@sejong.ac.kr (Sunil Kumar) #Equal 1st authors/ Equal contribution

Abstract

MXenes are known for their exceptionally high electrical conductivity, mechanical resilience, and 18 19 versatile surface chemistry. However, these tend to oxidize under ambient conditions, posing a 20 major hurdle in their performance in various applications. Contrary to these, polymers are mostly 21 stable under ambient conditions, making these ideal materials to combine with MXenes to create 22 MXene-polymer nanocomposites with enhanced higher stability against oxidation and improving 23 MXenes functionality. This synergy can also enhance the mechanical strength, thermal stability, surface properties, and other characteristics of MXenes improving the overall performance of 24 25 MXenes. This review focuses on the role of polymers in improving the properties of MXenes and 26 mitigating their oxidation under various conditions. Polymers serve as protective barriers and 27 improve interfacial interactions, maintaining various properties of MXenes for longer periods. The 28 review also highlights MXene-polymer nanocomposite fabrication techniques, like solution 29 blending, layer-by-layer assembly, in-situ polymerization, electrospinning, etc., for their effective 30 integration. The review also explores MXene-polymer nanocomposite applications in different 31 areas, including energy storage devices, electronics, sensors, filtration membranes, biomedical 32 applications, etc. Finally, the review also outlines various challenges and opportunities in 33 synthesizing MXene-polymer nanocomposites for diverse applications, emphasizing the potential 34 of MXene-polymer synergy to open new opportunities in future hybrid materials.

Keywords: MXene; Polymer nanocomposites; Oxidation stability; Synthesis strategies;
Synergistic effects; Applications.

1. Introduction

1

2 Nanocomposites have been identified as a promising way to meet the growing global demands in various sectors including energy. The combination of nanoparticles, nanofillers, and a polymer 3 4 matrix material leads to improved properties like strength, conductivity, catalytic activity, etc. in 5 these materials¹. The potential of nanocomposites lies in their ability to revolutionize energy storage, conversion, and transportation technologies, which can offer more efficient and 6 7 sustainable solutions for the future². Polymers are the most popular for nanocomposite synthesis due to their versatility, easy processing, and ability to incorporate various nanofillers³. Different 8 9 materials can be used as filler for the synthesis of polymers-based nanocomposites⁴. In this perspective, 2D MXenes are now recognized as a promising candidate⁵. MXenes originate from 10 MAX phases, which are compounds of transition metals, by undergoing an etching process using 11 HF or LiF/HCl acids⁶. Following the etching process, the A component is removed from the MAX 12 phases, and the resulting MXenes are thoroughly washed with DI water. MXenes possess surface 13 terminal groups such as -OH, -O, -Cl, or -F, and are commonly denoted as $M_{n+1}X_nT_x$, where M 14 denotes a transition metal element, X typically denotes carbon/nitrogen/carbonitrides, and T_x 15 16 represents surface functionalities as terminal groups⁷.

MXenes have remarkable features such as high electrical conductivity^{8, 9}, hydrophilicity¹⁰, 17 electrochemical characteristics^{11, 12}, adjustable band gap^{13, 14}, and substantial surface area¹⁵. These 18 characteristics make MXenes versatile materials having applications in fields such as energy 19 storage^{8, 11, 15, 16-18}, fuel cells^{19, 20}, photodetectors^{14, 21}, sensors²², conductive ink²³, 3D printing^{24, 25}, 20 ²⁶, smart windows²⁷, electromagnetic interference (EMI)^{28, 29}, etc. Ti₃C₂T_x MXene stands out as 21 22 the most widely recognized member of the MXene family. High electrical conductivity, tailored 23 surface, thermal stability, mechanical strength, etc. make it the favorite member of the MXene family. In addition to Ti₃C₂T_x, the MXene family includes other potential members, such as 24 $Ti_2CT_x^{30}$, $V_2CT_x^{18, 31, 32}$, $Nb_2CT_x^{33}$, etc. These MXenes, each having unique characteristics, offer a 25 wide range of properties useful in diverse potential applications³⁴. MXenes, including Ti₂C, V₂C, 26 27 Nb₂C, Mo₂TiC₂, and Mo₂Ti₂C₃, showcase distinctive characteristics distinguishing them from the 28 widely studied Ti₃C₂. For example, Ti₂C has thinner layers, offering a slightly larger bandgap and rapid ion transport, making it suitable for photothermal therapy³⁵, energy storage applications³⁶, 29 electrocatalysts for water splitting37, etc. V2C demonstrates Superior redox properties due to the 30

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54. BY-NC

variable oxidation states of vanadium, improving its performance in pseudo capacitors and 1 catalytic reactions³⁸. Similarly, Nb₂C is known for its superior electrochemical durability in 2 3 aqueous and organic electrolytes, making it highly suitable for robust energy storage^{39, 40}, and photocatalytic applications⁴¹. Additionally, Nb₂C MXene demonstrates good electrical 4 conductivity and improved wettability, attributed to its lower Fermi energy level relative to 5 $Ti_3C_2^{39}$. In the case of dual-transition metal MXenes (M₂'M"C₂), structurally stable Mo₂TiC₂ 6 combines the enhanced catalytic performance of Mo with the structural integrity of Ti, offering 7 8 improved HER/OER performance⁴² and N₂ reduction reaction activity⁴³. Similarly, Mo₂Ti₂C₃, 9 with its thicker multilayer structure, offers tunable conductivity and thermal stability, positioning 10 it as a promising material for thermal management and electronics. Mo₂Ti₂C₃ MXene manifests elevated photothermal conversion efficiency due to its substantial optical absorption across a wide 11 12 spectral range, and layered structure, which facilitates efficient heat transfer and energy dissipation⁴⁴. Partially oxidized Mo₂Ti₂C₃ MXene has demonstrated significant potential for 13 14 energy storage applications due to its enhanced electrochemical properties and structural stability⁴⁵. 15

MXenes boast various remarkable properties, however, these are vulnerable to oxidative 16 degradation when exposed to ambient conditions or during processing, which restricts their 17 practical application⁴⁶. Therefore, enhancing oxidation stability is crucial for their broader 18 19 adoption in real-world uses. Various methods have been proposed to enhance the oxidation stability of MXenes. These methods include storing MXenes at low temperatures in Ar 20 21 atmosphere⁴⁷, or in eutectic solvents⁴⁸, using sodium L-ascorbate⁴⁹, or integrating MXenes into polymer blends^{50, 51}. The use of polyanions for preservation has shown promising results in 22 23 minimizing the MXenes oxidation, as this process usually begins at the edges of the material⁵². 24 MXenes treated with antioxidants have demonstrated better stability under ambient conditions, 25 allowing their use in energy storage applications for more than 80 days⁵³. Among these approaches, MXene-polymer hybrids or nanocomposites stand out most favorably as they provide 26 27 various functionalities to these hybrid materials. However, the techniques of passivation or 28 blending may lead to decreased electrical conductivity compared to pure MXenes.

Polymers are recognized for their outstanding capability to be processed and shaped. Incorporating
 MXenes into polymers can enhance and customize their characteristics for particular uses. MXene-

23

polymer nanocomposites can improve mechanical attributes, including flexibility, tensile strength, 1 and toughness^{54, 55}. MXenes are prone to oxidation and deterioration in typical environmental 2 3 conditions⁵⁶ but polymers can form a protective barrier around the MXene flakes, which increases their stability against oxidation^{50, 51}. Additionally, the polymers mixed with MXenes provide 4 numerous possibilities for functionalization and alteration⁵⁷. MXene-polymer nanocomposites 5 have found applications in flexible electronics^{24, 58-60}, self-healing sensors⁶¹, 3D printing⁶²⁻⁶⁴, 6 energy storage^{50, 65}, anti-corrosion^{66, 67}, fire retardants⁶⁸, water purification/treatment⁶⁹⁻⁷¹, solar 7 cells^{72, 73}, and antibacterial applications⁷⁴⁻⁷⁶. 8

9 MXene-polymer nanocomposites can be prepared using methods, such as solution casting^{68, 77}, solution blending⁷⁸, electrospinning^{79, 80}, in-situ polymerization^{81, 82}, thin film coatings or polymer 10 lamination⁵⁰ or fibers^{83, 84}, etc. Some of the popular polymers which are hybridized with MXene 11 Polydimethylsiloxane 12 include polyvinyl alcohol (PVA)⁸⁵, (PDMS)⁸⁶, poly(3,4ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)^{87, 88}, polyaniline (PANI)⁸⁹, 13 polypyrrole (PPy)⁹⁰, etc. The polymers can serve as intercalants or spacers within MXene-polymer 14 nanocomposites^{16, 91}. 15

Some earlier reviews on MXene-polymer composites are available; however, these primarily focus on synthesis and general applications^{92, 93}, or the role of MXenes as fillers⁹⁴, and a few are outdated⁹⁵. This article uniquely highlights the synergistic effects of MXene-polymer integration, showcasing enhancements in mechanical strength, conductivity, and thermal stability. By emphasizing these synergistic effects and the latest advancements, this review provides a comprehensive and up-to-date perspective on their advanced applications, filling the gaps left by previous studies.

2. MXenes synthesis

The synthesis of 2D MXenes was first achieved in 2011 by etching Ti_3AlC_2 using a highly concentrated acid. This top-down approach involves removing the "A" layer from the MAX phases. A strong acid like HF effectively breaks the M-A metallic bond leading to the formation of layered MXene structures. The reaction mechanism of selective etching using HF is as follows⁹⁶:

29 $M_{n+1}AX_n + 3HF \rightarrow M_{n+1}X_n + AlF_3 + 1.5H_2$

$$30 \qquad \qquad M_{n+1}X_n + 2H_2O \rightarrow M_{n+1}X_n(OH)_2 + H_2$$

1

2

3

4

5

6

7

8

Journal of Materials Chemistry A Accepted Manuscript

 $M_{n+1}X_n + 2HF \rightarrow M_{n+1}X_n F_2 + H_2$

During the HF etching process, Al (A layer) removal causes surface terminations, leading to the functionalization of the M layer. The chemical etching in an acidic medium inevitably results in defect sites in synthesized MXene flakes. These defect sites play a key role in the oxidation of MXenes and reduce their self-life to a few days in an ambient environment, limiting their extensive use. Later many synthesis routes were developed but selective etching methods using fluoride-containing agents in an acidic medium were widely used⁹⁷. The reaction time, temperature, and acid concentration affect the quality and quantity of resultant MXenes.

9 Despite the successful synthesis of MXenes using concentrated HF etching, environmental 10 concerns and the need for a safer, simpler method have prompted the use of mild etching agents 11 like HCl with various fluoride salts for large-scale production. The HCl and fluoride salts mixture 12 forms in-situ HF for etching the "A" layer in the MAX phases (Figure 1a). The MXenes synthesized using HCl have high yields, fewer defects, and resulted in higher electrical 13 14 conductivity. However, the MAX phase's purity is also a crucial factor in deciding the resultant 15 properties of MXenes⁹⁸. Natu et.al reported a water-free synthesis method using polar solvents along with ammonium dihydrogen fluoride⁹⁹. The etching process in this method is reported to be 16 very slow but surprisingly the resultant MXene has only the -F group as the termination species. 17

One of the major issues associated with MXene synthesis is the use of hazardous chemicals, such 18 19 as HF or in situ-produced HF from fluoride salts and strong acids, which pose significant 20 ecological and health hazards. These chemicals can lead to hazardous waste, requiring meticulous management and disposal processes. To address these issues, researchers have been exploring 21 22 environmentally friendly or less harmful methods for MXene synthesis. Recently, fluoride-free synthesis methods including the electrochemical method¹⁰⁰, molten salts assisted etching¹⁰¹, the 23 alkali etching method¹⁰², chemical vapor deposition (CVD) synthesis approach¹⁰³, etc., have been 24 25 developed to minimize hazardous byproducts. These methods not only mitigate safety and 26 environmental concerns but also allow the alteration of the MXene structure and surface chemistry, 27 making them promising approaches for scalable and eco-friendly MXene production.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

Figure 1. MXene synthesis strategies. (a) MXene etching by fluorine-based etchants. Reproduced
with permission from ref.¹⁰⁴. Copyrights 2016, Wiley. (b) Electrochemical etching method.
Reproduced with permission from¹⁰⁰. Copyrights 2018, Wiley. (c) Alkali-assisted etching method.
Reproduced with permission from ref.¹⁰². Copyrights 2018, Wiley. (d) Dry selection extraction
approach. Reproduced with permission from¹⁰⁵. (e) CVD method-based MXene synthesis using
Ti, graphite, and TiCl₄. Reproduced with permission from ref.¹⁰³. Copyrights 2023, The American
Association for the Advancement of Science.

The electrochemical etching method selectively removes the "A" layer from the MAX phase using 1 2 non-acidic electrolytes, making it safer and more environmentally friendly than traditional acid-3 based methods. In a two-electrode system (Figure 1b), the bulk MAX phase (like Ti₃AlC₂) serves as both the anode and counter electrode, with an electrolyte including ammonium chloride and 4 tetramethylammonium hydroxide (TMAOH, pH > 9). The anode undergoes etching at room 5 temperature, under a constant potential while the electrolyte is stirred. After a few hours, the 6 7 electrolyte becomes grey-white with a gelatinous precipitate, and black powders (stacked $Ti_3C_2T_x$) 8 settle at the bottom.

9 The alkali etching method employs alkali solutions (like NaOH or KOH) to selectively remove the 10 "A" layer from the MAX phase, resulting in the synthesis of layered MXenes (Figure 1c). In this method, an alkaline solution is dissolved in argon-purged deionized water before adding the MAX 11 12 phase powder. The mixture is transferred to an autoclave, sealed, and subjected to heating under an argon atmosphere for 12 hours. After the hydrothermal process, the resulting suspension is 13 14 filtered, thoroughly rinsed, and dried under vacuum, producing MXene with minimal impurities and a high degree of purity. This method is considered safer and more straightforward than 15 16 fluorine-based acidic etching but may vield lower amounts of MXene or require extended reaction times depending on the alkali concentration and reaction conditions. 17

These methods lead to MXene formation but exhibit low yield and are more time-consuming than fluoride-based synthesis approaches. Recently, a new approach called dry selective extraction has been proposed theoretically¹⁰⁵. In this method, a glass ampoule filled with a known quantity of MAX phase is placed in a tube furnace at an elevated temperature (Figure 1d). Iodine vapors are then passed through the ampoule containing the MAX phase at 350°C, acting as an etchant to remove the A layer and leaving behind MXenes. It was reported that the reaction does not occur below 350°C and temperatures above 400°C result in over-etching.

The bottom-up synthesis methods allow precise control over material chemistry thus enabling tailored customization of material design. The bottom-up approaches include CVD method¹⁰³ (Figure 1e) and direct solid-state synthesis. In a recent article, Wang et al. reported Ti-based and Zr-based MXenes by combining Ti metal and graphite powder with the desired quantity of TiCl₄¹⁰³. The sealed ampoules containing this mixture were placed in a furnace at 950°C for 2 h to obtain MXenes. The process involved methane or N₂ gas reacting with TiCl₄ on the titanium

1 surface, resulting in Cl-terminated Ti_2CCl_2 or Ti_2NCl_2 MXenes. The proposed method is shown to 2 have the potential for bulk production.

3 Besides these, the salt-template MXene synthesis was reported by Xiao et al. to synthesize molybdenum nitride¹⁰⁶. In this method, a 2D template of MoO₃ is prepared and coated with NaCl 4 by annealing in an Ar atmosphere. The NaCl-coated 2D MoO₃ mixture was heated to 650 °C in 5 NH₃ atmosphere to yield MoN MXene. Ding et al. introduced a chemical scissor-mediated method 6 for precise structural editing of layered transition metal carbides to synthesize MXene¹⁰⁷. This 7 8 method uses chemical scissors to open non-van der Waals gaps in MAX phases, followed by 9 atomic replacement via diffusion of metal ion intercalants into interlayer vacancies. The scissors are also used for termination removal. 10

3. MXenes structure and surface chemistry

12 MXenes exhibit a surface-rich chemistry which provides it unique properties and potential applications¹⁰⁸. In MXene synthesis, when the "A" layer is selectively etched from the precursor 13 14 MAX phase the interlayer spaces are generated between the MXene layers, where solvent 15 molecules or functional groups are developed (Figure 2a). These surface terminations on 16 the MXene surface play an important role in defining the properties of MXenes¹⁰⁹. The nature of 17 the surface terminations can be altered during the synthesis of MXenes to tailor the surface 18 chemistry of MXenes¹¹⁰. The layered structure of MXenes, combined with their tunable surface 19 chemistry and properties, allows various applications in electronics, energy storage, catalysis, 20 sensing, medicines, and more^{111, 112}.

21 MXenes typically possess surface terminations, such as -OH, -O, -Cl, or -F, resulting from the 22 etching process used to synthesize them. During acidic etching, mainly containing fluoride ions, MXenes typically exhibit -F and -O/-OH groups (Figure 2b). F terminations can be modulated 23 by adjusting acid concentrations, while their complete replacement with -O/-OH groups can be 24 achieved through alkaline treatments using KOH, NaOH, or TBAOH ¹¹³ ¹¹⁴. The molten salt 25 etching (like ZnCl₂) facilitates Lewis acid-base reactions between cations and the A layer, 26 substituting it with Zn and then followed by -Cl terminations¹¹⁵. Variation in the composition of 27 molten salts during MAX phase etching facilitates the incorporation of halogen terminations, such 28 29 as -Cl, -Br, and -I. In addition to these, a wide range of terminations, such as -S, -Se, -Te, -P, and -Sb, can be uniformly introduced onto MXene surfaces, enabling tailored surface 30 31 functionalities for diverse applications (Fig. 2b). Heating MXenes under reactive gases further

6 Figure 2. MXenes surface terminations. (a) A schematic representation of the MXene structures, 7 indicating the surface terminations of the outer metal layers. Reproduced with permission from 8 Ref.¹¹¹. Copyrights 2021, The American Association for the Advancement of Science. (b) MXene 9 termination scenarios: (i) Halogen and -O/-OH terminations from the acidic etching of MAX 10 phases, (ii) Surface terminations from molten salts, (iii) Surface terminations via molten salts via 11 altered treatment, (iv) Post-synthesis modification introduce uniform terminations. (c) Surface 12 terminations: (i) FCC sites, (ii) "Top" positions on surface Ti, (iii) HCP sites, and (iv) Bridge sites 13 between Ti atoms. Reproduced with permission from Ref.¹¹⁶. Copyrights 2023, American 14 Chemical Society.

- 15 Theoretical investigations show that MXene surface terminations occupy distinct crystallographic
- 16 sites¹¹⁷. For $Ti_3C_2T_x$ MXene, terminations above middle Ti atoms align with FCC sites, while those
- 17 above surface Ti atoms adopt a "top" configuration, and those above C atoms occupy "HCP" sites.
- 18 Terminations between Ti atoms form a "bridge" configuration (Figure 2c). FCC sites are
- 19 energetically most favorable among these, with most terminations preferring these positions.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.Copen Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.10111213141516171819191111121314151617181919111112131414151617181919111111121314151516171718191911191110111213141415151617181919191910101112131415151616171818191919101010

These terminations play a significant role in determining the surface chemistry, stability, and 1 interactions of MXene with other materials¹¹⁸. The surface terminations of MXenes offer 2 3 opportunities for functionalization¹¹⁹. The presence of water-loving polar surface terminations, particularly -OH groups, leads to a strong affinity for water molecules and promotes wetting of the 4 MXene surface¹¹⁹. This hydrophilicity can be advantageous for applications such as water 5 treatment and filtration¹²⁰. The surface chemistry of MXenes influences their solubility and 6 7 interactions with solvents. MXenes are generally not soluble in common organic solvents but are dispersible in water-based solutions due to their hydrophilic nature¹²¹. This solubility behavior 8 9 enables their use in solution processing techniques and the fabrication of MXene-based films, coatings, and composites.

3.1 MXenes oxidation and its factors

MXenes oxidize when exposed to ambient conditions or elevated temperatures, transforming into their corresponding oxides. For example, $Ti_3C_2T_x$ MXene evolves into a $Ti_3C_2T_x/TiO_2$ and eventually forms carbon-supported TiO₂ nanoparticles^{122, 123}. It has been reported earlier that the MXene oxidation starts at the edges of MXene flakes and advances toward the interior basal planes^{124, 125}.

The oxidation can be observed through color changes; fresh $Ti_3C_2T_x$ MXene dispersed in water 17 has a dark green, which is converted to a translucent, cloudy hue as oxidation progresses with time 18 (Figure 3a). The MXenes oxidation is relatively faster in aqueous suspensions than in organic 19 dispersions^{108, 126}. MXene hydrolysis is crucial in transforming MXenes into respective oxides in 20 21 aqueous suspensions, a process that can be inhibited in organic solvents. For instance, no oxidation was observed in iso-propanol solutions of MXenes stored under an O₂ atmosphere for a same 22 duration¹²⁶ (Figure 3b). TEM analysis of freshly prepared MXenes shows clean surfaces and edges 23 24 (Figure 3c), with high-resolution TEM images revealing single-crystalline nanosheets (Figure 3f)⁴⁷. The SAED pattern confirms a hexagonal atomic structure (Inset: Figure 3f). After one week 25 of exposure to air at room temperature, MXene edges display "branch-like" features, and 26 27 crystalline nanoparticles form on the basal planes of the flakes (Figure 3d, g), identified as anatase 28 in the fast Fourier transform (FFT). After 30 days, MXenes completely decompose into anatase 29 clumps and disordered carbon (Figure 3e, h). The presence of dissolved oxygen and water leads to 30 a reaction with the active edges of the flakes, resulting in TiO₂ formation. MXene oxidation is

8

influenced by various factors. For example, the chemical etching process used to synthesize MXenes in strong acids creates surface defects in MXene flakes^{127, 128}. Under ambient conditions or in aqueous suspension, these defect-rich sites ease oxidative degradation, which in turn impact the properties of MXenes¹²⁹. Environmental factors, such as exposure to air or immersion in water, further contribute to MXene degradation. The stability and reactivity of MXenes are significantly influenced by factors like the pH of the dispersion^{130, 131}, storage temperature¹³¹, MXene concentration^{132, 133}, flake size, etc^{125, 132}.

9 **Figure 3.** (a) Digital images of $Ti_3C_2T_x$ suspensions before and after oxidation. Reproduced with 10 permission from ref.¹²³. Copyrights 2021, American Chemical Society. (b) MXene dispersion impact in water and isopropanol. Reproduced with permission from ref.¹³⁴. Copyrights 2019, 11 12 American Chemical Society. TEM images of (c) MXene flakes of fresh $Ti_3C_2T_x$ solution and solutions stored at room temperature in the air after (d) 7 days and (e) 30 days. (f-h) HRTEM 13 images corresponding to panels c-e, respectively. In Figure f, the inset shows the corresponding 14 15 SAED pattern, while Figures g and h display the respective FFT patterns. Reproduced with permission. Reproduced with permission from ref.⁴⁷. Copyright 2017, American Chemical 16 17 Society. Defects in MXenes: (i)-(j) Depiction of TiO_2 cluster bonding with Ti_3C_2 , highlighting the 18 TiO₂-(101) plane-oriented perpendicular to the MXene basal plane (0001). (k) Schematic illustrating Ti₃C₂ oxidation, showing carbon oxidation at the positive side and Ti-ion oxidation at 19 20 the negative side of the internal electric field. Rapid electron transport to the convex area and slow 21 Ti-ion diffusion create the internal electric field. Reproduced with permission from ref.¹²⁷.

Copyright 2022, The Royal Society of Chemistry. Effect of pH on MXenes oxidation: (1) Proposed mechanism for the oxidation reaction in $Ti_3C_2T_x$ mixtures under (m) Acidic and (n) Basic conditions. Reproduced with permission.¹²³ Copyright 2021, American Chemical Society.

During sonication-assisted delamination, maintaining a constant temperature and using Ar can 4 5 prevent oxidation. Storing solutions in Ar-sealed vials or refrigeration reduces oxidation. Using 6 mild etchants like tetraethylammonium hydroxide (TMAOH) avoids fluorine by-products, enhancing the stability of MXenes¹³⁵. MXenes should be protected from UV exposure as 7 prolonged exposure leads to faster oxidation¹³⁶. Synthesis methods determine surface terminations, 8 9 with HF-etching resulting in more -F terminations compared to those synthesized with LiF-HCl¹³⁷. Etching MAX phases with alkali and molten salts prevents MXenes oxidation and hydrolysis^{101,} 10 138 . HF etching introduces defects, accelerating degradation to TiO₂. Relatively mild acids like HCl/LiF and fluorine-free etchants like TMAOH, NaOH, or KOH reduce the MXene defects. 12

13 Defects in MXenes also facilitate oxidation. Defects in MXenes, created during etching, drive oxidation and affect reactivity, structural changes, conductivity, and functional group formation^{128,} 14 15 ¹³⁹. Adjusting etchants concentration can control defects which can also boost the resistance against oxidation as well as the performance in desired applications. In Ti₃C₂ MXene, Ti atoms 16 17 form TiO₂ nanoparticles while the remaining carbon atoms cluster to produce amorphous carbon, resulting in C@TiO₂ heterojunctions¹²⁷. During oxidation at room temperature, the anatase TiO₂ 18 19 (101) plane is oriented perpendicular to the Ti_3C_2 basal plane (Figure 3i, j). The rotation of the TiO₂-(101) lattice plane during nucleation depletes Ti^{3+} in adjacent Ti_3C_2 crystals, creating Ti 20 21 vacancies and excess carbon atoms. Ti vacancies are commonly found in the surface layer of 22 MXenes prepared via exfoliation methods. Ti-vacancies in Ti₃C₂ MXenes create an internal 23 electric field that drives electron flow, carbon cluster nucleation, and Ti-cation diffusion. This field enhances carbon oxidation, forming TiO₂ nanoparticles and amorphous carbon. Ti-vacancies also 24 25 facilitate O₂ entry into the lattice, promoting TiO₂ nucleation and growth. Wrinkles and atomic steps act as nucleation sites for oxidation, with Ti-vacancies promoting carbon oxidation and TiO₂ 26 27 formation (Figure 3k).

- Temperature and pH significantly influence MXene oxidation by affecting its reaction kinetics and 28
- 29 pathways^{52, 87}. Higher pH slows oxidation at 20 °C, while increased temperature accelerates it.
- The oxidation mechanism of aqueous $Ti_3C_2T_x$ MXene dispersions starts at -OH group sites, with 30
- 31 pH significantly impacting reaction intermediates (Figure 31). Acidic conditions protonate surface
- hydroxyls, enhancing Ti atom electrophilicity and promoting nucleophilic addition reactions with 32

1 2

3

4

5

6

7

8 9

11

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

H₂O or O₂. In basic conditions, excess OH- deprotonates hydroxyls, form sodiated intermediates 1 and bulky solvent cages that hinder oxidation due to steric effects and reduced electrophilicity 2 3 (Figure 3m-n).

4. MXene-polymer hybrids for oxidation prevention

MXene-polymer nanocomposites are increasingly recognized for their ability to prevent MXene oxidation, as polymers serve as protective layers that shield MXenes from environmental degradation. The polymers can preserve MXenes for more than 180 days¹⁴⁰. These nanocomposites can preserve MXenes not only at room temperature but also under higher temperatures and moist conditions¹⁴¹. This integration not only enhances the stability of MXenes but also improves their overall performance in various applications. Table 1 summarizes some 10 MXene-polymer combinations investigated to enhance MXene stability over different periods.

12 Table 1. MXene-polymer nanocomposites for MXene stability improvement

S. No.	MXene-polymer composition	MXene etchant	Preventive measure	Stability duration	Ref.
1	MXene/poly(tannic acid)	LiF/HCl	Oxygen-rich macromolecule	60 days	142
2	MXene/melamine	LiF/HCl	Nanocomposite	60 days	143
3	MXene/PVA-CA hydrogel	LiF/HCl	Nanocomposite	30 days	144
4	MXene/polymer	-	Nanocomposite	42 days	145
5	MXene/polyacrylamide	-	Nanocomposite	15 days	146
6	MXene/aramid nanofiber (ANF)	LiF/HCl	Nanocomposite	-	147
7	MXene/polystyrene	LiF/HCl	Nanocomposite	180 days	140
8	MXene/dopamine	LiF/HCl	Nanocomposite	13 hours at 170 °C	148
9	MXene/Bentonite	LiF/HCl	Nanocomposite	2 hours at 600 °C	149
10	MXene/Sodium alginate	LiF/HCl	Nanocomposite	30 days	150
11	MXene/PVA	LiF/HCl	Nanocomposite	50 days	151
				200	
12	MXene/PET	LiF/HCl	Nanocomposite	hours at 70 °C	141
13	MXene/polymer	LiF/HCl	Nanocomposite	180 days	152

13 4.1 Polystyrene/MXene for oxidation improvement

To address the issue of MXene oxidation, a 'particle manufacturing technique' (Figure 4a) was 14

15 employed to develop polystyrene/MXene (PS/MXene) composites with a 3D conductive network

structure¹⁴⁰. The material conductivity reached 3846.15 S/m when the filler content was merely 16

1.81 vol%. Due to the compact and ordered structure of fabricated PS/MXene composite, it holds
 53.4% of its initial conductivity after 180 days.

Figure 4. (a) Schematic showing the exfoliation of $Ti_3C_2T_x$ MXene and fabrication of composites with a three-dimensional conductive network framework, (b) Storage environment effects on MXene's intrinsic conductivity. (c-d) Impact of environmental factors on conductivity during the composite material is being prepared, and (e) Schematic of the oxidation mechanism in MXenepolymer composite. Reproduced with permission from ref.¹⁴⁰. Copyright 2021, Elsevier Ltd.

9 The fundamental procedure for exfoliating $Ti_3C_2T_x$ MXene and creating PS/MXene composites 10 with a 3D ordered structure through "particle construction". ¹⁵³. Firstly, this work used the 11 conventional technique of manufacturing MXene because of its benefits, which include large 12 lamellae, fewer flaws, and good electrical conductivity when created by LiF/HCl etching ¹⁵⁴. The 13 electrical conductivity of freshly prepared MXene sheets was initially measured at 2.28 × 10⁵ S/m, 14 as shown in Figure 4b. This conductivity remained stable over 30 days in an argon atmosphere or

at low temperatures. However, in the air at room temperature, MXene's conductivity dropped 1 2 drastically, retaining only 0.026% of its initial value, highlighting its rapid oxidation and reduced 3 practicality. The interaction between conductivity and storage time for PS/MXene composites is illustrated in Figure 4c-d. Key findings include: (1) Composites with higher MXene content 4 maintain conductivity better over time compared to those with lower MXene content, showing 5 slower degradation. (2) Larger particle composites exhibit greater conductivity loss than those with 6 7 smaller particles, regardless of MXene concentration. Additionally, smaller PS microspheres 8 create a denser conductive network, providing superior protection for MXene, as depicted in 9 Figure 4e. At larger microspheres, the conductive network is not well established while smaller microspheres can form a much denser network, that certainly offers superior MXene protection. 10

11 **4.2 Polymer passivation**

12 Polymer passivation is a technique used to improve the oxidation stability of MXenes, particularly against oxidation. By applying a polymer coating, such as polydopamine, the surface of MXenes 13 14 is protected from environmental factors that can lead to degradation. This passivation method 15 effectively reduces the oxidation rate and maintains the electrical properties of MXenes over 16 time¹⁵². Under ambient conditions, pristine MXene begins to oxidize at room temperature. FE-SEM images of untreated MXene after 30 days (Figure 5a) reveal powdery particles around the 17 18 edges, indicating early oxidation. This process starts at edges and imperfections, progressing inward as shown in Figure 5b, where oxidized TiO₂ (orange) replaces the MXene flakes (greenish). 19 20 Prior reports have indicated that the smaller the MXene flake, the higher the oxidation rate 21 ¹⁵⁵. Even in its dry state, MXene will eventually oxidize, nevertheless, the rate of oxidation is 22 slower under ambient circumstances than in humid environments or DI water¹⁵¹. To prevent 23 oxidation, a MXene film was coated with a 1% polymer solution in acetone. The polymer layer 24 thickness was ~50 nm. Sheet resistance (R) was measured over 180 days to evaluate oxidation stability, with percentage changes (Figure 5c). The results showed obvious proof that polymer 25 26 passivation preserves MXene from oxidization. Even 180 days later, the relative resistance change, 27 $(R-R_0/R_0)$ %, is ~20% in polymer-passivated MXene as compared to 800% in pristine MXene. The UV–Vis spectra of pristine MXene film after 30 days show the same transmittance as on day 1, 28 however, the transmittance rises to ~89% after 180 days (Figure 5d). The high transmittance may 29 30 be associated with TiO₂ formation due to the oxidized $Ti_3C_2T_x$ MXene¹⁵¹. Contrary to this, a 31 negligible change in transmittance was noticed in the passivated MXene film 180 days (Figure

5e), indicating that almost no TiO₂ is formed and MXene oxidation is suppressed due to polymer
passivation.

In another study, a polymer laminated MXene (PL-MXene) electrode was fabricated to analyze the impact of polymer lamination on electronic applications¹⁴¹. MXene flakes dispersed in water were spin-coated on a glass substrate silanized with a self-assembled monolayer of (3aminopropyl)triethoxysilane (APTES).

8 Figure 5. MXene passivation by polymers. (a) FE-SEM image of MXene sheet after 30 days 9 exposure in ambient circumstances. The MXene flake that has been highlighted indicates the start 10 of oxidation, (b) An illustration of the oxidation phases of MXene flakes. (c) The ratio of resistance change $(R-R_0/R_0)$ % for treated and non-treated MXene films up to 180 days, where R_0 is the initial 11 12 sheet resistance. UV-Vis spectra of MXene films (d) non-treated and (e) treated at varying times. Reproduced with permission from ref.¹⁵². Copyright 2022, Elsevier Ltd. (f) PL-MXene electrode's 13 14 oxidation stability in comparison to the thin MXene layer. (g) The resistance decrease (ΔR) and 15 initial resistance (R_0) of the PL-MXene electrode are shown against time and PVPh concentration, 16 200 hours after exposure to air oxidation, (h) Evolution of the resistance variations over time of

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Downloaded on 9/03/2025 22:11:54.

Open Access Article. Published on 28 februari 2025.

the PL-MXene electrode under oxidation stability tests at 50% humidity and 70 °C. Reproduced
 with permission from ref.¹⁴¹. Copyright 2021, American Chemical Society.

3 Subsequently, poly(4-vinyl phenol) (PVPh) was prepared as a barrier layer on the MXene film ¹⁴¹. The PL-MXene film, coated with a PVPh layer ($\sim 60 \text{ nm}$) on an MXene layer ($\sim 18 \text{ nm}$), exhibits a 4 very smooth surface with an RMS roughness of ~1.4 nm. After 200-600 hours of air exposure, the 5 resistance of bare MXene increases by 310% and 470%, respectively (Figure 5f). In contrast, PL-6 7 MXenes with PVPh coatings showed minimal resistance change, between 27% and 38% after 200 8 hours, with only slight increases after 600 hours, demonstrating excellent oxidation resistance 9 (Figure 5g). Even at 70 °C temperature and 50% relative humidity, PL-MXenes with PVPh coatings maintained good stability, showing a $\Delta R/R_0$ change of 35% to 60% after 200 hours, while 10 11 bare MXene showed a drastic increase to 600% (Figure 5h).

12 4.3 MXene-sodium alginate nanocomposites

Sodium alginate (SA) effectively stabilizes MXenes against oxidation. The alginate-stabilized 13 14 MXenes maintain their conductivity and offer improved oxidation resistance. These MXene-15 alginate nanocomposites are particularly useful in flexible EMI shielding applications. Figure 6(a) shows the schematic illustrating the fabrication process of the MXene-SA composite¹⁵⁰. Linen 16 17 fabric, chosen for its eco-friendly properties, was used as a substrate for MXene composite modification. Before applying the composite, the fabric was treated with decontamination powder 18 to ensure effective loading. Hydrogen bonding between SA and MXene was achieved via 19 20 functional groups on the MXene surface, enhancing the composite's mechanical strength and 21 oxidation stability. MXene-SA composites and MXene alone were subjected to acid and base 22 conditions to assess environmental stability and oxidation resistance. After 30 minutes in HCl (pH 23 = 1), the sheet resistance of MX10@S₁-10 (MXene with SA) increased to $20.4 \pm 0.7 \Omega/sq$, whereas 24 MX10-10 (MXene without SA) showed a much higher increase to $58.63 \pm 0.047 \Omega/sq$ (Figure 6b). 25 In NaOH (pH = 14), MX10@S₁-10's resistance rose to $155.33 \pm 7.02 \Omega$ /sq after 25 minutes, 26 compared to a significant rise to $867.67 \pm 66.38 \Omega$ /sq for MX10-10 (Figure 6c). This demonstrates 27 that the MXene-SA composite offers superior protection against oxidation in both acidic and basic 28 environments. The results manifest that $MX_{10}@S_1-10$ has much better stability than $MX_{10}-10$ even 29 in harsh conditions such as acidic and alkaline. The coating of MXene sheets with SA inhibited 30 the direct interaction of ambient oxygen, moisture, or corrosive solutions resulting in improved 31 oxidation stability.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

1

Figure 6. (a) Schematic synthesis of MXene and illustration for single-step fabrication strategy for sodium alginate-MXene film, Sheet-resistance (R/R_0) variation by treating in (b) HCl (pH =1), (c) NaOH (pH = 14), and (d) change in R/R_0 for MX₁₀-10 and MX₁₀@S₁-10 with varying SA content at 11% of RH at 25°C.Reproduced with permission from ref.¹⁵⁰. Copyright 2024, Springer Nature.

The oxidation stability of fabricated MXene composites was further studied by measuring their sheet resistance after storing in humid conditions at ambient temperature (25°C). MX_{10} -10 and $MX_{10}@S_1$ -10 were stored in humid conditions (RH) of 11%, 33%, 75.5%, and 97.6% with varied SA amounts of 10%, 20%, 30%, and 40% for evaluating the stability. There is a change in resistance of MX_{10} -10 composite with time at 11% RH ambient, with the resistance ratio decreasing to 36.67% from 57.48%. The resistance ratio decreased from 88.56% to 60.99% for This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

1 $MX_{10}@S_1-10$ upon the 10% addition of SA (Figure 6d). $MX_{10}@S_1-10$ has a higher resistance ratio 2 than $MX_{10}-10$ indicating that $MX_{10}@S_1-10$ has a higher stability under varied humid and corrosive 3 conditions.

4 4.4 Mussels-derived dopamine polymerization

Researchers addressed the oxidation vulnerability of MXene-based materials by utilizing mussel-5 derived dopamine polymerization¹⁴⁸. Dopamine derived from mussels effectively overcomes 6 7 oxidation by enhancing interfacial interaction and ordering in MXene film. Dopamine forms a thin 8 sticky layer at the surfaces of MXene flake by in situ polymerization and binding caused by 9 spontaneous interfacial charge transfer. Effective oxygen and moisture screening also significantly increases the ambient stability of MXene films. It's interesting to note that angstrom thick 10 polydopamine enhances MXene films' inherent high electrical conductivity. Figure 7a shows the 11 12 fabrication procedure and morphological distinction between pure- and polydopamine-treated 13 MXene (PDTM) film. SEM cross-sectional images show that pure MXene has random, misaligned layers, while PDTM5 films exhibit well-aligned, consistent MXene sheets (Figure 57b, c). 14 15 Neighboring MXene flakes are aligned in their organized stacking by the polydopamine nano binder, which bridges them together and creates the highly ordered MXene structure ¹⁵⁶. After 16 applying polydopamine coating, internal voids, and misfits could be mostly eliminated ¹⁵⁷. As a 17 18 result, dopamine coating increased the apparent density of hybrid films resulting in in-plane 19 electron transfer. Furthermore, dopamine hybridization enhances MXene's electrical conductivity; 20 PDTM5 has the greatest conductivity of 5141 S/cm Figure 7d. The enhanced flake alignment, 21 enhanced film densification, and increased electron density all contribute to in-plane electron 22 transport ¹⁵⁸. Polydopamine-treated MXene films exhibit significantly reduced oxidation at ambient conditions and elevated temperatures, as shown in Figure 7(e). The PDTM5 film 23 24 experiences a much smaller increase in sheet resistance at 170°C compared to the pure MXene film, which shows a five-fold resistance increase in 13 hours. The PDTM10 film demonstrates 25 26 even lower resistance, likely due to thermally induced crystallization of the polydopamine layer, which also limits oxygen and moisture infiltration. 27

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

BY-NC

(C)

Figure 7. (a) Schematic showing the production process and the morphological changes between pure and polydopamine-treated MXene film, (b) and (c) Cross-sectional SEM images of pure- and PDTM-treated MXene, (d) electrical conductivity of MXene film with varied PDTM concentration (0-15%), (e) Change in electrical resistance during heating (170 °C) in air. Reproduced with permission from ref.¹⁴⁸. Copyright 2020, American Chemical Society. The conductivity variation of (f) Pristine MXene films and (g) MXene/PVA films in air¹⁵¹.

1

Journal of Materials Chemistry A Accepted Manuscript

22

2 The thin dopamine layer protects MXene from oxidation while maintaining electrical performance
3 and enhancing interfacial contact.

4 4.5 Can all polymers prevent MXene oxidation?

5 As discussed above, while most polymers support MXene stability, not all polymers can 6 effectively prevent oxidation. Polymers with a hydrophilic nature are mostly unable to prevent 7 oxidation in MXenes as hydrophilicity allows water and oxygen molecules to penetrate the 8 composite and the MXene surface. Habib et al. studied the oxidation stability of vacuum-filtered 9 Ti₃C₂T_x films MXenes/PVA films and used the electrical conductivity as an indicator to estimate their stability¹⁵¹. The study monitored the decline in electrical conductivity of $Ti_3C_2T_x/PVA$ 10 composites over time and compared it with pristine MXene films exposed to air (Figure 7f-g). Two 11 12 different weight ratios of PVA were used to assess the impact of polymer concentration on the stability of MXenes: 50-50 wt% Ti₃C₂T_x to PVA and 10-90 wt% Ti₃C₂T_x to PVA. The study 13 14 reported that the pristine MXene maintained only 2% of its initial conductivity in air after 9 weeks (Figure 7f). The conductivity of the 50-50 wt% sample decreased to about 40% of its original 15 16 value by day 30 and 20% by day 57, while the 10–90 wt% sample dropped to roughly 7% by day 17 29 and 4% by day 50 (Figure 7g). Both samples exhibited a rapid decline in conductivity during the first four weeks, followed by a slower decrease, indicating a reduction in oxidation rates due 18 to diminishing reactive sites. This consistent trend across both composite samples and the $Ti_3C_2T_x$ 19 20 film suggests that the oxidation mechanism is mostly unaffected by polymer content, and the 21 hydrophilic PVA does not provide an effective protective barrier against oxidation.

5. Synergistic effects on nanocomposite properties

Typically, the main benefit of composite membranes lies in their tailored properties, allowing the 23 24 use of specific materials for particular applications. MXene materials can serve as optimal nanofillers, enhancing MXene/polymer membranes with a range of properties such as increased 25 mechanical strength¹⁵⁹, better thermal performance¹⁶⁰, and enhanced conductivity¹⁶¹, etc. 26 27 Moreover, the oxidation of MXene materials is significantly reduced due to their effective 28 encapsulation within the polymer¹⁶². MXenes can be combined with two types of polymers: 29 cationic and neutral¹⁶³. The cationic polymer (e.g. PDDA) can form electrostatic interactions with 30 negatively charged MXene nanosheets, resulting in a relatively loose structure with some voids, similar to the MXene-only film. In contrast, the neutral polymer (e.g. PVA) can rely on hydrogen 31

bonding, leading to a compact layered structure (Figure 8a). Using negatively charged polymers can enhance the dispersion of MXene nanosheets due to electrostatic repulsion. Molecular dynamics simulations reveal the synergy of hydrogen and ionic bonding agents in effectively transferring local stress while providing substantial slippage space for MXene nanosheets¹⁶⁴.

5.1 Mechanical properties

1

2

3

4

5

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

6 The mechanical properties represent a crucial factor for polymer-based composites, which can be 7 effectively enhanced by incorporating inorganic fillers. The distinctive characteristics and 8 nanostructures of nanomaterials, along with their reactivity, have made them appealing candidates 9 as fillers to strengthen polymer-based membranes across various types of polymers. Usually, free-10 standing MXenes often experience inadequate mechanical characteristics and weak interactions 11 among the nanosheets, which can lead to structural failure due to capillary forces during the 12 polymer impregnation process. Introducing 10 wt% PVA improves the tensile strength of the Ti₃C₂T_x/PVA film by 34%, reaching 91 \pm 10 MPa, around fourfold that of the pure Ti₃C₂T_x film, 13 when PVA loading was increased to 60 wt%¹⁶³ (Figure 8b). The enhanced stiffness and strength 14 15 indicate effective stress transfer to the embedded $Ti_3C_2T_x$ nanosheets, suggesting some interfacial bonding, likely aided by the OH group terminations on Ti₃C₂T_x. The Young's modulus of 16 $Ti_3C_2T_x$ /PVA films can be adjusted by varying the $Ti_3C_2T_x$ -to-PVA ratio. The hollow cylinders 17 made from these films can support substantial weights, with a 6 mm diameter and 10 mm high 18 19 cylinder supporting about 4,000 times its weight (~1.3 MPa), and a similar cylinder with 90 wt% 20 $Ti_3C_2T_x$ /PVA supporting approximately 15,000 times its weight (~2.9 MPa).

21 To explore this issue in greater depth, researchers have created MXene composite frameworks by 22 adding crosslinking agents to connect MXene nanosheets. Researchers combined resorcinol and 23 formaldehyde with $Ti_3C_2T_x$ to form a composite framework¹⁶⁵. The organic precursors polymerized on hydrophilic $Ti_3C_2T_x$, creating a crosslinked $Ti_3C_2T_x/C$ foam (MCF) structure after 24 25 pyrolysis. This framework exhibited a well-connected structure with impressive mechanical strength, supporting 500 times its weight. Using a similar polymer impregnation method with 26 27 epoxy precursors, a dense $Ti_3C_2T_x/C/epoxy$ film structure was also produced. The MCF samples 28 were labeled as MCF-0 to MCF-5, with increasing $Ti_3C_2T_x$ MXene content from 0 to 1.64 wt%, 29 respectively. The SEM images show that adding $Ti_3C_2T_x$ MXene to the MCF resulted in a

2

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

BΥ-NC

8

- 1 reduction of cell density due to crosslinked, folded sheets, while further MXene addition increased
 - cell density and decreased sheet size.

Figure 8. Mechanical properties of MXene-polymer nanocomposite. (a) Schematic representation of MXene-based functional films demonstrating tunable mechanical characteristics of flexible, free-standing $Ti_3C_2T_x$, $Ti_3C_2T_x/PVA$, and $Ti_3C_2T_x/PDDA$ films. (b) Stress–strain curves illustrating the performance of $Ti_3C_2T_x/PVA$ films with varying $Ti_3C_2T_x$ content¹⁶³. (c) Load-

displacement curves showcasing the performance of the MCF/epoxy EMI shielding 1 2 nanocomposites; (d) Hardness and Young's modulus measurements for the MCF/epoxy EMI 3 shielding nanocomposites, illustrating their mechanical properties. Reproduced with permission from ref.¹⁶⁵. Copyright 2019, Elsevier Ltd. (e) Compressive stress-strain (σ - ϵ) curves for the 4 5 aerogel (MXene to PAA ratio 1:4) at various strains, with an inset showing energy loss coefficients 6 at these strains. (f) Fatigue performance of the aerogel (MXene to PAA ratio 1:1) subjected to 7 1000 cycles at 50% strain. (g) Changes in elastic stress and energy loss coefficients over 1000 8 cycles at 50% strain. (h) Stress-strain curves of the aerogel (MXene to PAA ratio 2:1) evaluated 9 at different compressive strain rates (20, 100, 500, and 1000% min⁻¹). (i) Tensile stress-strain curve 10 for the aerogel (MXene to PAA ratio 2:1); (j) SEM image illustrating the fracture morphology of 11 the MXene/PI aerogel. Reproduced with permission from ref.¹⁶⁶. Copyright 2018, Wiley.

12 The polymerization of resorcinol and formaldehyde on hydrophilic $Ti_3C_2T_x$ MXene effectively fused the carbon structure and MXene, enhancing crosslinking density and carbon junctions. The 13 14 load-displacement curves (Figure 8c) show that increasing Ti₃C₂T_x MXene content reduces the indentation depth of MCF/epoxy EMI shielding nanocomposites, enhancing their resistance to 15 indentation. As Ti₃C₂T_x MXene content increases, Young's modulus and hardness improve by 13% 16 17 and 11%, respectively, due to the superior mechanical properties of MXenes and the improved 18 stress transfer within the cross-linked MCF network (Figure 8d). The higher cell density from 19 additional MXene further strengthens the cross-linked structure, boosting the mechanical 20 performance of the nanocomposites. Liu et al. improved the flexibility and mechanical stability of $Ti_3C_2T_x/PI$ foam by using polyimide (PI) to bridge $Ti_3C_2T_x$ nanosheets, achieving compressibility 21 and stretchability through freeze-drying $Ti_3C_2T_y$ /poly(amic acid) (PAA) followed by 22 polymerization¹⁶⁶. An aqueous solution of hydrophilic PAA and $Ti_3C_2T_x$ was freeze-dried, 23 24 followed by thermal annealing to polymerize PAA into PI. Strong polar interactions between PI and $Ti_3C_2T_x$ tightly bonded the two components, resulting in a durable $Ti_3C_2T_x/PI$ foam with 25 26 excellent mechanical properties, including compression, torsion, and 180° bending. The MXene/PI 27 aerogel demonstrates strong interfacial bonding between MXene and PI, resulting in superior 28 mechanical properties compared to neat MXene aerogel. Figure 8e shows the compressive stress-29 strain curves, where the MXene/PI aerogel exhibits excellent reversible compressibility up to 80% 30 strain (MXene to PAA ratio 1:4), unlike the pristine MXene aerogel, which suffers from 31 irreversible deformation due to weak interactions between its layers. The MXene/PI aerogel also 32 has a high energy loss coefficient (η), reaching 80.9% at 80% strain, indicating strong energy absorption. This makes it highly effective for shock absorption, as demonstrated by its ability to 33 34 protect a glass plate from fracturing after a heavy impact while maintaining its original shape. The

17

MXene/PI aerogel was tested for fatigue resistance through long-term compression-release cycles. 1 2 After pre-stabilizing the aerogel with several loading-unloading cycles, it maintained over 90% of 3 maximum stress and only 7% volume deformation after 1000 cycles at a fixed strain of 50% 4 (Figure 8f), indicating excellent structural robustness. While the maximum stress and energy loss coefficient slightly decreased during initial cycles, they stabilized over 1000 cycles (Figure 8g). 5 6 Additionally, the aerogel retained its compressibility at various strain rates (20, 100, 500, and 7 1000% min⁻¹), with stress-strain curves showing close overlap (Figure 8h). Uniaxial tensile tests 8 show that the MXene/PI aerogel achieves a tensile strain of 26% and a maximum stress of 31.1 9 kPa, attributed to enhanced sheet-to-sheet interactions with PI (Figure 8i). The tensile stress-strain 10 curve consists of four stages: (1) elastic deformation, where stress increases linearly with strain; (2) densification, marked by continuous stress increase as the porous network compacts; (3) a 11 12 plateau region with slower stress increases due to friction and adhesion; and (4) fracture, characterized by decreasing stress with fluctuations, indicating structural failure. Fractured 13 14 surfaces with pleated cell walls illustrate the role of micro folds in tolerating cyclic tensile 15 deformation (Figure 8). Some of the mechanical properties of MXene-polymer nanocomposites 16 are summarized in Table 2.

S. No.	Polymer	MXene	MXene Concentration	Mechanical property (MPa)	Improvement percentage (%)	Ref.
1	Natural rubber	Ti ₃ C ₂ T _x	6.71 vol. %	~ 18 (tensile stress)	700	167
2	Epoxy resin	Ti ₃ C ₂ T _x	1.0 wt.%	98 (flexural strength)	66	168
3	PEDOT:PSS	Ti ₃ C ₂ T _x	$\begin{array}{c} \text{Ti}_3\text{C}_2\text{T}_x:\\ \text{polymer} (3:1) \end{array}$	30.18 (tensile strength)	503.6	169
4	Polyvinyl alcohol (PVA)	Ti ₃ C ₂ T _x	2 wt.%	~ 48 (tensile stress)	77.8	170
5	Polyurethane (PU)	Ti ₃ C ₂ T _x	0.5 wt.%	~ 18 (tensile strength)	20	171
6	Thermoplastic polyurethane (TPU)	Ti ₃ C ₂ T _x	0.5 wt.%	20.6 (tensile strength)	47.1	172
7	PVC	Ti ₃ C ₂ T _x	15 wt.%	57.3 (tensile strength)	174.1	173
8	PVA	Ti ₃ C ₂ T _x	0.5 wt.%	13 (tensile strength)	-	174

Table 2. Mechanical properties of MXene-polymer nanocomposites

9	Epoxy	Ti ₃ CN	90 wt.%	12.8 GPa (Young's	-	175
				modulus)		
10				4.32 GPa		
	Epoxy	Ti ₃ C ₂ T _x	15 wt.%	(Young's	20.8	176
				modulus)		
11				3.96 GPa		
	Epoxy	Ti ₃ C ₂ T _x	4.25 wt.%	(Young's	13	165
				<u>modulus</u>)		
12	Polypropylene	ті с т	2.0 wt %	18.4 (tensile	35.3	177
	гогургорутенс	$11_3C_2T_x$	2.0 Wt.70	strength)	55.5	
13	DVA	тіст	40	91 (tensile	212.6	163
	ΓVΑ	$1 V \Lambda$ $11_3 C_2 I_X$		strength)	515.0	

2 **5.2 Electrical properties**

3 In any device application, conductivity is a crucial property, and MXenes excel in this regard, 4 achieving an impressive electrical conductivity of ~24,000 S/cm.¹⁷⁸ Among the MXenes, $Ti_3C_2T_x$ 5 stands as a pinnacle, characterized by its exceptional electrical conductivity and multifaceted utility across diverse applications. Most polymers are insulators, but adding MXene flakes can 6 7 improve their electrical conductivity. The addition of MXenes to the polymers can separate the 8 layers of MXenes and promote bonding at the molecular level between MXene and the polymer. 9 It was found that found that the electrical conductivity of PVA increases from 0.04 to 2.2×10^4 S/m when the MXene $(Ti_3C_2T_x)$ content varies from 40 wt% to 90 wt% in the polymer matrix¹⁶³. 10 The relationship between the MXene content in polymer matrix e.g. polyacrylamide (PAM) and 11 12 electrical conductivity is expressed as¹⁷⁹:

13

$$\sigma = k(m - m_{th})^{\alpha}$$

In this equation, σ represents the electrical conductivity of nanocomposite (Ti₃C₂T_x/PAM membranes, *k* is a constant, *m* denotes the MXene loading amount, m_{th} is the percolation threshold required for conductivity enhancement, and α is the scaling exponent.

17 The role of MXene in inducing electrical conductivity in MXene-polymer nanocomposites has 18 been theoretically predicted for various nanocomposites like polypropylene (PP)/MXene, nitrile 19 butadiene rubber (NBR)/MXene, natural rubber (NR)/MXene, polystyrene (PS)/MXene, and 20 polyacrylamide (PAM)/MXene¹⁸⁰. A proposed model predicts electrical conductivity, assuming

Page 27 of 119

3

Journal of Materials Chemistry A

Journal of Materials Chemistry A Accepted Manuscript

1 the MXene nanosheet thickness ~500 nm. The percolation threshold (φ_p), calculated using the 2 interphase thickness aligns with experimental values. The φ_p is given by equation:

$$\varphi_p = \frac{(40t)^2}{(D+20t_i)^2}$$

4 where *t* is the thickness, t_i the interphase depth, and *D* the MXene diameter. Uniform MXene 5 dispersion lowers the percolation threshold, while clustering increases it. Based on theoretical 6 predictions, the interphase thickness for NBR/MXene, PP/MXene, PS/MXene, NR/MXene, and 7 PAM/MXene nanocomposites are 10, 10, 34, 17, and 5 nm, respectively. The proposed model 8 yields a tunneling distance of 0.76 to 7.5 nm, which is below the 10 nm maximum threshold for 9 tunneling conductivity. For all MXene-based nanocomposites, the theoretical calculations match 10 with experimental values (Figure 9a-d).

11

Figure 9. Electrical properties of MXene-polymer nanocomposites. (a-d) Empirical findings and conductivity predictions for NBR/MXene, PP/MXene, PS/MXene, and NR/MXene nanocomposites, respectively. Reproduced with permission from ref.¹⁸⁰. Copyright 2024, Elsevier Ltd. (e) Conductivity variation of MXene hydrogel with MXene content¹⁸¹. (f) Electrical conductivity *vs.* d-Ti₃C₂T_x content for d-Ti₃C₂T_x/CNF composite sheets. Reproduced with permission from ref.¹⁸². Copyright 2018, American Chemical Society.

Yu et al. developed an MXene organohydrogen incorporating glycerol (Gly), featuring an MXene network for electron conduction, binary solvent channels for ion conduction, and multiple solvent-

20 polymer-MXene interfaces for EMI applications¹⁸¹. The conductivity of the MXene hydrogel rises

sharply from 0.099 to 0.442 S m⁻¹ with increasing MXene content from 0.1 to 2.2 wt%, before slightly decreasing to 0.394 S m⁻¹. (Figure 9e). This trend reflects the balance between enhanced 2 electron transport and reduced ion conduction due to smaller ion channels at higher MXene 3 4 concentrations.

5 MXenes, when combined with cellulose nanofibers (CNFs), form a composite paper that demonstrates significant improvements in electrical conductivity¹⁸². As the d-Ti₃C₂T_x content 6 increases, the conductivity rises sharply, reaching 739.4 S m⁻¹ at 90 wt%. Even at 50 wt%, the 7 8 conductivity is 9.691 S m⁻¹, exceeding the 1 S m⁻¹ required for effective EMI shielding 9 applications (Figure 9f). While the insulating nature of CNFs slightly reduces the overall conductivity compared to pure $d-Ti_3C_2T_x$, their one-dimensional structure aids in the alignment of 10 11 MXene nanosheets, ensuring a connected and efficient conductive network. This nanocomposite exhibits a tensile strength of 135.4 MPa, a fracture strain of 16.7%, and a high folding endurance 12 13 of up to 14,260 cycles.

14 MXene-based nanocomposites display both isotropic and anisotropic electrical properties, 15 depending on their structural alignment and processing conditions. When hybridized with materials like CNTs and PVDF, these composites can exhibit anisotropic conductivity, with high 16 17 in-plane conductivity and lower through-plane conductivity in films, while achieving isotropic 18 conductivity in foams. Le et al. prepared PVDF/CNT/MXene films and introduced foam structures 19 using CO₂-assisted foaming at various saturation temperatures (T_{sat}) and different MXene content levels. CNTs intertwine with MXenes to form a 3D conductive network, further improving 20 21 electrical performance. PVDF is selected for its pyroelectric effect, high dielectric constant, 22 mechanical stiffness, and thermal stability. The in-plane conductivity (σ_{\parallel}) and through-plane 23 conductivity (σ_1) of PVDF/CNT/MXene films initially increase with MXene content but level off 24 due to contact resistance between fillers. At 1 wt% MXene, σ_{\parallel} reaches a peak value (~17 S/m) due 25 to optimal MXene alignment, while σ_1 remains lower due to poor conductivity between layers. Higher MXene content (12 wt%) leads to aggregation, reducing σ_{\parallel} and increasing σ_{\perp} slightly. 26 Composite foams, prepared at $T_{sat} = 171$ °C, show increased σ_{\perp} and decreased σ_{\parallel} compared to 27 28 films, with more random filler orientation enhancing through-plane connectivity. Larger cell sizes at higher T_{sat} reduce filler contact, lowering both conductivities. Some of the electrical properties 29 30 of MXene-polymer nanocomposites are summarized in Table 3.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

S. No.	Polymer	MXene	MXene Concentration	Electrical Conductivity (S/m)	Ref.
1	Natural rubber	Ti ₃ C ₂ T _x	6.71 vol. %	1400	167
2	PEDOT:PSS	Ti ₃ C ₂ T _x	88 wt.%	340.5	169
3	Epoxy	Ti ₃ C ₂ T _x	15 wt.%	105	176
4	Epoxy	Ti ₃ C ₂ T _x	4.25 wt.%	184	165
5	PDMS	$Ti_3C_2T_x$	2.5 vol%	550	183
6	PVA	Ti ₃ C ₂ T _x	90 wt.%	22433	163
7	PEO	Ti ₃ C ₂ T _x	1 % wt.%	210 × 10 ⁻⁶	184
8	PAM	Ti ₃ C ₂ T _x	6 wt.%	3.3 × 10 ⁻²	185
9	PVA	Ti ₃ C ₂ T _x	0.14 wt.%	590 × 10 ⁻⁶	186
10	Polystyrene	Ti ₃ C ₂ T _x	0.26%	1081	187
11	PVDF-TrFE- CFE@	Ti ₃ C ₂ T _x	19.5 wt.%	37.4	188

1 Table 3. Electrical properties of MXene-polymer nanocomposites

2 @poly(vinylidene fluoride-trifluoro ethylene) (PVDF-TrFE)

3 5.3 Thermal Properties

MXenes display anisotropic properties due to their structural makeup, with strong covalent bonds 4 5 within the basal plane providing high in-plane strength, while weaker interlayer forces allow easy exfoliation¹⁸⁹. This anisotropy results in higher thermal conductivity within the plane, making 6 7 MXenes ideal for heat dissipation in different applications¹⁹⁰. MXenes, particularly Ti_3C_2 , have 8 thermal conductivities that often surpass those of many metals, making them ideal for enhancing 9 heat transfer in composites. When incorporated into polymers, MXenes improve thermal 10 conductivity by forming interconnected networks that facilitate efficient heat conduction. The 11 effectiveness of these composites depends on the polymer type; those that form hydrogen bonds 12 with MXenes, like PVA and PVDF, enhance thermal transfer through better interfacial bonding. 13 The loading amount of MXenes also influences conductivity, with significant improvements occurring when a continuous network is established at higher concentrations. First-principles 14 15 density functional calculations show that MXenes exhibit thermal conductivities greater than most metals and low-dimensional semiconductors, making them promising additives for enhancing the 16 17 thermal conductivity of polymer composites. Earlier studies demonstrate that a Ti₃C₂T_x/PVA membrane (12.71 wt% PVA) demonstrated a thermal conductivity of 47.6 W m⁻¹·K⁻¹, which, 18

while lower than that of pristine Ti_3C_2 (55.8 W m⁻¹·K⁻¹)¹⁹¹. Cao et al. found that the thermal conductivity of Ti₃C₂T_x/PVDF membranes exhibited minimal increase at low MXene loading (<1.0 wt%) but surged at higher levels¹⁹². This increase is attributed to the extensive surface area of Ti₃C₂ flakes and the formation of hydrogen bonds with PVDF, which effectively reduce interfacial thermal resistance and enhance thermal conductivity.

Figure 10. Thermal properties of MXene-polymer nanocomposites. (a) Illustration of the icetemplate technique for aligning MXene/Ag nanofillers. (b) Effective heat transfer in both in-plane 9 and through-plane directions within the welded MXene/Ag aerogel skeleton due to material and

1

2

3

4

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

structural synergy. (c) Thermal conductivities of MXene films with varying Ag loadings. (d) 1 2 Through-plane conductivity comparisons of MXene-epoxy, MXene/Ag (unwelded)-epoxy, and 3 MXene/Ag-epoxy nanocomposites. (e) In-plane conductivity comparisons of MXene-epoxy, 4 MXene/Ag (unwelded)-epoxy, and MXene/Ag-epoxy nanocomposites. Reproduced with 5 permission from ref.¹⁹³. Copyright 2020, American Chemical Society. (f) Thermal conductivity of $Ti_3C_2T_x$ /epoxy composites at 1.0 vol% filler content. (g) Thermal conductivities of $Ti_3C_2O_2$ /epoxy 6 7 composites with varying volume content and filler size. Reproduced with permission from ref.¹⁹⁴. 8 Copyright 2022, Elsevier Ltd.

9 To improve the thermal conductivity of the MXene/epoxy nanocomposites Ji et al. designed 3D MXene/Ag aerogels using the ice templating method (Figure 10a) as heat transfer skeletons for 10 epoxy nanocomposites by in situ decorating Ag nanoparticles on exfoliated MXene nanosheets to 11 improve contact¹⁹³ (Figure 10b). The vertically aligned MXenes, with a high through-plane 12 thermal conductivity of 472 W m⁻¹ K⁻¹, form a thermally conductive network when combined 13 with Ag, which has a thermal conductivity of 430 W m⁻¹ K⁻¹ and low soldering temperature. The 14 15 resulting MXene/Ag/epoxy nanocomposite exhibits a through-plane thermal conductivity of 2.65 W m⁻¹ K⁻¹, a 26.2% increase compared to the MXene-epoxy nanocomposite, along with improved 16 17 mechanical and thermal expansion properties. The films demonstrate distinct thermal conductive behaviors in the in-plane and through-plane directions, with in-plane thermal conductivity rising 18 to 47.57 W m⁻¹ K⁻¹ at 3.2 wt% Ag nanoparticles loading compared to 15.64 W m⁻¹ K⁻¹ for pristine 19 MXene films. In the through-plane direction, the thermal conductivity increases from 0.7 to 2.2 W 20 m^{-1} K⁻¹ (Figure 10c), enhancing efficient heat dissipation in practical applications; however, Ag 21 22 nanoparticles loading beyond 3.2 wt% leads to film fragility. The thermal conductivities of MXene/Ag/epoxy nanocomposites, measured via the laser flash technique, exhibited 23 24 enhancements in both in-plane (Figure 10d) and through-plane (Figure 10e) directions upon incorporating MXene/Ag fillers. The through-plane thermal conductivity reaches 2.65 W m⁻¹ K⁻¹ 25 26 at 15.1 vol% filler loading, representing a >1200% increase compared to pure epoxy resin. This suggests that Ag nanoparticles improve thermal conductivity by promoting effective heat transfer 27 28 channels within the nanocomposite. The observed anisotropic thermal behavior is attributed to the 29 two-dimensional structure of MXenes, which results in distinct heat transfer mechanisms along 30 the horizontal and vertical orientations of the film.

Terminal groups on MXenes can impact thermal conductivity by reducing phonon scattering and enhancing interfacial interactions with epoxy matrices^{194, 195}. Wang et al. used molecular dynamics and effective medium theory to analyze four MXenes-Ti₃C₂, Ti₃C₂F₂, Ti₃C₂O₂, and Ti₃C₂(OH)₂-

and their epoxy composites¹⁹⁴. The study found that $Ti_3C_2O_2$ achieves the highest thermal 1 2 conductivity of 140.25 W m⁻¹ K⁻¹, while Ti₃C₂(OH)₂ exhibits the lowest interfacial thermal 3 resistance (ITR), improving composite conductivity at optimal flake sizes (Figure 10f). The study 4 assumes MXene flakes as disk shapes with a diameter and thickness of 0.98 nm. It was proposed 5 that the effective thermal conductivities of the nanocomposites initially increase sharply with the lateral size of fillers, eventually leveling off after reaching a critical size. Among the composites, 6 7 $Ti_3C_2O_2$ /epoxy demonstrates the highest thermal conductivity, while Ti_3C_2 /epoxy exhibits the 8 lowest due to its intrinsic thermal conductivity and high ITR. The results indicate two intersections 9 between Ti₃C₂(OH)₂/epoxy and the -O and -F terminated MXenes, suggesting that below critical 10 sizes (325 nm for -O and 772 nm for -F), interfacial thermal conductance plays a more significant role in enhancing thermal performance. Additionally, in the Ti₃C₂O₂/epoxy system, filler volume 11 12 content below 2 vol% is optimal to avoid agglomeration, with thermal conductivity increasing 13 linearly before reaching a plateau as the MXene size increases (Figure 10g). Some of the thermal 14 properties of MXene-polymer nanocomposites are summarized in Table 4.

S. No.	Polymer	MXene	MXene Concent ration	Thermal Conduct ivity (W/mK)	Improvement percentage (%)	Ref.
1	PVA	Ti ₃ C ₂ T _x	2 wt.%	-	18.7	170
2	Thermoplastic polyurethane (TPU)	Ti ₃ C ₂ T _x	1 wt.%	-	8.4	172
3	PVC	Ti ₃ C ₂ T _x	15 wt.%	3.45	~1050	173
4	PVA	Ti ₃ C ₂ T _x	2 wt.%	-	8.2	174
5	Epoxy	Ti ₃ CN	5 wt.%	-	2.7	175
6	Epoxy resin	Ti ₃ C ₂ T _x	1.0 wt.%	-	-0.55	168
7	Polypropylene	Ti ₃ C ₂ T _x	2.0 wt.%	-	11.8	177
8	PDMS	Ti ₃ C ₂ T _x	2.5 vol%	0.694	220	183
9	PVDF	Ti ₃ C ₂ T _x	5 wt.%	0.363	100	196
10	PVA	Ti ₃ C ₂ T _x	-	47.6	-	197
11	Epoxy	Ti ₃ C ₂ T _x	15 wt.%	7.60	~100	198
12	Ероху	Ti ₃ C ₂ T _x	1 wt.%	0.587	141.3	199

15	Table 4.	Thermal	pro	perties	of M	Xene-	polymer	nanocom	posites

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

16 6. MXene-polymer nanocomposites- synthesis strategies

MXenes can be integrated with a wide range of polymers, facilitating the tailoring of 1 2 nanocomposite materials for specific applications. The interaction force between the MXene 3 matrix and polymers in nanocomposite synthesis primarily involves hydrogen bonding, van der Waals interactions, electrostatic interactions, and π - π stacking, depending on the functional groups 4 present on both MXene surfaces and the polymer chains⁹⁴. The MXene surface terminations (e.g., 5 -O, -OH, -F,) can form hydrogen bonds with polymers containing polar groups like -OH, -6 7 COOH, -NH₂ etc. Additionally, electrostatic interactions may occur when charged polymers are 8 used, especially in systems where MXenes have surface charges⁹². Van der Waals forces contribute 9 to non-covalent binding, while polymers with aromatic groups can engage in π - π interactions with MXene layers. These interactions are key to enhancing compatibility, mechanical strength, and 10 functional properties in MXene-polymer nanocomposites. MXene-polymer composites can be 11 fabricated using different processing techniques, such as solution casting^{68, 77}, melt blending^{200, 201}, 12 or electrospinning⁸⁰, etc., allowing for the production of complex shapes, thin films, coatings, or 13 fibers. This versatility in processing enables the integration of MXenes into a wide range of devices 14 and structures^{202, 203, 204, 205}. 15

16 6.1 Surface grafting/modification of MXenes

Due to the abundant functional groups at the surface of MXenes, it becomes easier to functionalize 17 18 these with different organic molecules. First-principles calculations revealed that unmodified 19 Ti₃C₂ MXene can cleave and decompose monomers effectively. In contrast, surface-functionalized 20 Ti₃C₂F₂, Ti₃C₂FO, and Ti₃C₂O₂ bind weakly with monomers due to van der Waals forces, while $Ti_3C_2(OH)_2$ shows a stronger binding affinity²⁰⁶. In the surface modification process, MXene 21 22 sheets are functionalized or chemically modified to introduce specific groups or moieties on their surfaces. These modified MXene sheets are then mixed or dispersed within a polymer solution or 23 24 melt. During polymerization or crosslinking, the functionalized MXene sheets become covalently bonded or physically intertwined with the polymer chains, leading to the formation of 25 nanocomposite material^{207, 208}. A protein-inspired supramolecular elastomer was developed for 26 27 intelligent sensing applications, utilizing self-healable Ti₃C₂ MXene blended with rubber (serine-28 grafted epoxidized natural rubber) (S-ENR) latex²⁰⁹. The study created a self-healing elastomer 29 inspired by proteins for smart sensing. MXene nanosheets were esterified with serine using EDC 30 and DMAP at 100°C for 3 hours to produce S-MXene (Figure 11a). Serine-modified epoxidized 31 natural rubber (ENR) latex was synthesized by reacting serine with ENR latex at 100°C for 3

1

2

3

4

5

6

7

8

9

hours. S-MXenes/S-ENR nanocomposites were prepared by combining S-MXene with S-ENR latex, stirring, sonicating, and drying to form a 3D network film (Figure 11b). Besides this, another surface modification technique involving the covalent attachment of polyethylene glycol carboxylic acid (PEG6-COOH), onto MXenes through esterification chemistry was introduced. The surface modification of Ti₃C₂T_x using PEG6-COOH with high ligand loading significantly improves the dispersibility of MXene flakes in a wide range of non-polar organic solvents (e.g., 2.88 mg/mL in chloroform) without inducing oxidation or altering the structural ordering of Ti₃C₂T_x two-dimensional layers²⁰⁸. Besides these, there are other reports on the MXenes surface modifications for MXene-polymer hybridization^{208, 210}.

10 6.2 Solution blending

In this method, MXenes and polymers are dispersed in a compatible solvent, and mixed via 11 12 stirring, ultrasonication, or high-shear mixing. Then the solvent is removed by evaporation, vacuum drying, or freeze-drying to form a solid MXene-polymer composite. Carey et.al conducted 13 14 a study where they prepared a dispersion of alkylated 2D MXene in nonpolar solvents using the blending method²⁰¹. The study investigated the pseudocapacitive behavior of the resulting 15 16 nanocomposite material. In this process, after the MXene etching, the Li⁺ ions present inside the multilayers are ion-exchanged with di(hydrogenated tallow)benzyl methyl ammonium chloride 17 18 (DHT) (Figure 11c). The resulting multilayers can be easily dispersed in nonpolar solvents. These can be easily processed with linear low-density polyethylene nanocomposite (LLDPE) for many 19 20 applications. The good part of this hybrid assembly is that these remain dispersed for more than 21 10 days without sedimenting even in nonpolar solvents. Jiao et.al conducted a study to prepare 22 photothermal healable, stretchable, and conductive $Ti_3C_2T_x$ MXene composite films using the 23 vacuum filtration method, to achieve efficient EMI shielding²¹¹. To determine the optimal ratio 24 between waterborne polyurethane (WPU) and natural rubber latex (NR latex), a series of composite films were prepared with varying WPU: NR mass ratios. These composite films were 25 26 respectively denoted as WNM as these contain WPU, NR, and MXene. The next step involved 27 obtaining WPU/NR composite emulsions by mixing specific proportions of WPU and NR latex emulsions in an ice bath. Subsequently, a $Ti_3C_2T_x$ suspension was gradually introduced into the 28 WPU/NR composite emulsions. This step allowed the incorporation of $Ti_3C_2T_x$ at various volume 29 30 fractions.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

2 Figure 11. MXene-polymer nanocomposites synthesis. (a) The surface modification of MXene 3 nanosheets is achieved through an esterification reaction with serine. (b) MXene network in NMSE 4 is constructed using the latex assembly method. Reproduced with permission from ref.²⁰⁹. 5 Copyright 2020, American Chemical Society. (c) MXene-polymer blending. MXene multilayers 6 are then treated with DHT to enhance their functionality. The functionalized MXene nanosheets 7 are dispersed in a nonpolar solvent and subsequently utilized in the solution processing of 8 LLDPE²⁰¹. (d) Electrospinning technique. MXene material is concentrated in an aqueous solution and then assembled into a fiber. This fiber was aligned in the axial direction using a wet-spinning 9 10 process²¹². (e) The process of LBL self-assembly of (MXene/TAEA)n multilayer films on planar substrates is depicted schematically²¹³. (f) In-situ polymerization MXene-polymer hybrids. 11 12 Schematic illustration of the modification process of MXene with in situ polymerized PPy. (g) 13 Fabrication of PPy/MXene-decorated PET textile, along with the subsequent process of creating 14 the multifunctional silicone-coated M-textile. Reproduced with permission from ref.⁸². Copyright 15 2018, Wiley. (h) The schematic shows the process of making an MXene/SA hybrid aerogel and 16 its subsequent PDMS-coated MXene/SA foam. Reproduced with permission from ref.²¹⁴. 17 Copyright 2024, Elsevier Ltd.
1

The WNM films were obtained through vacuum filtration, followed by natural drying. Recently, 2 Pan et al. have reported a wearable and flexible MXene and PEDOT: PSS conducting polymer 3 nanocomposite for continuous noninvasive monitoring of sweat glucose²¹⁵. The addition of 0.1 % mass fraction of MXene has significantly improved the conductivity of the composite. In this 4 study, ethylene glycol has been utilized to increase the cross-linking and film-forming properties 5 of nanocomposite. The nanocomposite hydrogel sensor showed a sensitivity of 21.7 µA·mM⁻¹ 6 7 cm^{-2} within the concentration range of 1–94 μ M and a sensitivity of 8.3 μ A·mM⁻¹ cm⁻² within the 8 range of 94–1294 µM. Importantly, this glucose biosensor demonstrated outstanding 9 electrochemical performance in sweat, which was highly correlated with the corresponding 10 findings of the glucometer.

6.3 Electrospinning method 11

12 The electrospinning technique can prepare polymer fibers with diameters in the nanoscale range. MXene-polymer nanocomposites can be effectively synthesized using electrospinning 13 techniques^{80, 216}. MXene fibers can also be synthesized using the wet-spinning technique. Eom et 14 al. devised a technique for producing pure MXene fibers without additional binders²¹². This 15 16 method involves a large-scale wet-spinning assembly, where MXene sheets are dispersed in water at high concentrations, preventing aggregation or phase separation issues (Figure 11d). The 17 18 coagulation process plays a pivotal role in the fabrication of these fibers. By introducing 19 ammonium ions during coagulation, the researchers have assembled MXene sheets into highly 20 flexible, meter-long fibers. These fibers exhibit an exceptionally high level of electrical 21 conductivity, making them promising candidates for various applications in advanced materials. 22 Besides, MXenes can be incorporated into polymer solutions used for electrospinning to produce MXene-polymer composite nanofibers. Recently, a study was conducted on an electrospun 23 24 flexible triboelectric nanogenerator that utilized metallic MXene nanosheets and poly(vinyl alcohol) (PVA)²¹⁷. To prepare the PVA-MXene solution, a 10% (w/v) PVA solution, 1.0 g of PVA 25 26 was mixed with 10 mL of distilled water at 90 °C while stirring for \sim 1 h. Subsequently, MXene 27 was added to the PVA aqueous solution and stirred thoroughly to achieve a homogeneous 28 PVA/MXene mixture. Electrospinning was performed using a 5 mL syringe and needle with a 0.68 29 mm inner diameter at an applied voltage of 18 kV. The combination of MXene nanosheets and 30 PVA in the composite material imparts outstanding electrical properties, enhancing its 31 electronegativity and conductivity. For the positive friction layer, silk fibroin (SF) was selected as

the material for electrospinning nanofiber film due to its biocompatibility, biodegradability, and
 significant triboelectric properties.

3 6.4 Layer-by-layer (LBL) assembly

This method involves the sequential deposition of alternating layers of $Ti_3C_2T_x$ MXenes and 4 polymers onto a substrate. The MXene and polymer layers are formed through techniques such as 5 6 dip coating, spin coating, spray deposition, etc. The coating process can be repeated to achieve the 7 desired thickness and control the MXene-to-polymer ratio in the composite. A method for the 8 vacuum-assisted LBL self-assembly of pillared two-dimensional multilayers comprising MXene 9 and a small molecule called tris(2-aminoethyl) amine (TAEA) was developed²¹³. In this process, (MXene/TAEA)n multilayers were prepared, where n represents the number of bilayers formed in 10 the self-assembled structure. In this method, $Ti_3C_2T_x$ MXene and TAEA solutions with a 11 concentration of 1 g L⁻¹ were used. Porous substrates were placed on a cellulose membrane fixed 12 13 in an adjustable-flow vacuum system. Using airbrushes, atomized solutions were sprayed onto the 14 substrates. The cycle of spraying TAEA, rinsing with water, and then spraying MXene was repeated to create (MXene/TAEA)n films of the desired thickness (Figure 11e). For larger surfaces 15 16 of 3D CNF aerogel and melamine foam, a rapid-LBL assembly method was used. MXene and TAEA solutions were poured on top of the aerogel or foam and forced through by applying vacuum 17 18 pressure. (MXene/TAEA)n multilayer films can be prepared through LBL self-assembly onto 19 fibers and foams. Another study was conducted titled LBL assembly of polyaniline nanofibers (PNF) and $Ti_3C_2T_x$ MXene electrodes for electrochemical energy storage²¹⁸. In this research, the 20 LBL assembly technique was used to create thin-film electrodes by stacking PNF and $Ti_3C_2T_x$ 21 22 MXene materials. The resulting electrodes were intended for applications in electrochemical energy storage, aiming to enhance the performance of energy storage devices such as batteries or 23 24 supercapacitors.

25 **6.5 In-situ polymerization**

In this method, the monomers of the polymer are introduced into a solution containing MXene, and polymerization occurs in situ, meaning within the same environment as the MXene particles^{81,} ^{82, 214}. This leads to the formation of a homogeneous mixture of MXene and polymer, creating a nanocomposite material with MXene uniformly dispersed throughout the polymer matrix²¹⁹. The choice of polymer depends upon the end requirement. If a conducting polymer is chosen it will result in a nanocomposite which may have applications as active electronic material whereas, an

insulating polymer will result in a final product with limited or reduced conductivity. In a study 1 2 reported by Wang et al., the fabrication of MXene-decorated multifunctional and water-resistant 3 textiles with remarkable electromagnetic interference (EMI) shielding and Joule heating performances were investigated. To achieve this, PPy modified MXene sheets using in-situ 4 polymerization (Figure 11f) were utilized, which were deposited onto poly(ethylene terephthalate) 5 textiles⁸². Subsequently, a silicone coating was applied to the textiles to enhance their conductivity 6 7 and hydrophobicity. Highly conductive and water-resistant textiles exhibited high EMI shielding 8 efficiency and excellent Joule heating performance (Figure 11g). In another study, Wu and co-9 workers developed compressible, durable, and conductive PDMS-coated MXene/sodium alginate (SA) foams (MS) for high-performance electromagnetic interference (EMI) shielding. The 10 researchers used MXene and SA to fabricate the foam and then coated the foam with PDMS to 11 enhance its properties for EMI shielding²¹⁴. Ti₃C₂T_x/SA hybrid aerogels were fabricated as 12 13 follows: Ti₃C₂T_x suspension (20 mg mL⁻¹) was added to different amounts of SA (0, 4, 12, 28, and 48 mg) with stirring at 500 rpm for 5 h to achieve homogeneous and high viscosity suspensions. 14 15 The resulting suspensions were poured into Teflon molds and rapidly frozen on a copper cylinder 16 immersed in liquid nitrogen. Subsequently, the directionally frozen samples were freeze-dried at -60 °C under 10 Pa for 48 h to yield unidirectional aerogels. These MS porous architectures were 17 18 coated with PDMS by vacuum-assisted impregnation method. To create the PDMS-coated MS foam, a mixture of 10 g PDMS prepolymer, 1 g curing agent, and 30 mL n-hexane was thoroughly 19 20 mixed in a beaker for 30 min. The resulting mixture was cured at 60 °C for 12 h, resulting in the 21 formation of a thin PDMS layer on the MXene nanosheets of the MS aerogel, creating the PDMS-22 coated MS foam (Figure 11h). The resulting PDMS-coated MXene/SA foam exhibited excellent compressibility, durability, and electrical conductivity, making it a promising candidate for 23 24 effective EMI shielding applications. Besides these, Table 5 summarizes different polymers utilized in MXene-polymers nanocomposite synthesis, along with their respective applications. 25
 Table 5.
 MXene-polymer nanocomposites and their applications.
 26

S.			Synthesis	MXene	Application of	
No.	MXene	Polymer used	technique	concentration	nanocomposite	Reference
1			Electrogelation			220
	$Ti_3C_2T_x$	PEDOT:PSS	method	0 to 60wt%	Sensing	
2	Ti ₃ C ₂ T _x		Ice templating		Electrical	221
		PEDOT:PSS	method	0, 1, and 3 wt %	stimulation	
3	$Ti_3C_2T_x$					222
	-	PEDOT:PSS	Mixing/blending	10-90 wt.%	EMI shielding	

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

BY-NC

3

5

4	Ti ₃ C ₂ T _x				Energy	88
					storage/capacitive	
		PEDOT:PSS	LBL assembly	-	sensors	
5	Ti ₃ C ₂ T _x		LBL assembly			223
		PEDOT:PSS	(spray)	29- 76.6 wt%	Multifunctional	
6	V ₂ CT _x	PEDOT:PSS	Mixing/blending	-	Solar cells	224
7				MXene:PEDOT:PSS		225
	Nb ₂ CT _x	PEDOT:PSS	Solution mixing	(1:5, 1:7, and 1:9)	Solar cells	
8	Ti ₃ C ₂ T _x		Dip-coating and		EMI shielding	226
		PDMS	curing	1, 3, and 5 wt.%	skins	
9	Ti ₃ C ₂ T _x					227
		PDMS	Mixing/curing	20-50%	Pressure sensor	
10	V ₂ CT _x	PDMS	Coating	-	EDL transistor	228
11	Ti ₃ C ₂ T _x	PU#	Mixing	1:1	EMI shielding	229
12	$Ti_3C_2T_x$		U		EMI shielding	230
	, , , , , , , , , , , , , , , , , , ,	PU#	LBL assembly	-	and Joule Heating	
13	Ti ₃ C ₂ T _x	Epoxy	Coating	0-2wt.%	Anti-corrosion	231
14	$Ti_3C_2T_x$	1	In situ	MXene:PPy (9:1,		232
	, , , , , , , , , , , , , , , , , , ,	Polypyrrole	polymerization	8:2 and 7:3)	Supercapacitors	
15	Ti ₃ C ₂ T _x		Surface			233
		Doxorubicin	modification	1:2	Tumor targeting	
16	Ti ₃ C ₂ T _x	Chitosan	Electrospinning	0- 0.75 wt.%	Antibacterial	234
17	$Ti_3C_2T_x$		Surface		Water	235
		Silane	modification	1:1	purification	
18	Ti ₃ C ₂ T _x	PANI/PU	Electrospinning	0-10%	Zn-ion batteries	236
19	$Ti_3C_2T_x$				Pseudocapacitive	81
		Polypyrrole	Polymerization	1:1 and 2:1	electrodes	
20	Ti ₃ C ₂ T _x				Tissue	237
		PEG	3D printing	-	engineering	
21	Ti ₃ C ₂ T _x				Flexible	16
		PVA	Blending	40-90%	electronics	
22	Ti ₃ C ₂ T _x		Solvent			238
		PVA	exchange	2.50%	Strain sensors	
23	$Ti_3C_2T_x$		Ultrasonic		Flexible	239
		SA	mixing	5-30 mg mL-	electronic sen	
24	$ Ti_3C_2T_x $				Flame-retarding/	240
		Polypropylene	Hot-pressing	25%, 56%, and 70%	EMI shielding	
25	$Ti_3C_2T_x$		LBL self-			213
		TAEA*	assembly	-	Supercapacitors	

1 * Tris(2-aminoethyl) amine (TAEA), #polyurethane (PU)

Combining MXenes with a wide variety of polymers makes it possible to enhance and tailor the
properties of MXenes and these can alter the properties of the resulting composite material as
desired^{241, 242, 243}.

7. Applications of MXene-polymer nanocomposites

The addition of polymers to MX enes can significantly improve their performance and expand their 1 2 applications in various fields. By incorporating polymers with good mechanical strength and 3 flexibility, the resulting MXene-polymer hybrids exhibit enhanced mechanical properties, making them suitable for applications requiring flexibility, stretchability, and impact resistance^{54, 244, 245}. 4 This includes flexible electronics, wearable devices, and flexible coatings^{60, 83, 202, 246}. Polymers 5 can enhance the electrochemical performance of MXenes in energy storage devices. The 6 7 combination of MXenes' high electrical conductivity with polymers' ion transport properties can enhance the charge storage capacity of these devices^{247, 248}. Polymers enhance MXene dispersion, 8 9 prevent restacking, and improve synergy, boosting overall material properties²⁴⁹.

10 7.1 MXene-polymers for energy storage applications

MXene-polymer composites offer several advantages in energy storage devices. Polymers can 11 provide mechanical stability to the electrode materials. This improved mechanical stability leads 12 13 to enhanced cycling performance and a longer lifespan of energy storage devices²⁵⁰. Due to van der Waals forces, MXenes layers tend to restack and agglomerate, resulting in reduced accessible 14 surface area and hindered ion diffusion due to lack of active sites^{91, 251}. Polymers in MXene-15 16 polymer composites help to disperse and stabilize MXene layers, preventing restacking and preserving the high surface area of MXenes¹⁶. Polymers can facilitate ion diffusion within the 17 electrode materials²⁵². Polymers can enhance the compatibility of MXene electrodes with different 18 19 electrolyte systems. Certain polymers can act as ion-conductive additives or binders that promote 20 ion transport and enhance the stability of electrolyte-electrode interfaces. The performance of the 21 electrodes, which were fabricated using PEDOT (poly(3,4-ethylene dioxythiophene)) deposited $Ti_3C_2T_x$ sheets, exhibited an improvement compared to the electrodes made with pristine 22 $Ti_{3}C_{2}T_{x}^{253}$. 23

24 Polyaniline@MXene-based positive electrodes have been investigated for asymmetric supercapacitor applications²⁵⁰. The electrode is prepared by casting a homogenous polyaniline 25 26 layer onto a 3D porous $Ti_3C_2T_x$ MXene. This enabled the stable operation of MXene at positive 27 potential due to the increased work function after combining with polyaniline. The resulting 28 flexible polyaniline@MXene positive electrode offers a high volumetric capacitance of 1632 F cm⁻³ at 5000 mV s⁻¹. In another study, pseudocapacitive electrodes were developed by performing 29 30 oxidant-free polymerization of PPy between the layers of Ti₃C₂T_x MXene⁸¹. Hybrid electrodes of $Ti_3C_2T_x$ and PPy achieved up to 416 F g⁻¹ capacitance in 1 M H₂SO₄. 31

Journal of Materials Chemistry A Accepted Manuscrip Figure 12. (a) Schematic of interactions between PEDOT:PSS and MXenes (Ti_2C and Ti_3C_2). (b) CV curves of 10L MSCs with Ti₂C, PEDOT:PSS, and PEDOT:PSS-Ti₂C electrodes. (c) CV curves of PEDOT:PSS-Ti₂C MSCs at 200 mVs⁻¹ with different layer numbers²⁵⁴. (d) CV curves of S@MXene@PDA at 0.2 mV s⁻¹ (first three cycles). (e) Cycling performance of S@MXene@PDA vs. S@MXene at 0.2 C. (f, g) Rate performance and voltage profiles at 0.2-6 C. Reproduced with permission from ref.²⁵⁵. Copyright 2018, Wiley.

3

4

5

6

1

2

3

4

5

6

7

8

9

MXene/PPy (2:1 and 1:1 ratios) nanocomposites, prepared by mixing delaminated $Ti_3C_2T_x$ and PPy, were utilized for supercapacitor applications. Cyclic voltammetry (CV) curves of the hybrid samples revealed a strong pseudocapacitive behavior. The supercapacitors based on a 2:1 ratio nanocomposite demonstrated higher capacitance than those of pristine MXene and the 1:1 ratio due to optimized composition. These supercapacitors outperformed PVA- $Ti_3C_2T_x$ electrodes, achieving ~99% Coulombic efficiency and 92% capacitance retention over 25,000 cycles. Nyquist plots confirmed good ionic conductivity, with slightly higher diffusion resistance in PPy-containing films, attributed to robust bonding, effective ion/electron transport, and protective role of MXene.

10 Besides Ti₃C₂T_x MXene Ti₂C MXene has also demonstrated excellent energy storage capabilities. Xue et al. developed ultrafast, metal-free, on-paper micro-supercapacitors (MSCs) using a 11 composite of conductive PEDOT: PSS and capacitive Ti₂C MXene²⁵⁴. They developed a more 12 effective direct ink writing (DIW) by combining PEDOT: PSS with Ti₂CT_x, leveraging its higher 13 specific capacitance and compatibility with PEDOT: PSS's hole transport paths (Figure 12a). 14 15 Unlike Ti₃C₂T_x, this blend avoids conductivity degradation, enabling improved conductivity, reduced restacking, and high-rate electrochemical performance even with thick electrodes. At 1000 16 17 mV s⁻¹ scan rate, PEDOT: PSS-Ti₂C MSCs (10 layers, $\approx 5 \mu m$ thick) achieved a volumetric capacitance of ≈ 30.6 F cm⁻³, which is nearly double that of pure Ti₂C MSCs and 6 times higher 18 19 than PEDOT: PSS MSCs, confirming their synergistic interaction. CV curves maintained excellent 20 rectangularity, and capacitance increased linearly with layer count at lower scan rates (Figure 12bc). These MSCs retained >96% of their capacitance after 10,000 cycles at a high scan rate of 1000 21 22 mV s⁻¹. They also exhibited an extended voltage window of up to 6 V and maintained outstanding performance even at ultrafast scan rates of 10 V s⁻¹. This work highlights the potential of Ti₂C 23 24 when integrated with polymers for eco-friendly, high-performance power sources for paper-based, 25 portable, and wearable electronics. Additionally, flexible solid-state micro-supercapacitors can be 26 fabricated by electrochemically polymerizing MXene-facilitated PEDOT composite films, and 27 these composite films can be utilized along with MnO₂ to create pseudocapacitive asymmetric 28 micro-supercapacitors²⁵⁶.

MXene-polymer nanocomposites also offer advantages in batteries, as demonstrated by Yaio et al.
 in Li–S batteries with MXene-polydopamine (S@Mxe@PDA) cathodes²⁵⁵. The dual polysulfide

confinement strategy effectively suppresses shuttling, supports high sulfur loading, and ensures 1 strong conductivity and lithium polysulfide adsorption for improved performance. The polar amine 2 3 sites of the PDA layer enable strong chemical adsorption of polysulfides, localizing them on the electrode surface. Additionally, the PDA enhances electrolyte wetting, uptake, and ionic 4 conductivity, improving Li⁺ transport. Figure 12d shows the CV curves of the S@Mxe@PDA 5 cathode at 0.2 mV s⁻¹, with reduction peaks at 2.27 and 1.98 V corresponding to the formation of 6 7 Li₂Sx and Li₂S₂/Li₂S. Figure 12e displays long-term cycling stability at 0.2 C, with 8 S@Mxe@PDA achieving 1044 mAh g⁻¹ after 150 cycles (73% retention), outperforming S@Mxe 9 (565 mAh g^{-1} , 39% retention) due to better polysulfide confinement. Figure 12e,f demonstrates the rate performance of S@Mxe@PDA, showing stable capacities at 1349–624 mAh g⁻¹ from 0.2 10 to 6 C, with minimal capacity loss when returning to lower rates, indicating fast kinetics and 11 stability. 12

Besides these, MXene-polymer hybrids can also be utilized for all-solid-state batteries and fuel
 cells^{19, 205, 257, 258}.

15 7.2 MXene-polymer nanocomposites in sensors and flexible electronics

16 MXene-polymer nanocomposites offer several advantages over MXene-only systems in the field of sensors^{32, 60, 259, 260}. The incorporation of polymers in MXene-based sensors can improve the 17 sensing performance by enhancing selectivity, flexibility, sensitivity, and response time depending 18 upon their sensing nature²⁶¹⁻²⁶³. Polymers can provide a selective environment for target analytes 19 by interacting with specific molecules, gases, or ions^{264, 265}. The integration of MXene-polymer 20 nanocomposites has shown significant promise in enhancing the performance of pressure and gas 21 22 sensors due to the higher conductivity and surface area of MXenes. In a study, a bioinspired interlocked structure was developed to achieve high deformability in 2D MXene/natural 23 24 microcapsule-based flexible pressure sensors using polyimide (PI) and PDMS²⁶². To prepare Ti_3C_2 MXene/natural microcapsule nanofilm, a 0.2 g portion of natural microcapsule (NMC) was 25 26 dispersed in 10 mL of ethanol to create a well-mixed solution. 10 ml of Ti₃C₂ MXene solution was 27 then added to the NMC solution, and the mixture was stirred for 2 hours to ensure uniform dispersion of Ti₃C₂ MXenes and NMC. The mixture was subsequently filtered through a 28 29 polypropylene membrane to create a composite film. This film was air-dried for 30 minutes at

1 room temperature and carefully peeled off from the polypropylene membrane, resulting in a 2 flexible Ti_3C_2/NMC composite film (Figure 13a).

3 Polymeric $Ti_3C_2T_x$ MXene nanocomposites have exhibited promising applications in roomtemperature ammonia gas sensing²⁶⁵. The PEDOT: PSS/MXene composites were prepared via a 4 5 simple in situ polymerization process in/on Ti₃C₂T_x MXene and subsequently utilized to fabricate a gas sensor on a PI substrate. The synthesis involved adding EDOT to the appropriate amount of 6 7 $Ti_3C_2T_x$ MXene suspension, followed by the introduction of ammonium persulfate (APS) and 8 poly(4-styrene sulfonate) (PSS). The mixture was stirred for 24 hours at room temperature and 9 1000 rpm, producing a black PEDOT: PSS/MXene composite solution (Figure 13b). These 10 MXene-polymer nanocomposites are used to create wearable capacitive pressure sensors, with $Ti_3C_2T_x$ MXene and poly(vinylidene fluoride-trifluoro ethylene) (PVDF-TrFE) as the dielectric 11 layer between PEDOT: PSS and polydimethylsiloxane electrodes, facilitating reliable human 12 physiological signal acquisition²⁶¹. MXene powder in DMF was sonicated for 1 hour to form a 13 14 homogeneous suspension, mixed with PVDF-TrFE to create a solution with up to 13 wt % MXene, 15 and electro-spun into nanofibers. For the sensor, PDMS was spin-coated and cured on glass, 16 followed by PEDOT: PSS spin-coating and DMSO treatment. The PEDOT: PSS film was peeled off, with CNS placed between two PEDOT: PSS layers, and carbon tape electrodes added (Figure 17 18 13c).

Self-healing sensors based on MXene-polymer nanocomposites have attracted significant attention 19 20 due to their unique capabilities in autonomously repairing damage and restoring functionality²⁶⁶. 21 Polymers provide flexibility and conformability to MXene-based sensors, enabling their 22 integration into various form factors and substrates. These composites combine the exceptional 23 properties of MXene, such as high electrical conductivity and mechanical strength, with the self-24 healing properties of polymers²⁶⁷. A study recently developed a conductive MXene nanocomposite hydrogel with healable and degradable properties for advanced epidermal sensors²⁶⁷. The hydrogel 25 26 was created by combining MXene, poly(acrylic acid) (PAA), and amorphous calcium carbonate 27 (ACC). In the synthesis, PAA and calcium chloride were dissolved in water and stirred, followed by the addition of an MXene solution. A carbonate solution was then added, forming the MXene-28 29 PAA-ACC hydrogel. After formation, the hydrogel was washed thoroughly until the water was 30 clear.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

Journal of Materials Chemistry A Accepted Manuscrip

1

Figure 13. MXene-polymer nanocomposites-based sensors. (a) Schematic diagram illustrating the fabrication process of the Ti_3C_2/NMC bio-composite film. Reproduced with permission from ref.²⁶². Copyright 2019, American Chemical Society. (b) The schematic illustration depicts the synthesis process of PEDOT: PSS/MXene composites and the subsequent fabrication process of the gas sensor based on these composites. Reproduced with permission from ref.²⁶⁵. Copyright 2020, American Chemical Society. (c) Schematic diagram illustrating the fabrication process of

the composite nanofiber scaffolds (CNS)-based pressure sensor. Reproduced with permission from 1

- ref.²⁶¹. Copyright 2020, American Chemical Society. 2
- Besides these, there are many other reports on MXene-polymer composites given in Table 6 with 3
- diverse applications^{32, 243, 260, 268}. 4
 - Table 6. The comparison of several MXene-based composites as sensors.

	 S Table 6. The comparison of several MXene-based composites as sensors. 									
Sr.	Components	MXene contents (wt.%)	Fabrication technique	Structure type	Sensor type	Mechanical strength	Gauze factor	Ref.		
	Ti ₃ C ₂ T _x /PDMAEMA	78	Surface modification	Accordion	Temperature	-	-	269		
	Ti ₃ C ₂ T _x /Poly(N- isopropylacrylamide)/Polyacrylamide	-	In situ polymerization	Porous network	Temperature and Strain	0.4 MPa	-	270		
	Ti ₃ C ₂ T _x /PDADMA/BPEI	90.7	Physical mixing	Layer-by- layer	рН	-	116 kΩ pH ⁻¹	271		
1	Ti ₃ C ₂ T _x /PEDOT/PVDF	5	In situ polymerization	Sandwich	Pressure	-	0.51 kPA ⁻¹	261		
5	Ti ₃ C ₂ T _x /PVA/PDMS	0.2	Physical mixing	Sandwich	Pressure	-	1.5 kPA ⁻¹	272		
5	Ti ₃ C ₂ T _x /PVDF-TrFE	38	Physical mixing	Sandwich	Pressure	-	2213.68 kPa ⁻¹	273		
7	Ti ₃ C ₂ T _x /PDA/AgNWs	16.7	Physical mixing	Brick-and- mortar	strain	-	200	274		
3	Ti ₃ C ₂ T _x /PVA/Poly(vinylpyrrolidone)	1	Physical mixing	Porous network	strain	300 kPa	19.18	275		
1	Ti ₃ C ₂ T _x /Poly(acrylic acid)(PAA)/Amorphous calcium carbonate (ACC)	0.07	Physical mixing	Porous network	strain	180 kPA	10.79	276		
0	Ti ₃ C ₂ T _x /PAA	2	Physical mixing	Porous network	strain	30 kPa	0	277		

8

9

MXene-polymer composites can lead to the development of flexible electronic devices having 1 2 lightweight, flexible, and high-performance devices with enhanced mechanical properties, tailored 3 electrical conductivity, and improved protection against environmental factors^{16, 59}. The synergistic effects between MXenes and polymers can be used in next-generation flexible 4 electronic devices with diverse applications, including wearable electronics, flexible displays, EMI 5 shielding, conformable sensors, and piezoelectric applications ^{50, 60, 278, 279, 280, 281}. Zhang et al. 6 7 investigated a flexible MXene-decorated fabric (M-CF) featuring interwoven conductive 8 networks. The study explored the fabric's multifunctional capabilities, specifically focusing on 9 integrated Joule heating, electromagnetic interference shielding, and strain-sensing performances⁵⁹. By incorporating MXene into the fabric's structure, the researchers aimed to 10 enhance its electrical and thermal properties, making it a versatile material for various applications 11 related to heating, shielding, and sensing. After etching the MXene inks were uniformly sprayed 12 13 onto the surface of pretreated cotton fabrics (Figure 14a). To achieve different loading contents of MXene on the fabric, they adjusted the spray-drying cycles. By varying the MXene content in the 14 cotton fabric, they aimed to optimize and find the most suitable MXene loading for achieving the 15 16 desired multifunctional applications like EMI shielding, Joule heating, sensing, etc. (Figure 14b). The EMI shielding properties of the samples were studied within a frequency range of 8-12 GHz, 17 18 employing a waveguide method. The average EMI shielding effectiveness of the 2 wt% MXene-19 based sample is ~25 dB, while for the 4 and 6 wt.%, it measured 33 and 36 dB, respectively. The 20 sensors based on 2 wt% MXene led to maximum resistance change under the same bending strain, making the nanocomposite ideal for detecting small human activities. The optimized 2 wt.% M-21 22 CF sensor maintained consistent resistance change for more than 5000 cycles of bending and 23 releasing. Attached to a finger, the MXene-based sensor consistently detected resistance changes 24 during bending movements and accurately recorded a pulse rate of 80 beats per minute.

Polymer lamination can effectively mitigate MXene oxidation as evidenced by their application in various devices. Lee et al. demonstrated that laminating a thin poly(4-vinylphenol) (PVPh) layer as a protective film on MXene (PL-MXene) protects it from the external environment⁵⁰. This combination was utilized for the electroluminescent (EL) display whose structure is demonstrated in Figure 14(c). The relative luminance variance ($\Delta L/L_0$) of devices with PL-MXene and bare MXene electrodes over time is shown in Figure 14(d). Besides these, there are many other reports

3 MXene-polymer nanocomposites are also studied for piezoelectric applications. Piezoelectric 4 sensors can transform the plentiful mechanical energy that surrounds us into electrical energy, mechanical energy harvesters are seen to be one of the most appealing energy harvesting 5 technologies. Nevertheless, their poor electrical performance is preventing it from being used 6 7 practically. Because the electrical performance of the energy harvester may be enhanced by 8 harvesting the applied mechanical energy in two harvesters concurrently, hybridization of the two 9 distinct mechanical energy harvesters such as MXene and any other piezoelectric material may 10 offer a solution to this problem.

An overall schematic representation of the hybridization generator integrating MXene and barium 11 titanate as conductive fillers in the PDMS matrix (HG-MBP) is shown in Figure 14e²⁸⁴. The HG-12 13 MBP was made of MXene/BaTiO₃, polyimide (PI), and aluminum (Al), as seen in Figure 14e. The electrode, substrate, piezoelectric layer, and triboelectric layer are all PDMS (MBP) composite 14 15 films. As seen in the inset photographic image of Figure 14e, the superior flexibility of HG-MBP 16 was verified with a high bending angle using a bending test. This resulted from the intrinsic property of the MBP composite film, which has a thickness of $125 \pm 10 \,\mu\text{m}$ and contains 2D and 17 18 nano-scaled materials, such as MXene sheets and BaTiO₃ nanoparticles, inside the PDMS matrix 19 with high elasticity. Schematic of MXene is shown in Figure 14g (i). Additionally, an X-ray 20 diffraction (XRD) examination was performed to verify that MXene was successfully synthesized. 21 As shown in Figure 14g (*ii*). A high open-circuit voltage of 80 V, a short-circuit current of 14 μ A, and a power density of 13.5 W/m² were achieved after determining the ideal MXene concentration. 22 An example of this is the successful control of a 3D printer-modeled robot hand using the finger 23 24 joint motions of a real hand that has HG-MBPs attached. The k-mean clustering approach was also used in the development of the object recognition system, which distinguishes between various 25 26 materials with a high classification accuracy of 93.33%. These findings demonstrate the great 27 potential of the suggested HG-MBP as a material detection sensor and human gesture manipulation 28 system, which is anticipated to be used as a next-generation e-skin in the human-machine interface. 29 MXene exhibits a better piezoelectric effect on poly(vinylidene fluoride-co-trifluoroethylene) 30 (PVDF-TrFE) compared to polyvinylidene fluoride (PVDF). Generally (beta-phase) β-phase in 31 PVDF crystals exhibit the best piezoelectric properties, although achieving this phase in PVDF is

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

still challenging ²⁸⁵ ²⁸⁶. However, PVDF-TrFE inherently possesses a larger content of the 1 electroactive β-phase than PVDF due to its higher steric hindrance ²⁸⁷. The incorporation of MXene 2 3 into PVDF-TrFE further promotes the nucleation of this phase, leading to improved piezoelectric properties ²⁸⁸. This enhancement is less significant in PVDF due to its lower initial β-phase content. 4 The dielectric constant is significantly increased, and dielectric loss is decreased in PVDF-TrFE 5 as a result of the interaction between the polymer matrix and the surface functional groups of 6 7 MXene. PVDF-TrFE/MXene composites exhibit enhanced mechanical flexibility and durability, 8 making them more suitable for applications in flexible electronics and wearable devices. Fatemeh 9 M. et al. ²⁸⁸ reported the fabrication of acoustic energy harvesters using electrospinning of the 10 piezoelectric polymer PVDF-TrFE onto fabric-based electrodes. The incorporation of $Ti_3C_2T_x$ MXene flakes effectively induced polarization locking within the electro-spun PVDF-TrFE, 11 12 optimizing its electromechanical performance. The resulting device was mechanically robust, lightweight, and flexible, enabling efficient energy harvesting and sound detection within the 50 13 to 1000 Hz frequency range and at sound pressure levels between 60 and 95 dB. The device 14 15 demonstrated an impressive sensitivity of 37 VPa⁻¹, outperforming previous PVDF-based acoustic 16 harvesters. It achieved a peak output power of 19 mW/cm3 at 200 Hz and 95 dB. This advancement highlights the potential of MXene-enhanced PVDF-TrFE composites in powering small electronic 17 18 devices, including implantable biomedical devices, smart wearables, and remote Internet-of-things (IoT) systems. The comparison of PVDF/MXene and PVDF-TrFE/MXene composites is given in 19 20 Table 7. Numerous studies that reported the applications of PVDF-TrFE/MXene-based piezoelectric nanogenerators can be found here 289 290 291 292. 21

23 24

s Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.	This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
Open Acce:	(cc) BY-NC

1	Table 7 The com	noricon of covor	al MVana basad	anna aitas as	niozoalastria	nonogonoratora
1		parison or sever	al MACHE-Daseu	composites as	piezoelecule	nanogenerators.

Components	MXene contents (wt.%)	Device dimensions	Source	Fabrication technique	Sensitivity	Power density	Ref.
PVA/Ti ₃ C ₂ T _x	$/{\rm Ti}_{3}{\rm C}_{2}{\rm T}_{\rm x}$ - $8 \times 8 \ {\rm mm}^{2}$ 0.5 H		0.5 H	Electrospinning	-	42 mW m ⁻²	293
Glycine/Nb ₂ C T _x	-	100 mm ²	0.6 Hz, 10 N	Crystallization	5 pC N ⁻¹	-	294
PVDF/Ti ₃ C ₂ T _x	-	$1 \times 1 \text{ cm}^2$	96.5 d B, 0.2 N	Crystallization	0.4 nA kPa ⁻¹	-	295
PVDF/Ti ₃ C ₂ T _x	0.4wt.%	2.5 cm × 3.0 cm	1–3 Hz	Electrospinning	43 pCN ⁻¹	-	281
PVDF/Ti ₃ C ₂ T _x	1.0 wt.%	2 × 20 mm	1– 10 ⁷ Hz	Microinjection Molding		18.9 μWcm ⁻²	280
PVDF/Ti ₃ C ₂ T _x	0.01-0.05 g/L	$2 \text{ cm} \times 2 \text{ cm}$	4.7 N, 5 Hz	Spin- and spray-coating	-	14 µWcm ⁻²	296
PVDF/Ti ₃ C ₂ T _x	5-25 wt%	20 mm × 20 mm	1-8 Hz	Electrospinning	-	11.213 Wm ⁻²	297
PVDF/CNT/Ti 3C2Tx	0.05-0.2 wt %	$2 \times 1.5 \text{ cm}^2$	1–500 MΩ	Electrospinning	-	18.08 W m ⁻²	298
PVDF- TrFE/Ti ₃ C ₂ T _x	0.05- 0.2 wt%	12.56 cm ²	200 Hz, 95 dB	Electrospinning	37 V Pa ⁻¹	$0.207 \ { m mWm^{-2}}$	288
PVDF- TrFE/Ti ₃ C ₂ T _x	0.02-0.5 wt.%	2.4 cm^2	5 kPa, 1 Hz	Printing	-52.0 pC N ⁻¹	-	299
PVDF- TrFE/Ti ₃ C ₂ T _x	2.0 wt%	1×1 cm ²	20 N, 1 Hz	Electrospinning	-	3.64 mWm ⁻²	285
PVDF- TrFE/Ti ₃ C ₂ T _x	16% (w/v)	15 × 1.3 mm	7 N, 6 Hz	Electrospinning	-	4.02 W/m ²	289
2							

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

BY-NC

(00)

Figure 14. MXene-polymers nanocomposites in flexible electronics. (a). Multifunctional MXene decorated cotton woven fabrics fabricated by employing the spray-coating method, where the
 MXene material is applied to the cotton woven fabric to impart its multifunctional properties like

EMI shielding, Joule heating and strain sensing, etc. (b) Demonstration indicating the applications of MXene coated flexible fabrics in different areas. Reproduced with permission from ref.⁵⁹. Copyright 2020, American Chemical Society. (c) SEM image showing the cross-sectional view of an organic AC-EL display with a PL-MXene electrode (scale bar: 50 nm). The inset provides a schematic representation of the PL-MXene organic AC-EL display. (d) Maximum Δ L (luminance change) to L₀ (initial luminance) ratio of bare MXene and PL-MXene organic AC-EL displays as a function of air exposure duration (days). ⁵⁰. Copyright 2020, American Chemical Society. (e) General schematic representation of the manufactured HG-MBP with the Al electrode connected to the PI substrate spin-coated with MBP composite film. The inset graphic illustrates the constructed HG-BMP's flexibility. (f) MXene and BaTiO3 particles implanted in the PDMS matrix as shown in a cross-sectional EDX picture. (g) (*i*) MXene's schematic chemical bond structure and (*ii*) XRD result ²⁸⁴.

13 Zhao and colleagues used rolling ²⁸¹, hot pressing, and electrospinning techniques to create a high-14 performance MXene/PVDF composite film with a β-phase of more than 95 weight percent. The MXene/PVDF-based sensor showed exceptional voltage sensitivity, up to 0.0480 V N⁻¹. It is 15 16 important to remember that the MXene used in this work was generated via HF etching, which left it with rich surface groups. The favorable impact may be primarily ascribed to the hydrogen 17 18 bonding interaction that favors all trans planar conformation (β -phase) during PVDF crystallization and is brought about by the -OH groups of the MXene and F atoms of PVDF chains. 19 20 The directed distribution and regular stack of MXene flakes, which facilitated the transfer, storage, and release of electric charge, were further examined by Han and colleagues ²⁸⁰. Furthermore, this 21 22 paper mentioned the -F groups of the MXene with interfacial compatibility, which are typically 23 thought of as a type of significant surface group.

24 Even though adding MXenes to composites increases their piezoelectricity for improved sensing 25 properties, if the MXene level is over the percolation threshold, the composite's performance drastically declines ^{300, 301}. This may be explained by the fact that when the amount of conductive 26 MXene is too high, many connections are created that degrade the performance. Increased MXene 27 28 content may result in additional β phases but a conductive route inside the composite. Additionally, 29 a lower MXene content results in fewer β phases. One important component for improving performance is the percolation threshold. Li and colleagues used molecular dynamics to simulate 30 31 MXene/PVDF composite material systems with varying MXene levels based on the Forcite model ³⁰². They then computed the free volume fraction (FFV) to demonstrate the impact of MXene 32 33 sheets. On the shape of the macromolecular chain. The space between molecules is known as free 34 volume. When a suitable quantity of MXene sheets was introduced into the PVDF polymer system,

1 2

3

4

5

6

7

8

9

10

11

the polymer system's FFV dropped to its lowest value, indicating that there was less room for 1 2 macromolecular chains to move. Additionally, the optimized sensor demonstrated a sensitivity of 3 up to 55.42 mV kPa⁻¹.

4 Due to their varied inherent characteristics, MXenes give composite materials new functions in 5 addition to improving piezoelectric performance. In addition to their electrical benefits, MXenes are biocompatible, which makes them appropriate for a range of biomedical applications ^{303, 304,304}. 6 7 MXene-based composites can be employed safely in settings that call for interactions with 8 biological systems thanks to their biocompatibility. MXenes is a promising material for advanced 9 composite technologies because of its improved piezoelectricity and bio-friendly qualities, which 10 help to close the gap between high-performance materials environmentally, and biologically compatible solutions. By using MXenes' high electrical conductivity to increase electron transfer 11 12 rates, Fu and colleagues were able to generate and transport electrical charges under mechanical stress, improving the piezoelectric response ³⁰⁵. Furthermore, the composite's MXenes not only 13 14 generated sufficient heat to eradicate bacteria while simultaneously producing singlet oxygen, which may also have a highly effective sterilizing effect. This suggests that it has a lot of promises 15 16 for use in biomedical and self-powered body monitoring applications. Comparison of several MXene-polymer composites in field of piezoelectric nanogenerators is given in Table 7. 17

7.3 MXene-polymer nanocomposites in 3D/4D printing 18

MXene polymer composites offer great promise for 3D/4D printing applications, integrating 19 20 MXene's exceptional properties of high electrical conductivity and mechanical strength with the versatility and tunability of polymers^{26, 64, 306}. Enabled by 3D/4D printing technology, these 21 22 composites showcase dynamic and shape-changing capabilities in response to external stimuli, paving the way for advanced engineering and smart applications^{307, 308}. 23

24 The programmable micro-supercapacitors can be developed using 3D printing of composite ink consisting of PEDOT: PSS/MXene/ethylene glycols (PME)²⁶. In Figure 15a, the design and 25 26 preparation procedure of 3D printed PME gel composites for micro-supercapacitors is illustrated. 27 By mixing MXene and ethylene glycol (EG), and PEDOT: PSS solution an ink was prepared. During the fabrication process, the ink was transferred to a syringe and extruded under pressure 28 29 through a needle to construct thick interdigitated electrodes for the MSCs. To achieve controlled 30 solidification and form a 3D highly interconnected framework, a freezing technology utilizing a

cold plate was applied during the printing process. In this process PEDOT: PSS (Figure 15b) plays
a significant role, and by appropriately bridging the PEDOT structures an integrated porous
structure is created for the optimization of ion/electron transport kinetics in the fabricated gel
(Figure 15c).

5 In addition to the development of 3D printing, the development of 4D printed hydrogels using 6 MXene and PEDOT: PSS, showcasing high-efficiency pseudocapacitive energy storage 7 capabilities³⁰⁹.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

2 Figure 15. 3D/4D printing applications. (a) The preparation of the 3D printable PME gel 3 composite inks and interdigital electrodes is depicted in a schematic illustration. (b) The 4 morphology and electronic structure transition of PEDOT:PSS within the PME gel composites is 5 shown. (c) A schematic illustration illustrates the gelation process and the mechanism for 6 enhancing electron/ion transport in the PME gel composites. Reproduced with permission from 7 ref.²⁶. Copyright 2023, Wiley. (d) Composite inks comprising MXenes, PEDOT: PSS, and 8 additives are utilized for 3D printing designed patterns. Through a self-assembly process, these 9 inks transform into MXene hydrogels³⁰⁹.

2

3

4

5

6

7

8

MXene hydrogels were prepared via self-assembly by mixing $Ti_3C_2T_x$ MXene suspension with PEDOT suspension, followed by sonication. A solution containing DMSO, sulfuric acid, sodium L-ascorbate, and deionized water was added and stirred. The mixture was then poured into molds and heated to form Ti3C2Tx MXene hydrogels. These hydrogels were further treated with sulfuric acid to improve mechanical strength and washed to remove impurities. The optimization involved adjusting MXene content, DMSO volume, sulfuric acid concentration, and sodium L-ascorbate ratio. The method offers numerous advantages, especially its remarkable versatility and feasibility in synthesizing various MXenes such as Nb₂CT_x, Ti₃C₂T_x, and Mo₂Ti₂C₃T_x.

9 An approach to 3D printing using MXene and poly(vinyl alcohol) (PVA) composites using 10 MXene-surfactant ink has also been proposed for energy storage applications. Through the controlled deposition of highly conductive MXene particles onto a PVA matrix, the fabricated 11 sample exhibited conductive behavior⁶³. In a separate study, Li et al. demonstrated the production 12 of elastic nanocomposites by encapsulating 3-(trimethoxysilyl)propyl methacrylate-modified 13 14 MXene nanosheets within a photocurable polyurethane acrylate resin (PAR) matrix using digital 15 light processing 3D printing. By adjusting the MXene content in the PAR, the mechanical 16 properties of the elastomers were tailored. The resulting MXene-PAR nanocomposites, containing 0.1% w/w fillers, exhibited remarkable tensile strength and elongation at a break of 23.3 MPa and 17 18 404.3%, respectively, representing a significant increase of 100.8% and 37.8%, compared to the control³¹⁰. Some other reports on MXene-polymer composites in 3D/4D printing are also available 19 in the literature^{307, 311}. 20

21 7.4 MXene-polymer nanocomposites in EMI shielding

EMI shielding is the most explored area among the applications of MXene-polymer 22 nanocomposites. These composites offer several advantages in the field of EMI shielding ^{312, 313}. 23 24 MXene-polymer composites exhibit lightweight, conductivity, and improved mechanical properties making them highly suitable for EMI shielding applications^{313, 314}. Polymers provide 25 26 the advantage of tunability in MXene-polymer composites, allowing the customization of EMI shielding performance for specific applications or requirements^{29, 313}. By selecting appropriate 27 polymers with specific dielectric properties, the composite's overall electrical conductivity and 28 29 impedance matching can be tailored to provide optimal shielding performance within desired frequency ranges^{29, 204}. Polymers in MXene-polymer composites provide chemical resistance and 30

2

3

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Downloaded on 9/03/2025 22:11:54.

Open Access Article. Published on 28 februari 2025.

(cc) BY-NC

durability, enhancing the longevity and performance of EMI shielding materials. The polymer matrix acts as a protective layer, shielding the MXene flakes from environmental factors such as moisture, chemicals, or oxidation³¹⁵.

4 Different structures of MXene/polymer composites offer distinct mechanisms for EMI shielding depending on various factors³¹⁵. In multilayer MXene/polymer composites, multiple MXene layers 5 are stacked within the polymer matrix (Figure 16a). The interlayer spacing and alignment influence 6 7 the EMI shielding. Electromagnetic waves penetrate the composite and get reflected or scattered 8 at the interfaces between the MXene layers and the polymer. This multiple reflection and scattering 9 lead to effective EMI attenuation. Porous MXene/polymer composites have voids or pores within 10 the material (Figure 16b). These voids can trap and dissipate electromagnetic waves, reducing their propagation. The interconnected porous network of MXene also enhances the electrical 11 conductivity, further improving the EMI shielding efficiency. In segregated MXene/polymer 12 composites, MXene and polymer phases exist as distinct domains within the material (16c). The 13 14 MXene domains act as conductive pathways, while the polymer regions provide structural support. This phase separation enhances electrical conductivity and enables effective EMI shielding by 15 16 creating a conductive network to dissipate electromagnetic energy. Some MXene/polymer composites include magnetic particles or other conductive additives (Figure 16d). MXene/polymer 17 18 composites with conductive and magnetic fillers show excellent EMI-shielding performance. The conductive network inculcates an impedance mismatch at the composite/air interface, leading to a 19 20 high reflection. Magnetic materials enhance impedance matching at the conductive filler/air interface, increasing EMW absorption. These additives enhance the electromagnetic absorption 21 22 and scattering properties of the composite.

To address the challenges posed by harsh freezing and high-humidity environments for polymeric EMI shielding materials, Chang et al. developed ultrathin, flexible MXene/Ag nanowires/PEDOT: PSS composite coatings³¹⁶. Fabricated via drop-casting and hydrophobic spraying, these coatings achieve an EMI shielding effectiveness of 31.5 dB at ~10 μ m thickness. These nanocomposite coatings also offer excellent electro/photo-thermal properties, water repellency, interfacial adhesion, and mechanical durability, making them suitable for cold and damp conditions. The shielding mechanism of the MXene/AgNWs/PEDOT: PSS coating is shown in Figure 16(e).

Figure 16. EMI shielding mechanisms vary among different structures of MXene/polymer composites. (a) Multiple MXene layers lead to reflection and scattering, effectively attenuating EMI. (b) The interconnected MXene network and voids trap and dissipate electromagnetic waves, reducing their propagation. (c) Separate MXene and polymer domains create conductive pathways, ensuring efficient EMI shielding. (d) The inclusion of magnetic or conductive fillers enhances impedance matching, improving EMI absorption³¹⁵. (e) Diagram depicting electromagnetic

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Downloaded on 9/03/2025 22:11:54.

Open Access Article. Published on 28 februari 2025.

microwave dissipation in the MXene/AgNW/PEDOT:PSS coating. Reproduced with permission
 from ref.³¹⁶. Copyright 2023, Elsevier Ltd.

As an electromagnetic wave strikes the MXene/AgNWs/PEDOT: PSS coating, most of it reflects due to impedance mismatch. The penetrating portion interacts with dense charge carriers, leading to significant polarization and conduction losses. The 1D AgNWs bridge the gaps between MXene nanosheets, creating conduction networks that enhance electron hopping and migration, thus increasing conduction losses. Additionally, the lamellar microstructures cause the wave to bounce between MXene layers, further dissipating energy due to impedance mismatch at the PEDOT: PSS/MXene interfaces.

10 In a recent study, $Ti_3C_2T_x$ MXene composite films were developed for efficient EMI shielding, featuring photothermal healing, stretchability, and high conductivity²¹¹. By increasing the MXene 11 content in the waterborne polyurethane (WPU), natural rubber, and MXene-based composite 12 (WNM) composite films the conductivity increased sharply which led to the high EMI shielding 13 for WNM composite exhibiting the EMI shielding efficiency (SE) of 76.1 dB at a thickness of 336 14 \pm 15 µm for X-band, whereas, for Ku-band the EMI SE value is ~80 dB. The EMI shielding 15 mechanism in the composite films is based on induced polarization due to the MXene functional 16 groups. The local dipoles between Ti and surface groups (-F and -OH), especially -F on MXene 17 surfaces, induce dipole polarization, leading to attenuation of penetrated EMWs through interfacial 18 19 polarization loss. Additionally, polarized interfaces between the honeycomb-like MXene network 20 and the polymeric matrix enhance polarization loss, further improving EMI shielding performance. 21 The honeycomb-like MXene network structure contributes to the exceptional EMI shielding 22 performance of the WNM films across a wide frequency range.

These advantages of MXene-polymer composites in EMI shielding make them highly attractive for various industries, including flexible electronics³¹⁷, telecommunications³¹⁸, aerospace³¹⁹, where effective protection against electromagnetic interference is crucial³²⁰. The synergistic effects between MXenes and polymers enable the development of lightweight, flexible, and highperformance EMI shielding materials with improved properties and capabilities.

28 7.5 MXene-polymers nanocomposites for anti-corrosion applications

The exceptional characteristics of $Ti_3C_2T_x$, such as its unique layered structure and large specific surface area, along with remarkable electrical and mechanical properties, make it highly promising

1

2

3

4

5

6

7

8

for anti-corrosion applications^{66, 321, 322}. To utilize the inherent anticorrosion properties of pristine $Ti_3C_2T_x$ nanosheets these were incorporated in the form of single- to few-layer Ti3C2Tx nanosheets into a waterborne epoxy coating (WEC) through a simple physical mixing. Zhang et al. conducted a study on the surface functionalization of $Ti_3C_2T_x$ and its application in aqueous polymer nanocomposites to enhance corrosion protection³²². In this approach, they utilized [3-(2-Aminoethyl) aminopropyl] trimethoxy silane (AEAPTES), a silane coupling agent, to modify the $Ti_3C_2T_x$ MXene. This modification aimed at adjusting the wettability of $Ti_3C_2T_x$ to improve its compatibility with the polymer matrix in the nanocomposites.

9 In another study, a few-layer amino-functionalized $Ti_3C_2T_x$ nanosheets (k-Ti₃C₂) were combined 10 with an interpenetrating polymer network (IPN) to create k- Ti₃C₂/IPN composite coatings and examined the tribological characteristics of these coatings³²³ (Figure 16a). The wear rates of the 11 k- Ti₃C₂-0.75 (0.75 wt.% amino functional Ti₃C₂T_x) composite coating decreased by 82.41% 12 before UV aging and 74.55% after UV aging, compared to the pure IPN coating, under dry friction 13 14 conditions. Additionally, during the tribo-corrosion test in a 3.5 wt% NaCl solution, the k- Ti₃C₂-0.75 composite coating exhibited the highest open circuit potential (OCP) and the lowest 15 16 coefficient of friction (COF) among all coatings, both before and after UV aging.

17 In a recent study, the anticorrosion and anti-wear behavior of an inorganic-organic multilayer protection system consisting of an epoxy coating incorporating $Ti_3C_2T_x$ MXene. The researchers 18 19 designed and prepared this protective system to enhance its effectiveness against corrosion and wear⁶⁶. The hydrophilic nature of $Ti_3C_2T_x$ allowed it to maintain stable dispersions within the 20 21 epoxy matrix. This characteristic played a vital role in creating an effective physical barrier for 22 anti-corrosion purposes. The Ti₃C₂/epoxy coatings with different Ti₃C₂ content (0.5, 1, and 2 wt. 23 % Ti₃C₂T_x/epoxy) were obtained via the curing reaction of epoxy resin with an amine curing agent 24 (Figure 17a). The mechanism of protection from corrosion with Ti₃C₂ content was proposed as 25 demonstrated in Figure 17b-c. With no MXene content the corrosion probability is high and as the 26 MXene content is increased the corrosion inhibition efficiency increases. But as the Ti₃C₂ content 27 was raised to 2.0 wt. %, irregular corrosion particles began to accumulate once more and corrosion 28 inhibition efficiency decreased. This indicates that beyond the optimal content, MXene tends to 29 agglomerate, adversely impacting the anti-corrosion performance. Hence, Ti₃C₂ nanosheets can 30 effectively enhance the corrosion resistance of the coatings, but only when added in the optimal

amount. The Tafel plots display the corrosion behavior of the uncoated Q345 sample (polished steel), pure epoxy, and $Ti_3C_2T_x$ /epoxy composites with different $Ti_3C_2T_x$ ratios (Figure 17d).

3

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

4 Figure 17. The anti-corrosion performance of MXene-polymer composites. (a) Synthesis of k-Ti₃C₂/IPN coatings. Reproduced with permission from ref.³²³. Copyright 2021, Elsevier Ltd. 5 Schematic representation of the corrosion process in two scenarios: (b) Without Ti_3C_2 contained 6 7 epoxy coating and (c) With Ti₃C₂ contained epoxy coating. (d) Tafel plots of the samples immersed 8 in 3.5% NaCl for 96 hours. Among the uncoated and coated samples, the 1 wt. %-coated sample 9 exhibited the most superior protection. This was evident from the substantial positive shift in 10 potential value (E_{corr}) and the lowest corrosion current (I_{corr}). The potential was measured relative to the saturated calomel electrode, utilized as the reference electrode. Reproduced with permission 11 12 from ref.⁶⁶. Copyright 2019, Elsevier Ltd.

Following a 96-hour immersion in a 3.5% NaCl solution, it was observed that the Ti₃C₂T_x provided enhanced corrosion protection on the steel substrates compared to pure epoxy coatings. This improvement in anti-corrosion properties was attributed to MXene flakes in an optimized concentration, acting as thin film barriers that hindered the diffusion of electrolytes and provided

effective corrosion protection to the substrate. The anti-corrosion performance can also be achieved through well-dispersed MXene-polymer composite coatings, made possible by covalent modification and ambient electron-beam curing²⁴¹.

7.6 MXene-polymers nanocomposites in biomedical applications

5 Polymer-functionalized MXenes exhibit exceptional properties that make them highly valuable for 6 various applications in the medical sector. The big advantage is that the polymers have better 7 compatibility, hence these nanocomposites can also be applied to numerous biomedical applications^{282, 324}. The applications include antimicrobial treatments, photothermal therapy (PTT), 8 9 drug delivery systems, diagnostic imaging techniques, biosensors, and bone regeneration 10 processes. MXene polymer nanocomposites have shown great promise in biomedical applications. 11 These nanocomposites combine the unique properties of MXene materials, such as excellent 12 conductivity, high surface area, and antibacterial activity, with the versatility and biocompatibility of polymers. They hold potential for various biomedical uses, including tissue engineering^{237, 325}, 13 cancer therapy^{326, 327, 328}, drug delivery systems^{207, 329}, biosensors³³⁰, and antimicrobial coatings³³¹, 14 ³³². MXene polymer nanocomposites offer exciting opportunities for advancing medical 15 technologies and improving healthcare outcomes. 16

17 7.6.1 Antimicrobial applications

The hydrophilic nature and anionic surface properties of MXenes enhance their interaction with 18 bacterial cell membranes. Through hydrogen bonding, the functional groups of MXenes interact 19 20 with lipopolysaccharide molecules on the cell membrane, leading to cell inactivation. This 21 interaction hinders nutrient intake, effectively inhibiting bacterial growth. Additionally, the 22 formation of a conductive bridge over the lipid bilayer facilitates the transfer of reactive electrons from the bacterial cell to the external environment, ultimately causing cell death^{74, 75}. The 23 application of $Ti_3C_2T_x$, a high aspect ratio material, as a coating on PVDF membranes resulted in 24 25 notable improvements in hydrophilicity, as evidenced by a reduced contact angle of 37°. 26 Additionally, the presence of large pores in the membrane was mitigated. As a result, the viability 27 and growth of E. coli (Gram-negative bacteria) were reduced by approximately 73%, while B. 28 subtilis (Gram-positive bacteria) experienced a growth inhibition of around 67%⁷⁴.

29 A study on the tunable antibacterial activity of a polypropylene (PP) fabric coated with $Ti_3C_2T_x$

30 MXene flakes, coupling the nano-blade effect with reactive oxygen species (ROS) generation was

1

2

3

1 conducted⁷⁵. In this study, an antibacterial medical fabric using a straightforward self-assembly 2 process was developed, wherein delaminated Ti₃C₂T_x MXene flakes were arranged on the surface 3 of PP fibers (Figure 18a). By varying the amount of MXene in the coating solution from 1 to 32 mg/mL, they achieved edge-on assembly of MXene flakes on the PP surface, allowing the 4 monitoring of band gap evolution for a restacked structure. Characterization of the PP/Ti₃C₂T_x 5 nanocomposite revealed highly effective antibacterial properties, a robust coating, and excellent 6 7 chemical/thermal stability. In-vitro microbiological studies against both Gram-positive 8 Staphylococcus aureus as well as Gram-negative Escherichia coli demonstrated that PP/Ti₃C₂T_x 9 reduced bacterial viability up to 100%. This effect was attributed to a synergistic combination of physical contact causing membrane stress and light-induced ROS generation. The antibacterial 10 mechanism in PP/ $Ti_3C_2T_x$ fabrics involved synergistic membrane stress mediated by the physical 11 12 contact of sharp edges (nano-blade effect) of MXene flakes, along with the generation of ROS 13 (Figure 18b). Before this, $Ti_3C_2T_x$ MXene exhibited antibacterial properties. Rasool et al. investigated Ti₃C₂T_x against E. coli and B. subtilis using bacterial growth curves and agar plates⁷⁴. 14 15 $Ti_3C_2T_x$ showed higher antibacterial efficiency against both E. coli and B. subtilis compared to 16 graphene oxide. The concentration-dependent antibacterial activities of $Ti_3C_2T_x$ in aqueous suspensions (Figure 18c). The top frame (Right side-top, Figure 18c (A-F)) shows photographs of 17 18 agar plates where after a 4-hour treatment, the E. coli bacterial cells were subjected to recultivation with different concentrations of $Ti_3C_2T_x$: 0 µg/mL (A), 10 µg/mL (B), 20 µg/mL (C), 50 µg/mL 19 20 (D), 100 µg/mL (E), and 200 µg/mL (F). The bottom frame (Right side-down, Figure 18c(A-F)) shows photographs of agar plates with B. subtilis bacterial cells treated similarly. At a 21 22 concentration of 200 μ g/mL, Ti₃C₂T_x resulted in over 98% bacterial cell viability loss within 4 hours of exposure, as validated by regrowth curve analysis and colony forming unit (CFU). 23 24 Electron microscopic analysis and lactate dehydrogenase (LDH) release assay revealed damage to 25 the cell membrane, leading to the release of cytoplasmic materials.

2 Figure 18. Antibacterial activity of MXene-polymer nanocomposites. (a) Illustration showing a 3 facile approach to obtain $Ti_3C_2T_x$ -modified PP medical fabrics (PP/ $Ti_3C_2T_x$ nanocomposites) with 4 exceptional antibacterial properties, adjustable optical characteristics, and impressive thermal and 5 chemical stability. (b) Schematic diagram showcasing the antibacterial activity in $PP/Ti_3C_2T_x$ 6 nanocomposites, highlighting the synergistic effect of the physical nano blade action and the 7 generation of reactive oxygen species. Reproduced with permission from ref.⁷⁵. Copyright 2022, 8 American Chemical Society. (c) Concentration-dependent antibacterial activities of $Ti_3C_2T_x$ in 9 aqueous suspensions. The top frame (Right side-top, Figure A-F) shows photographs of agar plates where after a 4-hour treatment, the E. coli bacterial cells were subjected to recultivation with 10 different concentrations of Ti₃C₂T_x: 0 µg/mL (A), 10 µg/mL (B), 20 µg/mL (C), 50 µg/mL (D), 11 12 100 µg/mL (E), and 200 µg/mL (F). The bottom frame (Right side-bottom, Figure A-F) displays 13 photographs of agar plates with B. subtilis bacterial cells treated similarly. The study utilized 14 bacterial suspensions in deionized water as a control, without the presence of $Ti_3C_2T_x$ MXene. Reproduced with permission from ref.⁷⁴. Copyright 2016, American Chemical Society. 15

MXenes can be utilized for their antibacterial properties, as shown in a study where micrometerthick $Ti_3C_2T_x$ MXene membranes were prepared by filtration onto a polyvinylidene fluoride (PVDF) support. ³³³. To assess their bactericidal effects, the modified $Ti_3C_2T_x$ membranes were tested against E. coli and B. subtilis using two methods: bacterial growth on the membrane surface and exposure of the membrane to bacterial suspensions. The results showed that the fresh $Ti_3C_2T_x$ MXene membranes exhibited an antibacterial rate of over 67% against E. coli and 73% against B. subtilis, compared to the control PVDF membrane, under the same conditions. Interestingly, the

3

aged $Ti_3C_2T_x$ membrane displayed even higher efficacy, with over 99% growth inhibition observed 2 for both bacterial strains.

7.7.2 Drug delivery and photothermal therapy

4 MXene-polymer nanocomposites have promising applications in drug delivery, anticancer, antibacterial biofilms, etc.^{332, 334} Rabiee et al. developed an innovative nanocarrier using inorganic 5 MXene/MOF-5 (metal-organic frameworks) nanostructures for co-delivery of the drug 6 7 doxorubicin (DOX) and gene pCRISPR³³⁵. This study presents a nanocarrier approach for efficient 8 co-delivery of drugs and genes for biomedical applications. To enhance bioavailability and 9 interaction with pCRISPR, the nanomaterial was coated with alginate and chitosan. The polymer-10 coated nano-systems doxorubicin delivery and cytotoxicity were evaluated on HEK-293, PC₁₂, HepG₂, and HeLa cell lines. The chitosan-coated nanocarriers demonstrated superior cell viability, 11 12 with over 60% relative cell viability in all tested cell lines. The alginate-coated nanocarriers ranked second, showing more than 50% relative cell viability across all cell lines. The cytotoxicity was 13 dose-dependent, with longer treatment times leading to reduced cell viability. The nanocarriers 14 15 were modified to become suitable, stimuli-responsive, and equipped with a capping agent. To 16 achieve this, chitosan and alginate were used to modify the nanocarriers (Figure 19a). Polymer solutions of alginate and chitosan were prepared and reacted in the dark for 7 hours. The resulting 17 18 suspensions were mixed with drug-free (MXene/MOF-5) and drug-loaded (MXene/MOF-5-DOX) nanocarriers for 6 hours at room temperature. After 24 hours on various cell lines, MXene/MOF-19 20 5 showed cell viabilities of 38.7%-14.3% at 0.1 µg/mL and 27.6%-9.9% at 10 µg/mL, with a drug 21 payload efficiency of 35.7%. Chitosan-based nanocarriers achieved a green fluorescent protein 22 (GFP)-positive efficiency of 25.8% in gene delivery studies. Yang et al. developed a clinical implant based on Nb₂C MXene/titanium plate (Nb₂C@TP) for bacterial infection removal and for 23 24 regeneration of tissues³³⁶. This implant offers practical multimodal anti-infection functions. The Nb₂C nanosheets (NSs) were decorated onto amidated TPs (TPs-NH₂) via electrostatic 25 26 interactions, resulting in the formation of Nb₂C@TP. The Nb₂C@TP plays a crucial role in 27 suppressing bacteria through multiple modes (Figure 19b). When bacteria attempt to attack the implant surface, Nb₂C@TP activates the accessory gene regulator (Agr), which prevents bacterial 28 adherence and promotes biofilm detachment. Nb2C@TP directly induces bacterial death by 29 30 regulating the essential metabolic pathways such as the tricarboxylic acid (TCA) cycle and the

phosphotransferase system (PTS) pathway. These combined mechanisms effectively combat bacterial infection.

Researchers have created a biodegradable nanocomposite micellar hydrogel delivery system with 4 unique functionalities of NIR-II photothermal ablation and vascular disruption, enabling 5 minimally invasive antitumor therapy using $Ti_3C_2T_x$ and poly(d,l-lactide)-poly(ethylene glycol)poly(d,l-lactide) (PDLLA-PEG-PDLLA, PLEL) triblock copolymer micelle³³⁷. Ti₃C₂ and CA4 (natural polymer) were selected as the photothermal therapy (PTT) agent and vascular disrupting agent (VDA), respectively, for the development of the nanocomposite micellar hydrogel with dual functionalities in minimally invasive antitumor therapy (Figure 19c).

11 Figure 19. Biomedical applications of MXene polymer nanocomposites in drug delivery and photothermal therapy. (a) Schematic illustration of MXene/MOF-5 and its alginate and chitosan 12 nanostructures. The modification process involves the integration of chitosan and alginate onto the 13

1 2

3

6

7

8

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

nanocarriers, resulting in stimuli-responsive properties and the incorporation of a capping agent. 1 2 Reproduced with permission from ref.³³⁵. Copyright 2021, American Chemical Society. (b) The 3 trimodal bacterial killing strategy of Nb₂C@TP. This strategy involves biofilm resistance, intrinsic 4 bactericidal effects, and thermal ablation of bacteria. Additionally, Nb₂C@TP demonstrates 5 promising in vivo tissue regeneration properties. Reproduced with permission from ref.³³⁶. 6 Copyright 2021, American Chemical Society. (c) The schematic illustration of injectable PLEL-7 based micellar hydrogels co-delivered with CA4 and Ti₃C₂ for synergistic NIR-II photothermal 8 and vascular disrupting therapy. Reproduced with permission from ref.³³⁷. Copyright 2020, 9 American Chemical Society.

The micellar hydrogel system exhibits an impressive photothermal conversion efficiency (41.4% in the 1064 nm window, utilizing a laser power of 1.0 W cm⁻²). Additionally, hydrogel demonstrates prolonged retention at the tumor site, enabling sustained release of therapeutic agents, thereby facilitating comprehensive and effective treatment.

14 Additionally, MXenes can also be used to create smart 3D network nanoplatforms by integrating Ti₃C₂ MXene with cellulose hydrogels showcasing light-induced bimodal photothermal/ 15 chemotherapy anticancer activity³²⁷. When incorporating the anticancer drug doxorubicin 16 17 hydrochloride (DOX), the cellulose/MXene hydrogels exhibit a remarkable ability to enhance the release rate of DOX, significantly accelerating its delivery. Dai et al. designed composite 18 19 nanosheets based on Ta₄C₃ MXene for multiple imaging-guided photothermal tumor ablation. The 20 rational selection of MXene composition and surface functionalization facilitated the achievement of this innovative approach³²⁸. In the study, a redox reaction was initiated on the surface of Ta_4C_3 21 MXene, leading to the in-situ growth of manganese oxide nanoparticles (MnO_x/Ta_4C_3). This 22 23 growth was facilitated by the reducing properties of the nanosheets. Through careful selection of 24 the MX ene composition and additional functionalization, the resulting MnO_x/Ta_4C_3 -SP composite 25 nanosheets served as high-performance contrast agents. They enabled simultaneous use in 26 computed tomography (CT) for tantalum-based imaging, tumor microenvironment-responsive T1-27 weighted magnetic resonance imaging (MRI) using the MnO_x component, and photoacoustic 28 imaging.

The advantages of MXene-polymer nanocomposites in photothermal therapy enable more efficient, targeted, and controlled treatment of diseases, particularly cancer. The combination of the photothermal properties of MXenes with the tunability, biocompatibility, and targeting capabilities of polymers opens new possibilities for non-invasive, localized, and personalized therapeutic approaches.

1

7.8 Water desalination and purification membranes

MXene-polymer composites offer many advantages in water purification and desalination applications over MXene⁶⁹. These composites can be easily synthesized, coated onto membranes, or formed into filters or adsorbents³³⁸. Polymers can provide a porous and interconnected network within the composite, increasing the surface area available for adsorption^{205, 339}. Numerous studies have provided evidence that laminar membranes exhibit anomalous transport phenomena, such as ultrafast and precise ion selectivity, when the d-spacing is comparable to the diameter D of hydrated ions³⁴⁰.

9 MXene-polymer nanocomposites can be utilized to create a super-hydrophilic and underwater super-oleophobic $Ti_3C_2T_x$ MXene-based composite membrane. This can be achieved through 10 11 vacuum-assisted self-assembly of MXene nanosheets on a porous polyvinylidene fluoride (PVDF) 12 substrate, followed by in situ mineralization of the photocatalyst β -FeOOH on the membrane surface⁷⁰. The resulting membrane was treated with HCl and dried under vacuum. The 13 14 MXene@CS/TA membrane was prepared by mixing chitosan and tannic acid solutions at pH 3, 15 immersing MXene in the solution for 12 hours, then rinsing and drying at 30°C under vacuum. The membrane was subsequently mineralized in FeCl3 solution, resulting in the MXenes/TA-16 17 FeOOH membrane, which exhibited high permeation flux and superior separation efficiency for various oil-in-water emulsions. 18

Wang et al. demonstrated a novel approach to stabilize the $Ti_3C_2T_x$ laminar architecture using 19 alginate hydrogel pillars³⁴¹. The hybrid SA-Ti₃C₂T_x membrane with a lamellar structure was 20 21 prepared by mixing sodium alginate (SA) solution with a diluted $Ti_3C_2T_x$ colloidal and filtered by PVDF membrane. Subsequently, the SA-Ti₃C₂T_x membrane was immersed in various multivalent 22 23 Mn⁺ cross-linking solutions for 4 hours to obtain a cross-linked membrane having hydrogel pillars 24 in the interlayer spacing (Figure 20a). The flexible membrane was then dried at room temperature 25 under a vacuum, peeled from the PVDF support, and stored under a vacuum. By pillaring the membrane with Ca-alginate, the nanochannel diameters $(7.4 \pm 0.2 \text{ Å})$, resulting in a membrane 26 that exhibited exceptional permeation cut-off and outstanding sieving properties for different 27 valent cations. The membrane exhibited a high promise for acid recovery due to its outstanding 28 H⁺/Fe²⁺ selectivity, making it useful for traditional ion exchange membranes. Additionally, an 29

- ultrathin Mn-alginate pillared membrane with the same d-spacing displayed 100% Na_2SO_4
- rejection along with high water permeance.

4 Figure 20. MXene-polymer nanocomposites in water purification/filtration membranes. (a) 5 Fabrication process of the sodium alginate (SA) and $Ti_3C_2T_x$ membrane. Initially, the SA solution 6 was mixed with the $Ti_3C_2T_x$ colloidal solution, leading to firm and homogeneous attachment of 7 SA molecules onto the nanosheet surface through hydrogen bonding. Subsequently, the composite 8 $SA-Ti_3C_2T_x$ nanosheets were assembled into a hybrid membrane with a lamellar structure. Finally, 9 the SA- Ti₃C₂T_x membrane was immersed in various multivalent Mn⁺ cross-linking solutions $(Ca^{2+}, Ba^{2+}, Mn^{2+}, and Al^{3+})$ to obtain the cross-linked membrane with hydrogel pillars in the 10 11 interlayer spacing³⁴¹. (b) Schematic of the fabrication process for MXene/nylon substrates. It 12 involves brush-coating MXene onto the surface of commercial nylon membranes, creating a thin 13 MXene layer on the nylon substrate. Subsequently, a polyamide membrane is fabricated on top of

the MXene/nylon substrate, resulting in the final MXene/nylon/polyamide composite membrane.
 Reproduced with permission from ref.³³⁸. Copyright 2020, American Chemical Society.

3 Additionally, MXene-polymer nanocomposites can be utilized to develop a high-performance forward osmosis (FO) membrane by interlayering $Ti_3C_2T_x$ MXene with polyamide³³⁸. The 4 fabrication process involved a scalable and straightforward brush-coating of MXene on nylon 5 6 substrates, followed by an interfacial polymerization step (Figure 20b). The resulting FO 7 membrane exhibited high water permeability and low specific salt flux when tested with a sodium 8 chloride draw solution. It also demonstrated exceptional performance in organic solvent forward 9 osmosis, showing a significant flux with low specific salt flux using a lithium chloride draw 10 solution. Additionally, the membrane proved effective for seawater desalination and industrial textile wastewater treatment applications. 11

All-in-all, the incorporation of polymers into MXene-based materials for water purification and desalination offers improved adsorption capacity, selectivity, stability, membrane performance, antifouling properties, scalability, and environmental compatibility^{342,216, 343}. These advantages make MXene-polymer composites promising candidates for addressing water scarcity, ensuring clean water supply, and advancing sustainable water treatment technologies.

7.9 MXene-polymer nanocomposites for solar cell applications

MXene integrated with polymers can be ideal for solar cell applications due to their ability to 18 19 preserve inherent electronic properties and ensure strong interaction with polymer matrices³⁴⁴. 20 This compatibility enhances electrical conductivity, making MXene-polymer composites highly 21 promising for advancing flexible electronics and photovoltaic devices. Nb₂CT_x is a significant member of the MXenes family, which exhibits distinct chemical and physical characteristics as 22 23 well ³⁴⁵. Deng et al. reported a PEDOT: PSS-Nb₂C hybrid hole transport layer (HTL) to improve the device performance of organic solar cells (OSCs) ³⁴⁶. They employed PEDOT: PSS-Nb₂C 24 25 hybrids with varying doping MXene ratios (0.05, 0.10, and 0.15 wt%) by directly mixing the Nb₂C colloidal aqueous solution with PEDOT: PSS. A 40 nm-thick HTL layer was produced by spin 26 27 coating the ITO/glass substrates with PEDOT: PSS aqueous solution or the PEDOT: PSS-Nb₂C hybrid solution for 60 seconds at 3000 rpm followed by deposition of active material, electron 28 29 transport layer (ETL), and electrode, respectively. Figure 21a-b presents the schematic layout of 30 the fabricated device and the chemical structures of the various non-fullerene acceptors (NFAs) 31 and polymer donor PM6. A higher WF was observed in the case of PEDOT: PSS-Nb₂C hybrid

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

BY-NC

8

film (5.3 eV), as compared to PEDOT:PSS film (5.0 eV). It is clear that the increased WF better fits the WF of PM6 (5.5 eV), which decreases leakage current by suppressing charge recombination and facilitating hole extraction ³⁴⁷. Figure 21c-d shows J–V characteristics and external quantum efficiency (EQE) spectra acquired for the OSCs with different Nb₂C MXene ratios in PEDOT:PSS employing the PM6:BTP-eC9 binary active layer.

Figure 21. MXene-polymer-based solar cells. (a) PEDOT:PSS-Nb₂C hybrid HTL device construction. (b) The chemical structure of various NFAs and polymer donor PM6, L8-BO, Y6, and BTP-eC9. (c) J–V properties and (d) EQE spectra obtained for the solar cells using the PM6:BTP-eC9 binary active layer with varying Nb₂C MXene doping ratios in PEDOT:PSS. Reproduced with permission from ref.³⁴⁶. Copyright 2023, Wiley. (e) Diagram of the PSCs device architecture showing the chemical structure of PM6, Y6, ETL, HTL, and Nb₂CT_x. (f) Nb₂CT_x is utilized as the ETL and HTL in the schematic energy level diagram of solar cells. (g) Using Nb₂CO_{1.2}OH_{0.8} as the ETL and (h) Nb₂CO_{1.36}OH_{0.2} as the HTL, charge transfer, and extraction in solar cells. Reproduced with permission from ref.³⁴⁸. Copyright 2021, American Chemical Society.

1 2

3

4

5 6

7

8

9

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

) BΥ-NC

Through the use of solution-processable Nb₂C MXene and by using different NFAs (PM6:Y6, 10 PM6:BTP-eC9, PM6:BTP-eC9:L8-BO), surface treatments have improved PCE for OSCs based 11 12 on binary and ternary systems of active layers. It was proposed that Nb₂C MXene added to PEDOT: PSS HTL may efficiently aid in PEDOT and PSS phase separation, enhancing 13 14 PEDOT:PSS's conductivity. For OSCs based on the ternary active layer of PM6:BTP-eC9:L8-BO, the doping ratio of Nb₂C MXene in PEDOT:PSS was tuned to reach a maximal PCE of 19.33%, 15 16 which is currently the highest value among those of single junction OSCs employing 2D materials. The hybrid HTL improves performance by reducing interface recombination, enhancing hole 17 18 mobility, and boosting charge extraction efficiency.

19 A similar study by Huang et al. reported the use of Nb_2CT_x that investigated the use of additional MXenes in the photovoltaic area by treating Nb₂CT_x with alkali and annealing treatments to 20 modify its WF by controlling the surface functional groups³⁴⁸. Following a KOH treatment, -F in 21 pure Nb₂CT_x may be substituted with -OH, and lowered the WF from 4.62 (Nb₂CO_{1.2}OH_{0.6}F_{0.2}) 22 to 4.32 eV (Nb₂CO_{1.2}OH_{0.8}). WF increased to 5.03 eV (Nb₂CO_{1.36}OH_{0.2}) as a result of the removal 23 of one part of the -OH and the transformation of another portion into -O groups upon annealing 24 at 500 °C. Additionally, this is the first time that these Nb₂CT_x groups have been used as the ETL 25 26 and PM6:Y6-based polymer solar cells (PSCs) HTL, which has a stellar PCE of 15.22% (ETL) and 15.03% (HTL). These Nb₂CT_x are applied to the PSCs based on PM6:Y6 as a buffer layer, 27 28 where Nb₂CT_x with KOH treatment is used as ETL, and Nb₂CT_x with annealing treatment is used 29 as HTL. Figure 21e shows the schematic of the PSCs structures with tuned Nb₂CT_x (Nb₂CO_{1.2}OH_{0.8}, Nb₂CO_{1.36}OH_{0.2}) used as the ETL and HTL. Figure 21f shows the energy level 30 31 diagram with Nb₂CT_x used as the ETL and HTL. From this, it can be seen that the Nb₂CO_{1.2}OH_{0.8} (or Nb₂CO_{1,36}OH_{0,2}) exhibits a well-matched energy level compared to Nb₂CO_{1,2}OH_{0.6}F_{0.2} in PSCs, 32 which reduces the electron (or hole) barrier height. Moreover, for Nb₂CO_{1,2}OH_{0.8}, the dipolar 33

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Downloaded on 9/03/2025 22:11:54.

Open Access Article. Published on 28 februari 2025.

) BΥ-NC

22

interlayer induced by -OH will form an electric field pointing from the active layer toward Nb₂CT_x, which will facilitate the transport of the electrons but block the transport of the holes (Figure 21g). On the other hand, with Nb₂CO_{1.36}OH_{0.2}, the dipolar interlayer created by -O will provide an electric field that points from Nb₂CT_x in the direction of the active layer, facilitating the movement of the holes but preventing the motion of electrons (Figure 21h).

6 V_2C MXene has also demonstrated great potential for solar cell applications due to its exceptional 7 electrical properties, superior mechanical qualities, and high transmittance⁷³. V₂C MXene exhibits 8 excellent hydrophilicity, adjustable work function, strong electrical conductivity, and better 9 transparency. Gu et al. improved the properties of organic solar cells by placing a layer of V₂C 10 material between ITO and PEDOT: PSS significantly improved the performance of PM6:BTP-11 eC9-based devices⁷³. Using a 2D nanosheet material V_2C in combination with PEDOT: PSS, a 12 high-performance V₂C/PEDOT: PSS composited HTL was created, offering superior 13 transmittance and strong electrical conductivity. In addition, the V₂C/PEDOT: PSS composite 14 HTL outperformed the pure PEDOT: PSS interface layer in terms of device performance and photovoltaic properties. In comparison to the 17.41% efficiency of the pure PEDOT: PSS interface 15 device, the V₂C/PEDOT: PSS-based composite interface device exhibited a notable rise to 18.17%. 16 17 According to the carrier dynamics study, the addition of the V₂C layer increased the number of 18 charge-transfer paths with PEDOT: PSS, which enhanced charge transfer and collection and even 19 reduced the performance of charge combinations. The findings showed that adding 2D material V_2C , which has excellent conductivity and permeability, offers an efficient way to improve the 20 21 performance of solar cells.

8. Limitations of MXenes in Polymer Nanocomposites for Various Applications

There is no doubt that MXenes when added in polymers can improve the overall properties of the resulting nanocomposites. However, their practical implementation across diverse applications is hindered by inherent limitations such as MXene oxidation susceptibility, brittleness of polymer at higher MXene concentrations, color change due to MXene, and poor dispersion of MXenes in many solvents. These challenges are particularly critical when MXenes are combined with polymers for specific applications, where uniform distribution and long-term stability are essential. The limitations of MXenes in polymer nanocomposites for various applications are as follows:

Journal of Materials Chemistry A Accepted Manuscript

- 1. Energy Storage: Oxidation degradation in MXenes affects their conductivity and electrochemical characteristics, reducing the overall energy storage performance. Higher MXene concentration may lead to brittleness of nanocomposite which can limit mechanical flexibility, impacting stability during cyclic stability studies. Poor dispersion in polymers may also result in non-uniform coatings, lowering the specific capacitance and energy density.
- 2. Sensors: Oxidation of MXenes can reduce sensitivity and selectivity due to reduced conductivity. Beyond optimized MXene concentrations impact the mechanical durability of sensors which can limit their flexibility. Poor dispersion results in polymers may result in non-uniform sensing layers, affecting the reliability and repeatability of sensors.
- 3. **3D/4D Printing:** The brittleness of MXene-polymer composites restricts their flexibility and printability, posing challenges for fabricating complex structures. MXenes oxidation during post-processing can further compromise the mechanical strength and structural stability of these nanocomposites. Poor dispersion of MXenes within polymer matrices impairs resolution and uniformity, which can limit the controlled precision and performance of printed architectures.
- 4. **EMI Shielding:** When MXenes are incorporated into polymers, oxidation-induced degradation, mechanical brittleness, and poor dispersion can negatively impact EMI shielding performance. Oxidation at the MXene-polymer interface can reduce conductivity, lowering shielding effectiveness. Despite polymer flexibility, MXenes may still contribute to brittleness, weakening the composite under stress. Poor dispersion of MXenes leads to uneven conductivity, resulting in inhomogeneous shielding layers and reduced EMI performance. Proper dispersion and oxidation control are crucial for maximizing the effectiveness of polymer-MXene composites in EMI shielding applications.
- 5. Anti-Corrosion Applications: In anti-corrosion applications, oxidized MXenes can degrade their protective barriers, reducing efficiency. Poor dispersion of MXenes can cause uneven coatings, leading to defects and corrosion pathways. High concentrations of MXenes can lead to fragility that can result in cracks, compromising the protective performance. Effective dispersion and oxidation control are crucial for maintaining the integrity of MXene-based coatings.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

- 6. Flexible Electronics: In MXene-polymer composites for flexible electronics, the overconcentration of MXenes in polymers may lead to brittleness of MXenes which limits flexibility, affecting stretchability and durability. Oxidation-induced color changes alter optical properties, restricting their use in transparent or visual devices. Poor dispersion of MXenes within the polymer matrix leads to reduced conductivity and structural inconsistencies, which degrade performance. Effective dispersion and oxidation control are crucial for enhancing the properties of MXene-based polymer composites in flexible electronic applications.
- 7. Antimicrobial Applications: When MXenes are mixed with polymers for antimicrobial applications, their susceptibility to oxidation degradation may reduce antibacterial efficacy over time. Poor dispersion in the polymer matrix leads to uneven distribution, compromising the uniformity of the antimicrobial effect. Proper dispersion and oxidation control are crucial to maintaining the long-term effectiveness of MXene-polymer-based antimicrobial composites.
- 8. **Drug Delivery and Photothermal Therapy:** When MXenes are added to polymers for drug delivery and photothermal therapy, their oxidation sensitivity reduces photothermal efficiency and chemical stability, affecting target delivery precision. Limited biocompatibility requires surface modifications, which may alter the structural integrity of MXenes. Dispersion challenges of MXenes in the polymer matrix hinder uniform drug loading and controlled release, impacting therapeutic effectiveness. Proper surface modification and dispersion control are essential to optimize the performance of MXene-based drug delivery and photothermal therapy systems.
- 9. Water Desalination and Purification Membranes: When MXenes are added to polymers for water desalination and purification membranes, MXene oxidation can impact ion selectivity and permeation performance, limiting their reliability and durability. The higher concentration of MXenes may lead to brittleness of the membranes under operational conditions. Limited solvent compatibility results in poor dispersion within the polymer matrix, reducing uniform pore formation and compromising membrane performance. Effective dispersion, oxidation control, and solvent compatibility are crucial for enhancing the long-term performance of MXene-based water desalination and purification membranes.

10. Solar cells: MXene oxidation lowers conductivity and stability, affecting solar cell efficiency. High concentrations cause agglomeration, disrupting charge transport, while poor solvent compatibility results in non-uniform films, compromising light absorption and carrier mobility. Enhanced dispersion, oxidation resistance, and solvent compatibility are crucial for improving solar cell performance.

9. Challenges and opportunities in MXene-polymer nanocomposites

9.1 Challenges

1

2

3

4

5

6

7

8 9

11

Synthesis of MXene-polymer nanocomposites poses several challenges, which can impact the final properties and performance of the materials.

- 10 1. Uniform dispersion of MXenes in polymer matrix: As MXenes tend to agglomerate due to their high surface energy, ultimately, it can lead to poor interfacial interactions and reduced 12 mechanical properties of the nanocomposite
- 13 2. Stability: Dispersion stability is another issue that needs to be addressed. MXene-polymer 14 nanocomposites can be sensitive to environmental factors as MXenes are prone to oxidation, 15 leading to potential degradation or loss of functionality over time.
- 16 3. Interface compatibility: Achieving strong interactions and uniform dispersion of MXene nanosheets within polymer matrices is crucial for optimizing the properties of nanocomposites. 17 18 Surface functionalization for proper interaction is itself a challenging task.
- 4. Scalability and reproducibility: Large-scale synthesis of MXene-polymers nanocomposites 19 20 with consistent properties remains challenging, hindering widespread commercial applications. Processing techniques selection for uniform MXenes dispersion necessary for 21 22 high-quality nanocomposites. High-cost instruments may be required for large-scale mixing.

5. Mechanical properties: Optimizing the ratio of MXenes and polymers is crucial for any 23 24 property. MXene-polymer nanocomposites may face limitations in achieving high mechanical strength and toughness, especially in certain applications that demand robust materials if 25 26 optimization is not suitable for that application.

27 9.2 Opportunities

28 Once perfect compatibility between MXenes and polymers is achieved, the MXene-polymer 29 nanocomposites may offer enhanced mechanical, thermal, electrical, and optical properties in 30 versatile materials, making them compatible with diverse applications.

2

3

4

5

6

7

8

9

10

11

19

20

1. Multifunctionality: The unique properties of MXene-polymer hybrids open up opportunities for developing new nanocomposites with multiple functionalities, enabling versatile applications.

2. Biomedical applications: MXene-polymer hybrids, due to their biocompatibility and antibacterial properties, hold promise in drug delivery systems, tissue engineering, and medical implants.

3. Energy-related applications: MXene-polymer nanocomposites, due to their porous structures, can be employed in energy storage devices to enhance performance and stability.

4. Environmental applications: MXene-based nanocomposites have potential in environmental remediation, sensing, and water purification membranes owing to their better adsorption and catalytic traits.

12 5. New-age technology integration: The combination of cutting-edge technologies, such as 13 nanocomposite fabrication, the Internet of Things (IoT), and artificial intelligence (AI), holds tremendous potential in designing and developing future smart materials with enhanced 14 15 properties and functionalities.

16 6. Hence, MXene-polymer nanocomposites offer exciting prospects for addressing various 17 challenges and capitalizing on their unique properties to explore novel applications in diverse 18 industries. However, further research is needed to overcome existing limitations and fully unlock their potential for practical utilization.

10. Future perspectives

The future of MXene-polymer nanocomposites is exceptionally promising, with vast potential 21 22 across multiple domains. MXenes offer numerous beneficial properties, but these advantages are contingent on preventing oxidation. By addressing this challenge, the full spectrum of MXene's 23 24 capabilities can be harnessed by integrating these with polymers, paving the way for 25 groundbreaking applications and advancements in various fields. Ongoing advancements in 26 MXene synthesis, functionalization, and nanocomposite fabrication are likely to yield innovative 27 materials with enhanced properties such as lightweight structures, improved mechanical strength, 28 superior electrical conductivity, and increased thermal stability. These developments could 29 revolutionize industries from aerospace to electronics. Additionally, MXene-based 30 nanocomposites show great promise in sustainable technologies, potentially leading to more 31 efficient and eco-friendly solutions in energy storage, water purification, and environmental

Journal of Materials Chemistry A Accepted Manuscript

14

remediation. In the biomedical field, the biocompatibility and antibacterial properties of MXene-1 polymers hold potential for breakthroughs in drug delivery systems, tissue engineering scaffolds, 2 3 and bioactive coatings for implants. The tunable properties of these nanocomposites also pave the 4 way for the creation of smart materials capable of responding to external stimuli, which could transform applications in sensors, actuators, and adaptive coatings. Moreover, the integration of 5 6 multiple functionalities within a single MXene-polymer material opens exciting possibilities for 7 multifunctional devices that perform various tasks simultaneously. Combining MXene-polymers 8 with other nanomaterials, such as graphene, metal nanoparticles, or quantum dots, may lead to new 9 synergistic effects and advanced functionalities. Furthermore, the intersection of nanocomposite fabrication technologies with artificial intelligence and the Internet of Things promises to enhance 10 the design and deployment of advanced smart materials. As research and interdisciplinary 11 12 collaboration continue, MXene-polymer nanocomposites are set to address global challenges and 13 drive significant innovations across a range of industries.

11. Conclusions

15 In conclusion, this comprehensive review emphasizes the synthesis methods and diverse 16 applications of MXene-polymer nanocomposites while keeping in mind the serious issue of MXene oxidation. The various fabrication techniques, such as solution blending, in-situ 17 18 polymerization, LBL assembly, and electrospinning, offer opportunities to tailor the properties of 19 these nanocomposites for specific applications. MXenes can be easily hybridized with various 20 polymers such as PVA, PDMS, PPy, PEDOT:PSS, polyaniline, polypropylene, polyurethane, and 21 many biopolymers. MXene-polymer nanocomposites exhibit conductivity, stability, flexibility, 22 biocompatibility, and ion diffusion, leading to enhanced performance and durability in various devices. The incorporation of polymers in MXene-based sensors enhances sensitivity, selectivity, 23 24 flexibility, and response time, enabling more accurate and efficient detection of target analytes. 25 MXene-polymer composites provide EMI shielding effectiveness, lightweight, and flexible 26 characteristics, making them suitable for applications in the electronics, telecommunications, and 27 aerospace industries. The combination of MXenes with polymers offers flexibility, stretchability, 28 and improved mechanical properties, enabling the development of flexible electronic devices. 29 MXene-polymer composites inculcate higher porosity in the nanocomposite which can increase 30 the charge storage capacity. MXene-polymer composites offer enhanced photothermal conversion 31 efficiency, controlled drug delivery, enabling effective cancer treatment, and wound healing.

MXene-polymer composites provide enhanced adsorption capacity, selective adsorption, 1 2 improved stability, membrane performance, antifouling properties, scalability, and environmental 3 compatibility, making them effective materials for water purification and desalination processes. These advantages highlight the potential of MXene-polymer composites in addressing various 4 challenges and advancing technological applications. The unique properties and synergistic effects 5 resulting from the combination of MXenes and polymers create exciting opportunities in various 6 7 fields, enabling the development of efficient, sustainable, and functional materials and devices. 8 This advancement ensures that MXene oxidation will not hinder the progress toward innovative 9 solutions.

10 Funding

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

11 This research is not supported by any funding.

12 Author contributions:

Sunil Kumar – original draft, conceptualization, and data curation; Syed Muhammad Zain Mehdi
– original draft, data curation, and editing; Manish Taunk – original draft and editing; Sanjeev
Kumar – review and editing; Amit Aherwar – review and editing; Sudhanshu Singh – review and
editing; Tej Singh – review and editing.

17 **Conflict of Interests**

18 The authors declare that there is no conflict of interest.

19 Author Biographies

20

Sunil Kumar received his B.S. and M.S. degrees in Physics from Panjab University, Chandigarh, India in 2003 and 2008, respectively. He completed his Ph.D. at Thapar University, Patiala, India in 2016. In 2017, he joined Sejong University as a postdoctoral fellow. Since 2022, he has been working as an Assistant Professor at Sejong University, South Korea in the Department of Nanotechnology and Materials Engineering. His current research interests include MXene-based smart windows, flexible transparent electrodes, and energy storage devices.

Syed Muhammad Zain Mehdi received his BS degree in Metallurgy and Materials Engineering from the University of the Punjab, Pakistan, in 2017. He completed his MS-Ph.D. in Nanotechnology at Sejong University, South Korea, in February 2024. Following this, in March 2024, he joined Sejong University as a Postdoctoral Fellow in the Department of Nanotechnology and Materials Engineering. His research interests include doped-carbon nanotube properties in field emission and the utilization of MXenes in energy storage and electrocatalysis.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

1

2

3

4

5

6

7

8

15

9 Manish Taunk received his B.S. and M.S. degrees in Physics from Himachal Pradesh University, 10 Shimla, India in 2004 and 2008, respectively. He completed his Ph.D. at the National Institute of 11 Technology, Himachal Pradesh, India in 2012. He has worked as an Assistant Professor at various 12 universities. Currently, he is working as an Associate Professor at Chandigarh University, Mohali, 13 India, in the Department of Physics. His current research interests include MXene-based 14 nanocomposites, conducting polymers, and their applications.

Sanjeev Kumar earned his B.S. and M.S. degrees in Physics from GNDU University, Amritsar, India, in 2005 and 2007, respectively. He completed his Ph.D. at Thapar University, Patiala, India, in 2012. He has served as an Assistant Professor at Sri Guru Granth Sahib World University for 10 years. Currently, he is an Associate Professor in the Department of Physics at Chandigarh

20 University, Mohali, India. His research focuses on TiO₂ and ZnO-based nanocomposites and their

21 applications in photocatalysis.

Page 81 of 119

1

2 3

4

5

6 7

8

9

Amit Aherwar obtained his BS degree in Mechanical Engineering in 2006, and MS in Production Engineering from Madhav Institute of Technology and Science (MITS) Gwalior, India in 2010. He completed his Doctor of Philosophy (Ph.D.) at Malaviya National Institute of Technology (MNIT) Jaipur, India in 2017. Currently, he is an Assistant Professor at MITS Gwalior. His research focuses on biomaterials, tribology, composite materials, and metal casting, with an emphasis on advancing material properties and manufacturing processes.

Sudhanshu Singh obtained his B.S. degree in Electronics & Communication from Uttar Pradesh 10 Technical University, Lucknow, India, in 2006, followed by an M.S. degree in Nanotechnology 11 from the National Institute of Technology Kurukshetra, Haryana, India, in 2008. He completed his 12 13 Ph.D. at Amity University Rajasthan, Jaipur, India, in 2021. With over a decade of experience as an Assistant Professor at Amity University Rajasthan, he is currently serving as an Associate 14 Professor at Parul University, Gujarat, India. His research interests include the development of 15 16 polymers and nanocomposites for wastewater treatment, photocatalysis, and the tribological 17 properties of fiber-reinforced phenolic composites.

18

19 Tej Singh earned his B.S. and M.S. degrees from Panjab University, Chandigarh, India in 2003 20 and 2008, respectively, and PhD degree from the National Institute of Technology, Hamirpur, 21 India in 2013. He has gained experience at various academic institutions. Currently, Tej Singh is 22 serving as an Associate Professor at Savaria Institute of Technology, Faculty of Informatics, 23 Eötvös Loránd University, Hungary. His areas of interest and expertise include polymer 24 composites, tribology, nanoparticle synthesis, optimization methods, waste and natural renewable

25 materials utilization for potential applications, and heat transfer.

1 Declaration of generative AI and AI-assisted technologies in the writing process

During the preparation of this work, the author(s) used ChatGpt to improve the grammar. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.

5 **References**

2

3

4

6 (1) Zhao, S. Y.; Zhang, Y. Y.; Yang, J.; Kitipornchai, S. Folded graphene reinforced 7 nanocomposites with superior strength and toughness: A molecular dynamics study. J Mater Sci 8 Technol 2022, 120, 196-204. DOI: 10.1016/j.jmst.2021.12.042. Zhang, Y.; Zhu, B.; Cai, X.; Yuan, 9 X. M.; Zhao, S. Y.; Yu, J. W.; Qiao, K.; Qin, R. M. Rapid In Situ Polymerization of 10 Polyacrylonitrile/Graphene Oxide Nanocomposites as Precursors for High-Strength Carbon 11 Nanofibers. Acs Appl Mater Inter 2021, 13 (14), 16846-16858. DOI: 10.1021/acsami.1c02643. 12 Yan, M. L.; Jiao, W. C.; Ding, G. M.; Chu, Z. M.; Huang, Y. F.; Wang, R. G. High strength and 13 toughness epoxy nanocomposites reinforced with graphene oxide-nanocellulose micro/nanoscale 14 structures. Appl Surf Sci 2019, 497. DOI: ARTN 143802

15 10.1016/j.apsusc.2019.143802. Jankovsky, O.; Lojka, M.; Lauermannova, A. M.; Antoncik, F.;
Pavlikova, M.; Zaleska, M.; Pavlik, Z.; Pivak, A.; Sedmidubsky, D. Towards novel building
materials: High-strength nanocomposites based on graphene, graphite oxide and magnesium
oxychloride. *Appl Mater Today* 2020, 20. DOI: ARTN 100766

- 10.1016/j.apmt.2020.100766. Fan, X.; Wang, F. C.; Gao, Q.; Zhang, Y.; Huang, F.; Xiao, R. L.;
 Qin, J. B.; Zhang, H.; Shi, X. T.; Zhang, G. C. Nature inspired hierarchical structures in nanocellular epoxy/graphene-Fe3O4 nanocomposites with ultra-efficient EMI and robust mechanical
 strength. *J Mater Sci Technol* 2022, *103*, 177-185. DOI: 10.1016/j.jmst.2021.06.030.
- 23 (2) Ryu, A.; Yim, H.; Yoo, S.; Park, J.; Lee, D. G.; Lee, J. Y.; Song, H. C.; Baek, S. H.; Nahm, S.; 24 Choi, J. W. Layer-Controlled Perovskite 2D Nanosheet Interlayer for the Energy Storage Performance of Nanocomposites. Small 2023. DOI: 10.1002/smll.202300526. Likhi, F. H.; Singh, 25 26 M.; Chavan, S. V.; Cao, T. M.; Shanbedi, M.; Karim, A. Effects of Film Confinement on Dielectric 27 and Electrical Properties of Graphene Oxide and Reduced Graphene Oxide-Based Polymer 28 Nanocomposites: Implications for Energy Storage. Acs Appl Nano Mater 2023, 6 (13), 11699-29 11714. DOI: 10.1021/acsanm.3c01674. Idumah, C. I. Phosphorene polymeric nanocomposites for 30 electrochemical energy storage applications. J Energy Storage 2023, 69. DOI: ARTN 107940
- 10.1016/j.est.2023.107940. Bera, S.; Singh, M.; Thantirige, R.; Tiwary, S. K.; Shook, B. T.; 31 32 Nieves, E.; Raghavan, D.; Karim, A.; Pradhan, N. R. 2D-Nanofiller-Based Polymer 33 Nanocomposites for Capacitive Energy Storage Applications. Small Sci 2023, 3 (7). DOI: 34 10.1002/smsc.202300016. Prateek; Thakur, V. K.; Gupta, R. K. Recent Progress on Ferroelectric 35 Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric 36 Properties, and Future Aspects. *Chem Rev* **2016**, 116 (7), 4260-4317. DOI: 37 10.1021/acs.chemrev.5b00495. Mishra, K.; Devi, N.; Siwal, S. S.; Zhang, Q. B.; Alsanie, W. F.; 38 Scarpa, F.; Thakur, V. K. Ionic Liquid-Based Polymer Nanocomposites for Sensors, Energy, 39 Biomedicine, and Environmental Applications: Roadmap to the Future. Adv Sci 2022, 9 (26). DOI: 40 ARTN 2202187
- 41 10.1002/advs.202202187. Elemike, E. E.; Adeyemi, J.; Onwudiwe, D. C.; Wei, L.; Oyedeji, A. O.
- 42 The future of energy materials: A case of MXenes-carbon dots nanocomposites. *J Energy Storage*
- 43 **2022**, *50*. DOI: ARTN 104711
- 44 10.1016/j.est.2022.104711.

(3) Jouault, N.; Dalmas, F.; Said, S.; Di Cola, E.; Schweins, R.; Jestin, J.; Boue, F. Direct 1 2 Measurement of Polymer Chain Conformation in Well-Controlled Model Nanocomposites by 3 SANS and SAXS. *Macromolecules* 2010, 43 (23),9881-9891. Combining DOI: 4 10.1021/ma101682t. Faupel, F.; Zaporojtchenko, V.; Strunskus, T.; Elbahri, M. Metal-Polymer 5 Nanocomposites for Functional Applications. Adv Eng Mater 2010, 12 (12), 1177-1190. DOI: 6 10.1002/adem.201000231. Su, Y. W.; Lin, W. H.; Hsu, Y. J.; Wei, K. H. Conjugated 7 Polymer/Nanocrystal Nanocomposites for Renewable Energy Applications in Photovoltaics and 8 Photocatalysis. Small 2014, 10 (22), 4427-4442. DOI: 10.1002/smll.201401508. Imai, Y.; 9 Shimamoto, D.; Hotta, Y. Effect of wet jet milling of carbon nanotube on electrical properties of 10 polymer nanocomposites. Mater Chem Phys 2014, 148 (3), 1178-1183. DOI: 11 10.1016/j.matchemphys.2014.09.044. Grabowski, C. A.; Koerner, H.; Meth, J. S.; Dang, A.; Hui, 12 C. M.; Matyjaszewski, K.; Bockstaller, M. R.; Durstock, M. F.; Vaia, R. A. Performance of 13 Dielectric Nanocomposites: Matrix-Free, Hairy Nanoparticle Assemblies and Amorphous Polymer-Nanoparticle Blends. Acs Appl Mater Inter 2014, 6 (23), 21500-21509. DOI: 14 15 10.1021/am506521r. Chen, L.; Du, D. H.; Sun, K.; Hou, J. H.; Ouyang, J. Y. Improved Efficiency 16 and Stability of Polymer Solar Cells Utilizing Two-Dimensional Reduced Graphene Oxide: 17 Graphene Oxide Nanocomposites as Hole-Collection Material. Acs Appl Mater Inter 2014, 6 (24), 18 22334-22342. DOI: 10.1021/am506326y.

19 (4) Zhang, S. J.; Lin, W.; Wong, C. P.; Bucknall, D. G.; Kumar, S. Nanocomposites of Carbon 20 Nanotube Fibers Prepared by Polymer Crystallization. Acs Appl Mater Inter 2010, 2 (6), 1642-21 1647. DOI: 10.1021/am1001663. Flory, A. L.; Ramanathan, T.; Brinson, L. C. Physical Aging of 22 Single Wall Carbon Nanotube Polymer Nanocomposites: Effect of Functionalization of the 23 Nanotube on the Enthalpy Relaxation. Macromolecules 2010, 43 (9), 4247-4252. DOI: 24 10.1021/ma901670m. Duong, H. M.; Yamamoto, N.; Bui, K.; Papavassiliou, D. V.; Maruyama, 25 S.; Wardle, B. L. Morphology Effects on Nonisotropic Thermal Conduction of Aligned Single-26 Walled and Multi-Walled Carbon Nanotubes in Polymer Nanocomposites. J Phys Chem C 2010, 27 114 (19), 8851-8860. DOI: 10.1021/jp102138c. Basuli, U.; Chaki, T. K.; Chattopadhyay, S.; 28 Sabharwal, S. Thermal and Mechanical Properties of Polymer-Nanocomposites Based on Ethylene 29 Methyl Acrylate and Multiwalled Carbon Nanotube. *Polym Composite* **2010**, *31* (7), 1168-1178. 30 DOI: 10.1002/pc.20903. Putz, K. W.; Compton, O. C.; Palmeri, M. J.; Nguyen, S. T.; Brinson, L. 31 C. High-Nanofiller-Content Graphene Oxide-Polymer Nanocomposites via Vacuum-Assisted Self-Assembly. Adv Funct Mater 2010, 20 (19), 3322-3329. DOI: 10.1002/adfm.201000723. Li, 32 33 G. L.; Liu, G.; Li, M.; Wan, D.; Neoh, K. G.; Kang, E. T. Organo- and Water-Dispersible Graphene 34 Oxide-Polymer Nanosheets for Organic Electronic Memory and Gold Nanocomposites. J Phys 35 Chem C 2010, 114 (29), 12742-12748. DOI: 10.1021/jp102640s. Kim, H.; Abdala, A. A.; 36 Macosko, C. W. Graphene/Polymer Nanocomposites. *Macromolecules* **2010**, *43* (16), 6515-6530. 37 DOI: 10.1021/ma100572e. Zare, Y.; Garmabi, H. Predictions of Takayanagi model for tensile 38 modulus of polymer/CNT nanocomposites by properties of nanoparticles and filler network. 39 Colloid Polym Sci 2017, 295 (6), 1039-1047. DOI: 10.1007/s00396-017-4092-y. Ren, L. L.; Li, 40 H.; Xie, Z. L.; Ai, D.; Zhou, Y.; Liu, Y.; Zhang, S. Y.; Yang, L. J.; Zhao, X. T.; Peng, Z. R.; et al. 41 High-Temperature High-Energy-Density Dielectric Polymer Nanocomposites Utilizing Inorganic 42 Core-Shell Nanostructured Nanofillers. Adv Energy Mater 2021, 11 (28). DOI: ARTN 2101297 43 10.1002/aenm.202101297. Danlee, Y.; Mederos-Henry, F.; Hermans, S.; Bailly, C.; Huynen, I. 44 Ranking Broadband Microwave Absorption Performance of Multilayered Polymer 45 Nanocomposites Containing Carbon and Metallic Nanofillers. Front Mater 2020, 7. DOI: ARTN

10.3389/fmats.2020.00214.

1

(5) Xie, Y.; Dall'Agnese, Y.; Naguib, M.; Gogotsi, Y.; Barsoum, M. W.; Zhuang, H. L. L.; Kent,
P. R. C. Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion
Batteries. *Acs Nano* 2014, 8 (9), 9606-9615. DOI: 10.1021/nn503921j. Shi, C. Y.; Beidaghi, M.;
Naguib, M.; Mashtalir, O.; Gogotsi, Y.; Billinge, S. J. L. Structure of Nanocrystalline Ti3C2
MXene Using Atomic Pair Distribution Function. *Phys Rev Lett* 2014, *112* (12). DOI: ARTN 125501

10.1103/PhysRevLett.112.125501. Ghidiu, M.; Naguib, M.; Shi, C.; Mashtalir, O.; Pan, L. M.;
Zhang, B.; Yang, J.; Gogotsi, Y.; Billinge, S. J. L.; Barsoum, M. W. Synthesis and characterization
of two-dimensional Nb4C3 (MXene). *Chem Commun* 2014, *50* (67), 9517-9520. DOI:
10.1039/c4cc03366c. Er, D. Q.; Li, J. W.; Naguib, M.; Gogotsi, Y.; Shenoy, V. B. Ti3C2 MXene
as a High Capacity Electrode Material for Metal (Li, Na, K, Ca) Ion Batteries. *Acs Appl Mater Inter* 2014, *6* (14), 11173-11179. DOI: 10.1021/am501144q. Gogotsi, Y.; Anasori, B. The Rise of
MXenes. *Acs Nano* 2019, *13* (8), 8491-8494. DOI: 10.1021/acsnano.9b06394.

15 (6) Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; 16 Barsoum, M. W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv Mater 2011, 23 (37), 4248-4253. DOI: 10.1002/adma.201102306. Wang, X.; Garnero, C.; Rochard, G.; 17 Magne, D.; Morisset, S.; Hurand, S.; Chartier, P.; Rousseau, J.; Cabioc'h, T.; Coutanceau, C.; et 18 19 al. A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide 20 MXenes: a route towards selective reactivity vs. water. J Mater Chem A 2017, 5 (41), 22012-21 22023. DOI: 10.1039/c7ta01082f. Wang, C. D.; Shou, H. W.; Chen, S. M.; Wei, S. Q.; Lin, Y. X.; 22 Zhang, P. J.; Liu, Z. F.; Zhu, K. F.; Guo, X.; Wu, X. J.; et al. HCl-Based Hydrothermal Etching 23 Strategy toward Fluoride-Free MXenes. Adv Mater 2021, 33 (27). DOI: ARTN 2101015

10.1002/adma.202101015. Mohseni-Salehi, M. S.; Taheri-Nassaj, E.; Babaei, A.; Ghazvini, A. S.;
Soleimanzade, M. Effect of temperature and atmosphere on V2AlC etching for V2CTx MXenes
synthesis used as anode for Li-ion storage systems. *J Energy Storage* 2023, *66*. DOI: ARTN
107462

10.1016/j.est.2023.107462. Kumar, S.; Kang, D. W.; Hong, H.; Rehman, M. A.; Lee, Y. J.; Lee,
N. S.; Seo, Y. H. Effect of Ti3C2Tx MXenes etched at elevated temperatures using concentrated
acid on binder-free supercapacitors. *Rsc Adv* 2020, *10* (68), 41837-41845. DOI:
10.1039/d0ra05376g.

32 (7) Gogotsi, Y.; Huang, O. MXenes: Two-Dimensional Building Blocks for Future Materials and 33 Devices. Acs Nano 2021, 15 (4), 5775-5780. DOI: 10.1021/acsnano.1c03161. Lioi, D. B.; Neher, 34 G.; Heckler, J. E.; Back, T.; Mehmood, F.; Nepal, D.; Pachter, R.; Vaia, R.; Kennedy, W. J. 35 Electron-Withdrawing Effect of Native Terminal Groups on the Lattice Structure of Ti3C2TX 36 MXenes Studied by Resonance Raman Scattering: Implications for Embedding MXenes in Composites. 37 Electronic Acs Appl Nano Mater 2019, 2 (10), 6087-6091. DOI: 38 10.1021/acsanm.9b01194. Athavale, S.; Micci-Barreca, S. A.; Arole, K.; Kotasthane, V.; 39 Lutkenhaus, J. L.; Radovic, M.; Green, M. J. Effect of terminal groups on the degradation stability 40 of Ti3C2Tz MXenes. Nanoscale 2023. DOI: 10.1039/d3nr02386a.

- 41 (8) Zeraati, A. S.; Mirkhani, S. A.; Sun, P. C.; Naguib, M.; Braun, P. V.; Sundararaj, U. Improved
- 42 synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis 42 viald and annual apparitumes. Nanogogla 2021, 12 (6), 2572,2580, DOI: 10.1020/d0m206711
- 43 yield, and enhanced capacitance. *Nanoscale* **2021**, *13* (6), 3572-3580. DOI: 10.1039/d0nr06671k.
- 44 (9) Lipatov, A.; Goad, A.; Loes, M. J.; Vorobeva, N. S.; Abourahma, J.; Gogotsi, Y.; Sinitskii, A.
 45 High electrical conductivity and breakdown current density of individual monolayer Ti3C2Tx
- 46 MXene flakes. *Matter-Us* **2021**, 4 (4), 1413-1427. DOI: 10.1016/j.matt.2021.01.021.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

(10) Zhang, B. P.; Wong, P. W.; Guo, J. X.; Zhou, Y. S.; Wang, Y.; Sun, J. W.; Jiang, M. N.;
 Wang, Z. K.; An, A. K. Transforming Ti3C2Tx MXene's intrinsic hydrophilicity into

- 3 superhydrophobicity for efficient photothermal membrane desalination. *Nat Commun* 2022, *13*
- 4 (1). DOI: ARTN 3315
- 10.1038/s41467-022-31028-6. Guan, Y. X.; Zhang, M. M.; Qin, J.; Ma, X. X.; Li, C.; Tang, J. L.
 Hydrophilicity-Dependent Distinct Frictional Behaviors of Different Modified MXene
 Nanosheets. *J Phys Chem C* 2020, *124* (25), 13664-13671. DOI: 10.1021/acs.jpcc.0c01551.
- 8 (11) Li, X. L.; Huang, Z. D.; Shuck, C. E.; Liang, G. J.; Gogotsi, Y.; Zhi, C. Y. MXene chemistry,
 9 electrochemistry and energy storage applications. *Nat Rev Chem* 2022, 6 (6), 389-404. DOI:
 10.1038/s41570-022-00384-8.
- (12) Maleski, K.; Ren, C. E.; Zhao, M. Q.; Anasori, B.; Gogotsi, Y. Size-Dependent Physical and
 Electrochemical Properties of Two-Dimensional MXene Flakes. *Acs Appl Mater Inter* 2018, *10*(29), 24491-24498. DOI: 10.1021/acsami.8b04662.
- (13) Zhang, Y. J.; Xia, W. Y.; Wu, Y. B.; Zhang, P. H. Prediction of MXene based 2D tunable
 band gap semiconductors: GW quasiparticle calculations. *Nanoscale* 2019, *11* (9), 3993-4000.
 DOI: 10.1039/c9nr01160a.
- (14) Hu, C. Q.; Du, Z. J.; Wei, Z. M.; Li, L.; Shen, G. Z. Functionalized Ti3C2Tx MXene with
 layer-dependent band gap for flexible NIR photodetectors. *Appl Phys Rev* 2023, *10* (2). DOI: Artn
 021402
- 20 10.1063/5.0140861.
- (15) Liu, X. D.; Liu, Y.; Dong, S. L.; Zhang, X. F.; Hou, S. D. Synthesis of ultra-high specific
 surface area aerogels with nitrogen-enriched Ti3C2Tx nanosheets as high-performance
 supercapacitor electrodes. *J Mater Chem C* 2022, *10* (40), 14929-14938. DOI:
 10.1039/d2tc01987f. Ren, C. E.; Zhao, M. Q.; Makaryan, T.; Halim, J.; Boota, M.; Kota, S.;
 Anasori, B.; Barsoum, M. W.; Gogotsi, Y. Porous Two-Dimensional Transition Metal Carbide
 (MXene) Flakes for High-Performance Li-Ion Storage. *Chemelectrochem* 2016, *3* (5), 689-693.
 DOI: 10.1002/celc.201600059.
- (16) Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.;
 Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. *P Natl Acad Sci USA* 2014, *111* (47), 16676-16681. DOI: 10.1073/pnas.1414215111.
- 31 (17) Zhang, W. Y.; Jin, H. X.; Zhang, J. X. Nb2CTx MXene as High-Performance Energy Storage
- 32 Material with Na, K, and Liquid K-Na Alloy Anodes. *Langmuir* **2021**, *37* (3), 1102-1109. DOI: 10.1021/acs.langmuir.0c02957.
- 34 (18) Dall'Agnese, Y.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Two-Dimensional Vanadium Carbide
- 35 (MXene) as Positive Electrode for Sodium-Ion Capacitors. J Phys Chem Lett 2015, 6 (12), 2305-
- 36 2309. DOI: 10.1021/acs.jpclett.5b00868.
- 37 (19) Liu, D.; Wang, R. W.; Chang, W.; Zhang, L.; Peng, B. Q.; Li, H. D.; Liu, S. Q.; Yan, M.;
- 38 Guo, C. S. Ti3C2 MXene as an excellent anode material for high-performance microbial fuel cells.
- 39 J Mater Chem A 2018, 6 (42), 20887-20895. DOI: 10.1039/c8ta07305h. Fei, M. M.; Lin, R. Z.;
- 40 Deng, Y. M.; Xian, H. X.; Bian, R. J.; Zhang, X. L.; Cheng, J. G.; Xu, C. X.; Cai, D. Y.
- 41 Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer
 42 electrolyte membrane fuel cells. *Nanotechnology* 2018, 29 (3). DOI: ARTN 035403
- 43 10.1088/1361-6528/aa9ab0.

(20) Kolubah, P. D.; Mohamed, H. O.; Ayach, M.; Hari, A. R.; Alshareef, H. N.; Saikaly, P.; Chae,

- 2 K. J.; Castano, P. W2N-MXene composite anode catalyst for efficient microbial fuel cells using
- domestic wastewater. *Chem Eng J* **2023**, *461*. DOI: ARTN 141821
- 10.1016/j.cej.2023.141821. Jiang, D. M.; Zhu, C. Y.; He, Y.; Xing, C. C.; Xie, K.; Xu, Y.; Wang,
 Y. Q. Polyaniline-MXene-coated carbon cloth as an anode for microbial fuel cells. *J Solid State Electr* 2022, *26* (11), 2435-2443. DOI: 10.1007/s10008-022-05255-2. Chen, J. F.; Zhang, Y. W.;
 Wu, Y. Q.; Wang, J. Y.; Zhao, Y. Y.; Wang, M. K.; Yang, J. Q.; Liu, J. Y.; Wang, R. J.; Yang, Y.
 W.; et al. Enhanced bioelectrochemical performance by NiCoAl-LDH/MXene hybrid as cathode
 catalyst for microbial fuel cell. *Int J Hydrogen Energ* 2023, *48* (15), 6056-6066. DOI:
 10.1016/j.ijhydene.2022.11.173.
- (21) Chen, J. X.; Li, Z. L.; Ni, F. L.; Ouyang, W. X.; Fang, X. S. Bio-inspired transparent MXene
 electrodes for flexible UV photodetectors. *Mater Horiz* 2020, 7 (7), 1828-1833. DOI:
 10.1039/d0mh00394h. Xu, H.; Ren, A. B.; Wu, J.; Wang, Z. M. Recent Advances in 2D MXenes
 for Photodetection. *Adv Funct Mater* 2020, *30* (24). DOI: ARTN 2000907
- 15 10.1002/adfm.202000907.
- (22) Yao, L. J.; Tian, X.; Cui, X. X.; Zhao, R. J.; Xiao, X. C.; Wang, Y. D. Partially oxidized 16 17 Ti3C2Tx MXene-sensitive material-based ammonia gas sensor with high-sensing performances for room temperature application. J Mater Sci-Mater El 2021, 32 (23), 27837-27848. DOI: 18 19 10.1007/s10854-021-07166-w. Pei, Y. Y.; Zhang, X. L.; Hui, Z. Y.; Zhou, J. Y.; Huang, X.; Sun, 20 G. Z.; Huang, W. Ti3C2TX MXene for Sensing Applications: Recent Progress, Design Principles, 21 and Future Perspectives. Acs Nano 2021, 15 (3), 3996-4017. DOI: 10.1021/acsnano.1c00248. 22 Lorencova, L.; Bertok, T.; Filip, J.; Jerigova, M.; Velic, D.; Kasak, P.; Mahmoud, K. A.; Tkac, J. 23 Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and 24 small molecules sensing applications. Sensor Actuat B-Chem 2018, 263, 360-368. DOI: 25 10.1016/j.snb.2018.02.124.
- (23) Zhang, C. F.; McKeon, L.; Kremer, M. P.; Park, S. H.; Ronan, O.; Seral-Ascaso, A.; Barwich,
 S.; Coileain, C. O.; McEvoy, N.; Nerl, H. C.; et al. Additive-free MXene inks and direct printing
 of micro-supercapacitors. *Nat Commun* 2019, *10*. DOI: ARTN 1795
- 10.1038/s41467-019-09398-1. Guo, T. Z.; Zhou, D.; Deng, S. G.; Jafarpour, M.; Avaro, J.; Neels,
 A.; Heier, J.; Zhang, C. F. Rational Design of Ti3C2Tx MXene Inks for Conductive, Transparent
 Films. *Acs Nano* 2023, *17* (4), 3737-3749. DOI: 10.1021/acsnano.2c11180. Shao, Y. Z.; Wei, L.
 S.; Wu, X. Y.; Jiang, C. M.; Yao, Y.; Peng, B.; Chen, H.; Huangfu, J. T.; Ying, Y. B.; Zhang, C.
 A. F. O.; et al. Room-temperature high-precision printing of flexible wireless electronics based on
 MXene inks. *Nat Commun* 2022, *13* (1). DOI: ARTN 3223
- 35 10.1038/s41467-022-30648-2.
- 36 (24) Aakyiir, M.; Tanner, B.; Yap, P. L.; Rastin, H.; Tung, T. T.; Losic, D.; Meng, Q. S.; Ma, J.
- 37 3D printing interface-modified PDMS/MXene nanocomposites for stretchable conductors. *J Mater* 38 *Sci Technol* 2022, *117*, 174-182. DOI: 10.1016/j.jmst.2021.11.048.
- 39 (25) Orangi, J.; Hamade, F.; Davis, V. A.; Beidaghi, M. 3D Printing of Additive-Free 2D Ti3C2Tx
- 40 (MXene) Ink for Fabrication of Micro-Supercapacitors with Ultra-High Energy Densities. Acs
- 41 Nano 2020, 14 (1), 640-650. DOI: 10.1021/acsnano.9b07325. Zhang, S. P.; Rana, S. S.; Bhatta,
- 42 T.; Pradhan, G. B.; Sharma, S.; Song, H. Y. S.; Jeong, S.; Park, J. Y. 3D printed smart glove with
- 43 pyramidal MXene/Ecoflex composite-based toroidal triboelectric nanogenerators for wearable
- 44 human-machine interaction applications. *Nano Energy* 2023, *106*. DOI: ARTN 108110

10.1016/j.nanoen.2022.108110. Yuan, M. M.; Wang, L. B.; Liu, X. Q.; Du, X. Y.; Zhang, G. B.;

2 Chang, Y. K.; Xia, Q. X.; Hu, Q. K.; Zhou, A. G. 3D printing quasi-solid-state micro-3 supercapacitors with ultrahigh areal energy density based on high concentration MXene sediment.

- 4 *Chem Eng J* **2023**, *451*. DOI: ARTN 138686
- 5 10.1016/j.cej.2022.138686.
- 6 (26) Li, L.; Meng, J.; Bao, X. R.; Huang, Y. P.; Yan, X. P.; Qian, H. L.; Zhang, C.; Liu, T. X.
 7 Direct-Ink-Write 3D Printing of Programmable Micro-Supercapacitors from MXene-Regulating
- 8 Conducting Polymer Inks. *Adv Energy Mater* **2023**, *13* (9). DOI: 10.1002/aenm.202203683.
- 9 (27) Nguyen, V. T.; Min, B. K.; Kim, S. K.; Yi, Y.; Choi, C. G. A flexible and high-performance 10 electrochromic smart window produced by WO3/Ti3C2Tx MXene hybrids. *J Mater Chem C* 2021,
- 9 (9), 3183-3192. DOI: 10.1039/d0tc05547f. Li, Y. Y.; Wang, Y. Q.; Lu, J.; Wang, W. W.; Wang,
 D. Synergistically photothermal Au Nanoprisms@MXene enable adaptive solar modulation of
- 13 HA-PNIPAM hydrogels for smart window br. Chem Eng J 2023, 457. DOI: ARTN 141299
- 14 10.1016/j.cej.2023.141299. Li, Y. Y.; Wang, Y. Q.; Lu, J.; Wang, W. W.; Wang, D.
- Synergistically photothermal Au Nanoprisms@MXene enable adaptive solar modulation of HAPNIPAM hydrogels for smart window (vol 457, 142119, 2023). *Chem Eng J* 2023, 462. DOI:
 ARTN 142119
- 18 10.1016/j.cej.2023.142119. Kumar, S.; Park, H. M.; Nguyen, V. H.; Kim, M.; Nasir, N.; Kumar,
- 19 M.; Seo, Y. Application dependent stability of Ti3C2Tx MXene in PDLC-based smart-windows.
- 20 Ceram Int 2022, 48 (23), 35092-35099. DOI: 10.1016/j.ceramint.2022.08.099. Kumar, S.; Kang, 21 D.; Nguyen, V.; Nasir, N.; Hong, H.; Kim, M.; Nguyen, D. C.; Lee, Y. J.; Lee, N.; Seo, Y. 22 Application of Titanium-Carbide MXene-Based Transparent Conducting Electrodes in Flexible 23 Smart Windows. Acs Appl Mater Inter 2021, 13 (34),40976-40985. DOI: 24
- 10.1021/acsami.1c12100.
 (28) Dai, Y.; Wu, X. Y.; Li, L. L.; Zhang, Y.; Deng, Z. M.; Yu, Z. Z.; Zhang, H. B. 3D printing of resilient, lightweight and conductive MXene/reduced graphene oxide architectures for broadband electromagnetic interference shielding. *J Mater Chem A* 2022, *10* (21), 11375-11385. DOI: 10.1039/d2ta01388f. Han, M. K.; Shuck, C. E.; Rakhmanov, R.; Parchment, D.; Anasori, B.; Koo, C. M.; Friedman, G.; Gogotsi, Y. Beyond Ti3C2Tx: MXenes for Electromagnetic Interference Shielding. *Acs Nano* 2020, *14* (4), 5008-5016. DOI: 10.1021/acsnano.0c01312.
- (29) Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y.
 Electromagnetic interference shielding with 2D transition metal carbides (MXenes). *Science* 2016, *353* (6304), 1137-1140. DOI: 10.1126/science.aag2421.
- (30) Lai, S.; Jeon, J.; Jang, S. K.; Xu, J.; Choi, Y. J.; Park, J. H.; Hwang, E.; Lee, S. Surface group
 modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: -OH,
 -F and -O) (vol 7, pg 19390, 2015). *Nanoscale* 2016, 8 (2), 1216-1216. DOI: 10.1039/c5nr90214b.
- Rakhi, R. B.; Ahmed, B.; Hedhili, M. N.; Anjum, D. H.; Alshareef, H. N. Effect of Postetch
 Annealing Gas Composition on the Structural and Electrochemical Properties of Ti2CTx MXene
- Annealing Gas Composition on the Structural and Electrochemical Properties of Ti2CTx MXene Electrodes for Supercapacitor Applications. *Chem Mater* **2015**, *27* (15), 5314-5323. DOI:
- 40 10.1021/acs.chemmater.5b01623.
- 41 (31) Zhao, J. X.; Lu, H. Y.; Wei, X. J.; Gao, Y. Y.; Song, Y. Z.; Xu, B. A. Direct writing additive-
- 42 free V2CTx MXene architectures enables Zn-ion hybrid capacitor with ultrahigh energy density.
- 43 *J Energy Storage* **2023**, *66*. DOI: ARTN 107481
- 44 10.1016/j.est.2023.107481.

(32) Selvam, S. P.; Cho, S. B. Silver chalcogenide loaded V2CTx MXene-molecularly imprinted polymer-based novel ratiometric sensor for the early predictive cancer marker: L-Fucose. *Chem Eng J* **2023**, *469*. DOI: ARTN 144016

- 4 10.1016/j.cej.2023.144016.
- (33) Halim, J.; Cook, K. M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M. W. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). *Appl Surf Sci* 2016, *362*, 406-417. DOI: 10.1016/j.apsusc.2015.11.089. Yan, Y. F.; Han, H.; Dai, Y. J.;
 Zhu, H.; Liu, W. H.; Tang, X.; Gan, W.; Li, H. Nb2CTx MXene Nanosheets for Dye Adsorption. *Acs Appl Nano Mater* 2021, *4* (11), 11763-11769. DOI: 10.1021/acsanm.1c02339.
- 10 (34) Zhang, Y. K.; Zhang, G. F.; Zhao, S.; Gao, A. L.; Cui, J.; Yan, Y. H. Three-Dimensional 11 MXene-Based Functional Materials for Water Treatment: Preparation, Functional Tailoring, and 12 Applications. Ind Eng Chem Res 2023, 62 (19), 7297-7335. DOI: 10.1021/acs.iecr.3c00306. Li, 13 M.; Dai, X. G.; Wang, M. N.; Bai, H. Bioinspired Macroporous Materials of MXene Nanosheets: 14 Ice-Templated Assembly and Multifunctional Applications. Small Methods 2023. DOI: 15 10.1002/smtd.202300213. Korkmaz, H.; Hasar, U. C.; Ramahi, O. M. Thin-film MXene-based 16 metamaterial absorber design for solar cell applications. Opt Quant Electron 2023, 55 (6). DOI: 17 **ARTN 530**
- 18 10.1007/s11082-023-04810-z. Khot, A. C.; Dongale, T. D.; Nirmal, K. A.; Deepthi, J. K.; Sutar,
 19 S. S.; Kim, T. G. 2D Ti3C2Tx MXene-derived self-assembled 3D TiO2nanoflowers for
 20 nonvolatile memory and synaptic learning applications. *J Mater Sci Technol* 2023, *150*, 1-10. DOI:
 21 10.1016/j.jmst.2023.01.003.
- (35) Szuplewska, A.; Kulpińska, D.; Dybko, A.; Jastrzębska, A. M.; Wojciechowski, T.;
 Rozmysłowska, A.; Chudy, M.; Grabowska-Jadach, I.; Ziemkowska, W.; Brzózka, Z.; et al. 2D
 Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy. *Materials Science and Engineering: C* 2019, *98*, 874-886. DOI: <u>https://doi.org/10.1016/j.msec.2019.01.021</u>.
 (36) Tian, M.; Gan, W.; Oh, E.-S. MXene Clay (Ti2C)-Containing In Situ Polymerized Hollow
 Core–Shell Binder for Silicon-Based Anodes in Lithium-Ion Batteries. *Acs Omega* 2023, *8* (51),
 49302-49310. DOI: 10.1021/acsomega.3c07752.
- (37) Wu, Y.; Li, J.; Sui, G.; Chai, D.-F.; Li, Y.; Guo, D.; Chu, D.; Liang, K. Interface and doping
 engineering of V2C-MXene-based electrocatalysts for enhanced electrocatalysis of overall water
 splitting. *Carbon Energy* 2024, 6 (10), e583. DOI: <u>https://doi.org/10.1002/cey2.583</u>.
- (38) Jenitha, M.; Durgalakshmi, D.; Balakumar, S.; Rakkesh, R. A. Vanadium-based MXenes:
 synthesis, structural insights, and electrochemical properties for Zn-ion battery applications: a
 beginner's guide. *Emergent Materials* 2024. DOI: 10.1007/s42247-024-00916-6.
- 35 (39) Ponnalagar, D.; Hang, D.-R.; Islam, S. E.; Liang, C.-T.; Chou, M. M. C. Recent progress in
- two-dimensional Nb2C MXene for applications in energy storage and conversion. *Mater Design* 2023, 231, 112046. DOI: <u>https://doi.org/10.1016/j.matdes.2023.112046</u>.
- (40) Palisaitis, J.; Persson, I.; Halim, J.; Rosen, J.; Persson, P. O. Å. On the Structural Stability of
 MXene and the Role of Transition Metal Adatoms. *Nanoscale* 2018, *10* (23), 10850-10855,
 10.1039/C8NR01986J. DOI: 10.1039/C8NR01986J.
- 41 (41) Yang, L.; Du, J.; Deng, J.; Sulaiman, N. H. M.; Feng, X.; Liu, C.; Zhou, X. Defective Nb2C
- 42 MXene Cocatalyst on TiO2 Microsphere for Enhanced Photocatalytic CO2 Conversion to
- 43 Methane. Small 2024, 20 (19), 2307007. DOI: <u>https://doi.org/10.1002/smll.202307007</u>.
- 44 (42) Cheng, Y.-W.; Dai, J.-H.; Zhang, Y.-M.; Song, Y. Two-Dimensional, Ordered, Double
- 45 Transition Metal Carbides (MXenes): A New Family of Promising Catalysts for the Hydrogen
- 46 Evolution Reaction. The Journal of Physical Chemistry C 2018, 122 (49), 28113-28122. DOI:

1 2

10.1021/acs.jpcc.8b08914. He, M.; Zhou, Y.; Luo, Q.; Yang, J. Platinum monolayer dispersed on
 MXenes for electrocatalyzed hydrogen evolution: a first-principles study. *Nanoscale* 2024, *16* (33), 15670-15676, 10.1039/D4NR01864H. DOI: 10.1039/D4NR01864H.

- 4 (43) Gao, Y.; Cao, Y.; Zhuo, H.; Sun, X.; Gu, Y.; Zhuang, G.; Deng, S.; Zhong, X.; Wei, Z.; Li,
 5 X.; et al. Mo2TiC2 MXene: A Promising Catalyst for Electrocatalytic Ammonia Synthesis.
- 6 *Catalysis Today* **2020**, *339*, 120-126. DOI: <u>https://doi.org/10.1016/j.cattod.2018.12.029</u>.
- (44) Hua, S.; Huang, B.; Le, Z.; Huang, Q. Mo-based Mo2Ti2C3 MXene as photothermal nanoagents to eradicating methicillin-resistant Staphylococcus aureus with photothermal therapy. *Mater Design* 2023, *231*, 112033. DOI: <u>https://doi.org/10.1016/j.matdes.2023.112033</u>.
- (45) Saraf, M.; Chacon, B.; Ippolito, S.; Lord, R. W.; Anayee, M.; Wang, R.; Inman, A.; Shuck,
 C. E.; Gogotsi, Y. Enhancing Charge Storage of Mo2Ti2C3 MXene by Partial Oxidation. *Adv Funct Mater* 2024, *34* (1), 2306815. DOI: https://doi.org/10.1002/adfm.202306815.
- (46) Yoon, J.; Kim, S.; Park, K. H.; Lee, S.; Kim, S. J.; Lee, H.; Oh, T.; Koo, C. M. Biocompatible
 and Oxidation-Resistant Ti3C2Tx MXene with Halogen-Free Surface Terminations. *Small Methods* 2023. DOI: ARTN 2201579
- 10.1002/smtd.202201579. Fan, Q.; Yi, M. J.; Chai, C. X.; Li, W. W.; Qi, P.; Wang, J. H.; Hao, J.
 C. Oxidation stability enhanced MXene-based porous materials derived from water-in-ionic liquid
 Pickering emulsions for wearable piezoresistive sensor and oil/water separation applications. J *Colloid Interf Sci* 2022, 618, 311-321. DOI: 10.1016/j.jcis.2022.03.073. Habib, T.; Zhao, X. F.;
 Shah, S. A.; Chen, Y. X.; Sun, W. M.; An, H.; Lutkenhaus, J. L.; Radovic, M.; Green, M. J.
 Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. Npj 2d Mater
 Appl 2019, 3. DOI: ARTN 8
- 23 10.1038/s41699-019-0089-3.
- (47) Zhang, C. F. J.; Pinilla, S.; McEyoy, N.; Cullen, C. P.; Anasori, B.; Long, E.; Park, S. H.;
 Seral-Ascaso, A.; Shmeliov, A.; Krishnan, D.; et al. Oxidation Stability of Colloidal TwoDimensional Titanium Carbides (MXenes). *Chem Mater* 2017, *29* (11), 4848-4856. DOI:
 10.1021/acs.chemmater.7b00745.
- (48) Kim, J.; Yoon, Y.; Kim, S. K.; Park, S.; Song, W.; Myung, S.; Jung, H. K.; Lee, S. S.; Yoon,
 D. H.; An, K. S. Chemically Stabilized and Functionalized 2D-MXene with Deep Eutectic
 Solvents as Versatile Dispersion Medium. *Adv Funct Mater* 2021, *31* (13). DOI: ARTN 2008722
- 31 10.1002/adfm.202008722.
- 32 (49) Zhao, X. F.; Cao, H. X.; Coleman, B. J.; Tan, Z. Y.; Echols, I. J.; Pentzer, E. B.; Lutkenhaus,
- 33 J. L.; Radovic, M.; Green, M. J. The Role of Antioxidant Structure in Mitigating Oxidation in
- 34 Ti3C2Tx and Ti2CTx MXenes. Adv Mater Interfaces 2022, 9 (20). DOI: ARTN 2200480
- 35 10.1002/admi.202200480.
- 36 (50) Lee, S.; Kim, E. H.; Yu, S.; Kim, H.; Park, C.; Lee, S. W.; Han, H.; Jin, W.; Lee, K.; Lee, C.
- 37 E.; et al. Polymer-Laminated Ti3C2Tx MXene Electrodes for Transparent and Flexible Field-
- 38 Driven Electronics. Acs Nano **2021**, 15 (5), 8940-8952. DOI: 10.1021/acsnano.1c01621.
- 39 (51) Shamsabadi, A. A.; Isfahani, A. P.; Salestan, S. K.; Rahimpour, A.; Ghalei, B.; Sivaniah, E.;
- 40 Soroush, M. Pushing Rubbery Polymer Membranes To Be Economic for CO2 Separation:
- 41 Embedment with Ti3C2Tx MXene Nanosheets. Acs Appl Mater Inter 2020, 12 (3), 3984-3992.
- 42 DOI: 10.1021/acsami.9b19960. Amin, I.; van den Brekel, H.; Nemani, K.; Batyrev, E.; de Vooys,
- 43 A.; van der Weijde, H.; Anasori, B.; Shiju, N. R. Ti3C2Tx MXene Polymer Composites for
- 44 Anticorrosion: An Overview and Perspective. *Acs Appl Mater Inter* **2022**. DOI: 10.1021/second.2011052
- 45 10.1021/acsami.2c11953.

(52) Natu, V.; Hart, J. L.; Sokol, M.; Chiang, H.; Taheri, M. L.; Barsoum, M. W. Edge Capping of 2D-MXene Sheets with Polyanionic Salts To Mitigate Oxidation in Aqueous Colloidal

- 3 Suspensions. *Angew Chem Int Edit* **2019**, *58* (36), 12655-12660. DOI: 10.1002/anie.201906138.
- 4 (53) Wu, C. W.; Unnikrishnan, B.; Chen, I. W. P.; Harroun, S. G.; Chang, H. T.; Huang, C. C.
 5 Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. *Energy*6 *Storage Mater* 2020, *25*, 563-571. DOI: 10.1016/j.ensm.2019.09.026.
- 7 (54) Shi, Y. Q.; Liu, C.; Duan, Z. P.; Yu, B.; Liu, M. H.; Song, P. A. Interface engineering of
- 8 MXene towards super-tough and strong polymer nanocomposites with high ductility and excellent
- 9 fire safety. Chem Eng J 2020, 399. DOI: ARTN 125829
- 10 10.1016/j.cej.2020.125829.
- 11 (55) Liu, M. F.; Zhuo, Y. L.; Sarycheva, A.; Gogotsi, Y.; Bissett, M. A.; Young, R. J.; Kinloch, I.
- A. Deformation of and Interfacial Stress Transfer in Ti3C2 MXene-Polymer Composites. *Acs Appl Mater Inter* 2022, *14* (8), 10681-10690. DOI: 10.1021/acsami.1c21611. Wan, S. J.; Li, X.; Wang,
 Y. L.; Chen, Y.; Xie, X.; Yang, R.; Tomsia, A. P.; Jiang, L.; Cheng, Q. F. Strong sequentially
 bridged MXene sheets. *P Natl Acad Sci USA* 2020, *117* (44), 27154-27161. DOI: 10.1073/pnas.2009432117.
- (56) Soomro, R. A.; Zhang, P.; Fan, B. M.; Wei, Y.; Xu, B. Progression in the Oxidation Stability
 of MXenes. *Nano-Micro Lett* 2023, *15* (1). DOI: ARTN 108
- 19 10.1007/s40820-023-01069-7.
- (57) Mozafari, M.; Soroush, M. Surface functionalization of MXenes. *Materials Advances* 2021,
 2 (22), 7277-7307, 10.1039/D1MA00625H. DOI: 10.1039/D1MA00625H.
- (58) Fu, Z. H.; Wang, N.; Legut, D.; Si, C.; Zhang, Q. F.; Du, S. Y.; Germann, T. C.; Francisco, J.
 S.; Zhang, R. F. Rational Design of Flexible Two-Dimensional MXenes with Multiple
 Functionalities. *Chem Rev* 2019, *119* (23), 11980-12031. DOI: 10.1021/acs.chemrev.9b00348.
- (59) Zhang, X. S.; Wang, X. F.; Lei, Z. W.; Wang, L. L.; Tian, M. W.; Zhu, S. F.; Xiao, H.; Tang,
 X. N.; Qu, L. J. Flexible MXene-Decorated Fabric with Interwoven Conductive Networks for
 Integrated Joule Heating, Electromagnetic Interference Shielding, and Strain Sensing
 Performances. *Acs Appl Mater Inter* 2020, *12* (12), 14459-14467. DOI: 10.1021/acsami.0c01182.
 (60) Li, L.; Fu, X. Y.; Chen, S.; Uzun, S.; Levitt, A. S.; Shuck, C. E.; Han, W.; Gogotsi, Y.
 Hydrophobic and Stable MXene-Polymer Pressure Sensors for Wearable Electronics. *Acs Appl Mater Inter* 2020, *12* (13), 15362-15369. DOI: 10.1021/acsami.0c00255.
- (61) Chen, K.; Hu, Y. P.; Wang, F.; Liu, M. X.; Liu, P.; Li, C.; Yu, Y. S.; Xiao, X. F.; Feng, Q.
 Ultra-stretchable, adhesive, and self-healing MXene/polyampholytes hydrogel as flexible and
 wearable epidermal sensors. *Colloid Surface A* 2022, 645. DOI: ARTN 128897
- 35 10.1016/j.colsurfa.2022.128897.
- 36 (62) Cui, Y. L.; Zhu, J.; Tong, H.; Zou, R. Advanced perspectives on MXene composite
- 37 nanomaterials: Types synthetic methods, thermal energy utilization and 3D-printed techniques.
- 38 Iscience 2023, 26 (1). DOI: ARTN 105824
- 39 10.1016/j.isci.2022.105824.
- 40 (63) Li, T.; Chen, T. H.; Shen, X. C.; Shi, H. H.; Jabari, E.; Naguib, H. E. A binder jet 3D printed
- 41 MXene composite for strain sensing and energy storage application. Nanoscale Adv 2022, 4 (3),
- 42 916-925. DOI: 10.1039/d1na00698c.
- 43 (64) Liu, H. D.; Du, C. F.; Liao, L. L.; Zhang, H. J.; Zhou, H. Q.; Zhou, W. C.; Ren, T. N.; Sun,
- 44 Z. C.; Lu, Y. F.; Nie, Z. T.; et al. Approaching intrinsic dynamics of MXenes hybrid hydrogel for

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

- 1 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature 2 sensitivity. *Nat Commun* **2022**, *13* (1). DOI: ARTN 3420
- 3 10.1038/s41467-022-31051-7.
- 4 (65) Adekoya, G. J.; Adekoya, O. C.; Sadiku, R. E.; Hamam, Y.; Ray, S. S. Applications of 5 MXene-Containing Polypyrrole Nanocomposites in Electrochemical Energy Storage and
- Kixene-Containing Forypyriole Nanocomposites in Electrochemical Energy Storage and
 Conversion. *Acs Omega* 2022. DOI: 10.1021/acsomega.2c02706. Liu, S.-M.; Chen, M.-X.; Xie,
 Y.; Liu, D.-H.; Zheng, J.-F.; Xiong, X.; Jiang, H.; Wang, L.-C.; Luo, H.; Han, K. Nb2CTx MXene
 boosting PEO polymer electrolyte for all-solid-state Li-S batteries: two birds with one stone
 strategy to enhance Li+ conductivity and polysulfide adsorptivity. *Rare Metals* 2023, *42* (8), 25622576. DOI: 10.1007/s12598-022-02260-2.
- (66) Yan, H.; Li, W.; Li, H.; Fan, X. Q.; Zhu, M. H. Ti3C2 MXene nanosheets toward highperformance corrosion inhibitor for epoxy coating. *Prog Org Coat* 2019, *135*, 156-167. DOI:
 10.1016/j.porgcoat.2019.06.013.
- (67) He, X.; Wu, J.; Huang, X.; Chen, Y.; Zhang, L.; Sheng, X. Three-in-one polymer
 nanocomposite coating via constructing tannic acid functionalized MXene/BP hybrids with
 superior corrosion resistance, friction resistance, and flame-retardancy. *Chemical Engineering Science* 2024, 283, 119429. DOI: <u>https://doi.org/10.1016/j.ces.2023.119429</u>.
- (68) Li, L.; Liu, X. Y.; Wang, J. F.; Yang, Y. Y.; Cao, Y. X.; Wang, W. J. New application of
 MXene in polymer composites toward remarkable anti-dripping performance for flame retardancy. *Compos Part a-Appl S* 2019, *127*. DOI: ARTN 105649
- 21 10.1016/j.compositesa.2019.105649.

(69) Jin, Y.; Fan, Y. Y.; Meng, X. X.; Li, J. Y.; Li, C.; Sunarso, J.; Yang, N. T.; Meng, B.; Zhang,
W. M. Modeling of hydrated cations transport through 2D MXene (Ti3C2Tx) membranes for
water purification. *J Membrane Sci* 2021, *631*. DOI: ARTN 119346

25 10.1016/j.memsci.2021.119346.

(70) Hu, J. X.; Zhan, Y. Q.; Zhang, G. Y.; Feng, Q. Y.; Yang, W.; Chiao, Y. H.; Zhang, S. R.; Sun,
A. Durable and super-hydrophilic/underwater super-oleophobic two-dimensional MXene
composite lamellar membrane with photocatalytic self-cleaning property for efficient oil/water
separation in harsh environments. *J Membrane Sci* 2021, 637. DOI: ARTN 119627

- 30 10.1016/j.memsci.2021.119627.
- (71) Ren, C. E.; Hatzell, K. B.; Alhabeb, M.; Ling, Z.; Mahmoud, K. A.; Gogotsi, Y. Charge- and
 Size-Selective Ion Sieving Through Ti3C2Tx MXene Membranes. *J Phys Chem Lett* 2015, 6 (20),
 4026-4031. DOI: 10.1021/acs.jpclett.5b01895. Han, R. L.; Ma, X. F.; Xie, Y. L.; Teng, D.; Zhang,
 S. H. Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity
 and high flux. *Rsc Adv* 2017, 7 (89), 56204-56210. DOI: 10.1039/c7ra10318b.
- 36 (72) Deng, B.; Lian, H.; Xue, B.; Song, R.; Chen, S.; Wang, Z.; Xu, T.; Dong, H.; Wang, S. 37 Niobium-Carbide MXene Modified Hybrid Hole Transport Layer Enabling High-Performance 38 19%. 2023, Organic Solar Cells Over Small 19 (23),2207505. DOI: 39 https://doi.org/10.1002/smll.202207505. Assunção, J. P. F.; Lemos, H. G.; Rossato, J. H. H.; 40 Nogueira, G. L.; Lima, J. V. M.; Fernandes, S. L.; Nishihora, R. K.; Fernandes, R. V.; Lourenço, 41 S. A.; Bagnis, D.; et al. Interface passivation with Ti3C2Tx-MXene doped PMMA film for highly efficient and stable inverted perovskite solar cells. J Mater Chem C 2024, 12 (2), 562-574, 42
- 43 10.1039/D3TC03810F. DOI: 10.1039/D3TC03810F.

- (73) Gu, Q.; Wang, J.; Peng, R.; Song, W.; Xie, L.; Zhou, R.; Ge, Z. Nonfullerene Organic Solar
- 2 Cells with 18.17% Efficiency Obtained Using a V2C/PEDOT:PSS Composite Hole-Transport
- 3 Layer. *ACS Applied Energy Materials* **2023**, *6* (3), 1982-1988. DOI: 10.1021/acsaem.2c03883.
- 4 (74) Rasool, K.; Helal, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A. Antibacterial Activity
 5 of Ti3C2Tx MXene. *Acs Nano* 2016, *10* (3), 3674-3684. DOI: 10.1021/acsnano.6b00181.
- 6 (75) Purbayanto, M. A. K.; Jakubczak, M.; Bury, D.; Nair, V. G.; Birowska, M.; Moszczynska,
- 7 D.; Jastrzebska, A. Tunable Antibacterial Activity of a Polypropylene Fabric Coated with Bristling
- Ti3C2Tx MXene Flakes Coupling the Nanoblade Effect with ROS Generation. Acs Appl Nano
 Mater 2022, 5 (4), 5373-5386. DOI: 10.1021/acsanm.2c00365.
- (76) Gao, Y. J.; Dong, Y. H.; Yang, S. T.; Mo, A. C.; Zeng, X.; Chen, Q. M.; Peng, Q. Sizedependent photothermal antibacterial activity of Ti3C2Tx MXene nanosheets against methicillinresistant Staphylococcus aureus. *J Colloid Interf Sci* 2022, 617, 533-541. DOI:
 10.1016/j.jcis.2022.03.032.
- (77) Pan, Y.; Hang, Y. T.; Zhao, X. H.; Liu, G. P.; Jin, W. Q. Optimizing separation performance
 and interfacial adhesion of PDMS/PVDF composite membranes for butanol recovery from
 aqueous solution. *J Membrane Sci* 2019, *579*, 210-218. DOI: 10.1016/j.memsci.2019.03.008.
- (78) Shi, X. Y.; Gao, M. H.; Hu, W. W.; Luo, D.; Hu, S. Z.; Huang, T.; Zhang, N.; Wang, Y.
 Largely enhanced adsorption performance and stability of MXene through in-situ depositing
 polypyrrole nanoparticles. *Sep Purif Technol* 2022, *287*. DOI: ARTN 120596
- 20 10.1016/j.seppur.2022.120596.
- (79) Sharma, P. K.; Pradhan, S. K.; Pramanik, M.; Limaye, M. V.; Singh, S. B. MXene Based
 Electrospun Polymer Electrolyte fibers: Fabrication and Enhanced Ionic Conductivity. *Chemistryselect* 2022, 7 (40). DOI: ARTN e202201986
- 24 10.1002/slct.202201986.
- (80) Mayerberger, E. A.; Urbanek, O.; McDaniel, R. M.; Street, R. M.; Barsoum, M. W.; Schauer,
 C. L. Preparation and characterization of polymer-Ti3C2Tx (MXene) composite nanofibers
 produced via electrospinning. *J Appl Polym Sci* 2017, *134* (37). DOI: Artn 45295
- 28 10.1002/App.45295.
- (81) Boota, M.; Anasori, B.; Voigt, C.; Zhao, M. Q.; Barsoum, M. W.; Gogotsi, Y.
 Pseudocapacitive Electrodes Produced by Oxidant-Free Polymerization of Pyrrole between the
 Layers of 2D Titanium Carbide (MXene). *Adv Mater* 2016, *28* (7), 1517-1522. DOI:
 10.1002/adma.201504705.
- (82) Wang, Q. W.; Zhang, H. B.; Liu, J.; Zhao, S.; Xie, X.; Liu, L. X.; Yang, R.; Koratkar, N.; Yu,
 Z. Z. Multifunctional and Water-Resistant MXene-Decorated Polyester Textiles with Outstanding
 Electromagnetic Interference Shielding and Joule Heating Performances. *Adv Funct Mater* 2019,
 29 (7). DOI: ARTN 1806819
- 37 10.1002/adfm.201806819.
- 38 (83) Yi, P.; Zou, H. H.; Yu, Y. H.; Li, X. F.; Li, Z. Y.; Deng, G.; Chen, C. Y.; Fang, M.; He, J. Z.;
- 39 Sun, X.; et al. MXene-Reinforced Liquid Metal/Polymer Fibers via Interface Engineering for
- 40 Wearable Multifunctional Textiles. *Acs Nano* **2022**. DOI: 10.1021/acsnano.2c04863.
- 41 (84) Zhou, T. Z.; Yu, Y. Z.; He, B.; Wang, Z.; Xiong, T.; Wang, Z. X.; Liu, Y. T.; Xin, J. W.; Qi,
- 42 M.; Zhang, H. Z.; et al. Ultra-compact MXene fibers by continuous and controllable synergy of
- 43 interfacial interactions and thermal drawing-induced stresses. *Nat Commun* **2022**, *13* (1). DOI:
- 44 ARTN 4564

- 10.1038/s41467-022-32361-6.
- 2 (85) Tan, K. H.; Samylingam, L.; Aslfattahi, N.; Saidur, R.; Kadirgama, K. Optical and
- 3 conductivity studies of polyvinyl alcohol-MXene (PVA-MXene) nanocomposite thin films for
- 4 electronic applications. Opt Laser Technol 2021, 136. DOI: ARTN 106772
- 10.1016/j.optlastec.2020.106772. Yu, W. J.; Li, Y.; Xin, B. J.; Lu, Z. MXene/PVA Fiber-based
 Supercapacitor with Stretchability for Wearable Energy Storage. *Fiber Polym* 2022, 23 (11), 29943001. DOI: 10.1007/s12221-022-4389-4. Yi, Y.; Chiao, M.; Mahmoud, K. A.; Wang, B. An
 MXene-doped PVA/PVP hydrogel-based strain sensor applicable in liquid environment. *Smart*
- 9 *Mater Struct* **2023**, *32* (2). DOI: ARTN 025010
- 10 10.1088/1361-665X/acafbc. Li, L. M.; Ji, X. F.; Chen, K. Conductive, self-healing, and 11 antibacterial Ag/MXene-PVA hydrogel as wearable skin-like sensors. *J Biomater Appl* **2023**, *37* 12 (7), 1169-1181. DOI: Artn 08853282221131137
- 10.1177/08853282221131137. Li, C. X.; Zheng, A.; Zhou, J. Y.; Huang, W. W.; Zhang, Y.; Han,
 J. X.; Cao, L. Y.; Yang, D. Y. A self-adhesive, self-healing and antibacterial hydrogel based on
 PVA/MXene-Ag/sucrose for fast-response, high-sensitivity and ultra-durable strain sensors. *New J Chem* 2023, 47 (14), 6621-6630. DOI: 10.1039/d3nj00586k. Haataja, R.; Myllymaki, S.;
 Laitinen, O.; Jantunen, H.; Liimatainen, H. Controlling the cell and surface architecture of
 cellulose nanofiber/PVA/ Ti3C2TX MXene hybrid cryogels for optimized permittivity and EMI
 shielding performance. *Mater Design* 2023, 228. DOI: ARTN 111855
- 20 10.1016/j.matdes.2023.111855.
- (86) Wang, D. Z.; Lin, Y.; Hu, D. W.; Jiang, P. K.; Huang, X. Y. Multifunctional 3DMXene/PDMS nanocomposites for electrical, thermal and triboelectric applications. *Compos Part a-Appl S* 2020, *130*. DOI: ARTN 105754
- 10.1016/j.compositesa.2019.105754. Lu, W. G.; Mustafa, B.; Wang, Z. Y.; Lian, F. Z.; Yu, G. L.
 PDMS-Encapsulated MXene@Polyester Fabric Strain Sensor for Multifunctional Sensing
 Applications. *Nanomaterials-Basel* 2022, *12* (5). DOI: ARTN 871
- 10.3390/nano12050871. Liu, H. B.; Fu, R. L.; Su, X. Q.; Wu, B. Y.; Wang, H.; Xu, Y.; Liu, X. H.
 Electrical insulating MXene/PDMS/BN composite with enhanced thermal conductivity for
 electromagnetic shielding application. *Compos Commun* 2021, 23. DOI: ARTN 100593
 10.1016/j.coco.2020.100593.
- (87) Faruk, O.; Adak, B. Recent advances in PEDOT:PSS integrated graphene and MXene-based
 composites for electrochemical supercapacitor applications. *Synthetic Met* 2023, 297. DOI: ARTN
- 32 composites for electrochemical supercapacitor applications. *Synthetic* .
 33 117384
- 34 10.1016/j.synthmet.2023.117384. Chetana, S.; Upadhyay, S.; Joshi, N. C.; Kumar, N.; Choudhary,
- 35 P.; Sharma, N.; Thakur, V. N. A facile supercritical fluid synthesis of cobalt sulfide integrated with
- 36 MXene and PANI/PEDOT nanocomposites as electrode material for supercapacitor applications.
- 37 *Flatchem* **2023**, *37*. DOI: ARTN 100456
- 10.1016/j.flatc.2022.100456. Zhang, M. Y.; Yang, W. K.; Wang, Z. Q.; Liu, H.; Yin, R.; Liu, C.
 T.; Shen, C. Y. Highly compressible and thermal insulative conductive
 MXene/PEDOT:PSS@melamine foam for promising wearable piezoresistive sensor. *Appl Phys*
- 41 *Lett* **2023**, *122* (4). DOI: Artn 043507
- 42 10.1063/5.0137571. Jin, X. Z.; Yang, Z. Y.; Huang, C. H.; Yang, J. H.; Wang, Y.
- 43 PEDOT:PSS/MXene/PEG composites with remarkable thermal management performance and
- 44 excellent HF-band & X-band electromagnetic interference shielding efficiency for electronic
- 45 packaging. *Chem Eng J* **2022**, *448*. DOI: ARTN 137599

10.1016/j.cej.2022.137599.

1

2 (88) Cheng, T.; Yang, X. L.; Yang, S.; Li, L.; Liu, Z. T.; Qu, J.; Meng, C. F.; Li, X. C.; Zhang, Y.

3 Z.; Lai, W. Y. Flexible Transparent Bifunctional Capacitive Sensors with Superior Areal

- 4 Capacitance and Sensing Capability based on PEDOT:PSS/MXene/Ag Grid Hybrid Electrodes.
- 5 Adv Funct Mater 2023, 33 (5). DOI: ARTN 2210997
- 10.1002/adfm.202210997. 6

7 (89) He, Z. W.; Xie, H. M.; Wu, H. Q.; Chen, J. H.; Ma, S. Y.; Duan, X.; Chen, A. Q.; Kong, Z. 8 Recent Advances in MXene/Polyaniline-Based Composites for Electrochemical Devices and 9 Electromagnetic Interference Shielding Applications. Acs Omega 2021, 6 (35), 22468-22477. 10 DOI: 10.1021/acsomega.1c02996. Elancheziyan, M.; Eswaran, M.; Shuck, C. E.; Senthilkumar, 11 S.; Elumalai, S.; Dhanusuraman, R.; Ponnusamy, V. K. Facile synthesis of polyaniline/titanium 12 carbide (MXene) nanosheets/palladium nanocomposite for efficient electrocatalytic oxidation of 13 methanol for fuel cell application. Fuel 2021, 303. DOI: 10.1016/j.fuel.2021.121329.

- 14 (90) Yang, C. Q.; Zhang, D. Z.; Wang, D. Y.; Luan, H. X.; Chen, X. Y.; Yan, W. Y. In Situ 15 Polymerized MXene/Polypyrrole/Hydroxyethyl Cellulose- Based Flexible Strain Sensor Enabled 16 by Machine Learning for Handwriting Recognition. Acs Appl Mater Inter 2023, 15 (4), 5811-5821. 17 DOI: 10.1021/acsami.2c18989. Wang, L.; Wu, H.; Zhai, X.; Shi, J.; Zhou, Q. Q.; Li, H.; Wan, J. M. Ti3C2Tx MXene/dopamine-modified polypyrrole flexible composite electrodes with 18 19 application in energy storage devices. J Alloy Compd 2023, 946. DOI: ARTN 169347
- 20 10.1016/j.jallcom.2023.169347. Luo, W. L.; Sun, Y.; Han, Y. Q.; Ding, J. X.; Li, T. X.; Hou, C. 21 P.; Ma, Y. Flexible Ti3C2Tx MXene/polypyrrole composite films for high-performance all-solid 22 asymmetric supercapacitors. *Electrochim Acta* 2023, 441. DOI: ARTN 141818

10.1016/j.electacta.2023.141818. Liu, Z. L.; Zhang, R.; Xiong, H. L.; Zhang, L. L.; Li, J. Z.; Wang, 24 L. Q.; Qiao, Z. A. Swelling-Induced Structural Transformation Strategy: Controllable Synthesis 25 of 2D Porous Polypyrrole/MXene Heterostructures with Tunable Pore Structures. Adv Mater 26 Interfaces 2023, 10 (11). DOI: 10.1002/admi.202202501.

27 (91) Wu, Z. T.; Shang, T. X.; Deng, Y. Q.; Tao, Y.; Yang, Q. H. The Assembly of MXenes from 28 2D to 3D. Adv Sci 2020, 7 (7). DOI: ARTN 1903077

- 29 10.1002/advs.201903077.
- 30 (92) He, S.; Sun, X.; Zhang, H.; Yuan, C.; Wei, Y.; Li, J. Preparation Strategies and Applications 31 of MXene-Polymer Composites: A Review. Macromolecular Rapid Communications 2021, 42 32 (19), 2100324. DOI: https://doi.org/10.1002/marc.202100324.
- 33 (93) Riazi, H.; Nemani, S. K.; Grady, M. C.; Anasori, B.; Soroush, M. Ti3C2 MXene-polymer 34 nanocomposites and their applications. J Mater Chem A 2021, 9 (13), 8051-8098, 35 10.1039/D0TA08023C. DOI: 10.1039/D0TA08023C.
- 36 (94) Gong, K.; Zhou, K.; Qian, X.; Shi, C.; Yu, B. MXene as emerging nanofillers for high-
- 37 performance polymer composites: A review. Composites Part B: Engineering 2021, 217, 108867. 38 DOI: https://doi.org/10.1016/j.compositesb.2021.108867.
- 39 (95) Chen, X.; Zhao, Y.; Li, L.; Wang, Y.; Wang, J.; Xiong, J.; Du, S.; Zhang, P.; Shi, X.; Yu, J.
- MXene/Polymer Nanocomposites: Preparation, Properties, and Applications. Polymer Reviews 40
- 41 **2021**, *61* (1), 80-115. DOI: 10.1080/15583724.2020.1729179. Carey, M.; Barsoum, M. W. MXene
- 42 polymer nanocomposites: a review. Materials Today Advances 2021, 9, 100120. DOI:
- 43 https://doi.org/10.1016/j.mtadv.2020.100120. Aghamohammadi, H.; Amousa, N.; Eslami-Farsani,
- 44 R. Recent advances in developing the MXene/polymer nanocomposites with multiple properties:

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

- 1 2021, 273. 116695. review study. Synthetic Met DOI: Α 2 https://doi.org/10.1016/j.synthmet.2020.116695. 3 (96) Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; 4 Barsoum, M. W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv Mater 5 **2011**, 23 (37), 4248-4253. 6 (97) Oyehan, T. A.; Salami, B. A.; Abdulrasheed, A. A.; Hambali, H. U.; Gbadamosi, A.; Valsami-7 Jones, E.; Saleh, T. A. MXenes: Synthesis, properties, and applications for sustainable energy and 8 Mater 35, 101993. environment. Appl Today 2023, DOI: 9 https://doi.org/10.1016/j.apmt.2023.101993. 10 (98) Shuck, C. E.; Han, M.; Maleski, K.; Hantanasirisakul, K.; Kim, S. J.; Choi, J.; Reil, W. E. B.; 11 Gogotsi, Y. Effect of Ti3AlC2 MAX Phase on Structure and Properties of Resultant Ti3C2Tx 12 MXene. Acs Appl Nano Mater 2019, 2 (6), 3368-3376. DOI: 10.1021/acsanm.9b00286. 13 (99) Natu, V.; Pai, R.; Sokol, M.; Carey, M.; Kalra, V.; Barsoum, M. W. 2D Ti3C2Tz MXene 14 Synthesized by Water-free Etching of Ti3AlC2 in Polar Organic Solvents. Chem 2020, 6 (3), 616-15 630. DOI: https://doi.org/10.1016/j.chempr.2020.01.019. 16 (100) Yang, S.; Zhang, P.; Wang, F.; Ricciardulli, A. G.; Lohe, M. R.; Blom, P. W. M.; Feng, X. 17 Fluoride-Free Synthesis of Two-Dimensional Titanium Carbide (MXene) Using A Binary 18 Aqueous System. Angewandte Chemie International Edition 2018, 57 (47), 15491-15495. DOI: 19 https://doi.org/10.1002/anie.201809662. 20 (101) Liu, L.; Orbay, M.; Luo, S.; Duluard, S.; Shao, H.; Harmel, J.; Rozier, P.; Taberna, P.-L.; 21 Simon, P. Exfoliation and Delamination of Ti3C2Tx MXene Prepared via Molten Salt Etching 22 Route. Acs Nano 2022, 16 (1), 111-118. 23 (102) Li, T.; Yao, L.; Liu, Q.; Gu, J.; Luo, R.; Li, J.; Yan, X.; Wang, W.; Liu, P.; Chen, B.; et al. 24 Fluorine-Free Synthesis of High-Purity Ti3C2T (T=OH, O) via Alkali Treatment. Angewandte 25 Chemie International 2018, 57 6115-6119. Edition (21),DOI: 26 https://doi.org/10.1002/anie.201800887. (103) Wang, D.; Zhou, C.; Filatov, A. S.; Cho, W.; Lagunas, F.; Wang, M.; Vaikuntanathan, S.; 27 28 Liu, C.; Klie, R. F.; Talapin, D. V. Direct synthesis and chemical vapor deposition of 2D carbide 29 and nitride MXenes. Science 2023, 379 (6638), 1242-1247. DOI: doi:10.1126/science.add9204. 30 (104) Halim, J.; Kota, S.; Lukatskaya, M. R.; Naguib, M.; Zhao, M.-Q.; Moon, E. J.; Pitock, J.; 31 Nanda, J.; May, S. J.; Gogotsi, Y.; et al. Synthesis and Characterization of 2D Molybdenum 32 Funct 3118-3127. Carbide (MXene). Adv Mater 2016. 26 (18).DOI: 33 https://doi.org/10.1002/adfm.201505328. 34 (105) Rems, E.; Anayee, M.; Fajardo, E.; Lord, R. L.; Bugallo, D.; Gogotsi, Y.; Hu, Y.-J. 35 Computationally Guided Synthesis of MXenes by Dry Selective Extraction. Adv Mater 2023, 35
- 36 (45), 2305200. DOI: <u>https://doi.org/10.1002/adma.202305200</u>.
- 37 (106) Xiao, X.; Yu, H.; Jin, H.; Wu, M.; Fang, Y.; Sun, J.; Hu, Z.; Li, T.; Wu, J.; Huang, L.; et al.
- 38 Salt-Templated Synthesis of 2D Metallic MoN and Other Nitrides. Acs Nano 2017, 11 (2), 2180-
- 39 2186. DOI: 10.1021/acsnano.6b08534.
- 40 (107) Ding, H.; Li, Y.; Li, M.; Chen, K.; Liang, K.; Chen, G.; Lu, J.; Palisaitis, J.; Persson, P. O.
- 41 Å.; Eklund, P.; et al. Chemical scissor-mediated structural editing of layered transition metal
- 42 carbides. *Science* **2023**, *379* (6637), 1130-1135. DOI: doi:10.1126/science.add5901.
- 43 (108) Kumar, S.; Kumari, N.; Seo, Y. MXenes: Versatile 2D materials with tailored surface
- 44 chemistry and diverse applications. Journal of Energy Chemistry 2024, 90, 253-293. DOI:
- 45 <u>https://doi.org/10.1016/j.jechem.2023.11.031</u>.

(109) Schultz, T.; Frey, N. C.; Hantanasirisakul, K.; Park, S.; May, S. J.; Shenoy, V. B.; Gogotsi,

- 2 Y.; Koch, N. Surface Termination Dependent Work Function and Electronic Properties of
- 3 Ti3C2Tx MXene. *Chem Mater* **2019**, *31* (17), 6590-6597. DOI: 10.1021/acs.chemmater.9b00414.
- Caffrey, N. M. Effect of mixed surface terminations on the structural and electrochemical
 properties of two-dimensional Ti3C2T2 and V2CT2 MXenes multilayers. *Nanoscale* 2018, *10*(28), 13520-13530, 10.1039/C8NR03221A. DOI: 10.1039/C8NR03221A.
- 7 (110) Su, T. M.; Ma, X. H.; Tong, J. H.; Ji, H. B.; Qin, Z. Z.; Wu, Z. L. Surface engineering of
- MXenes for energy and environmental applications. *J Mater Chem A* 2022, *10* (19), 10265-10296.
 DOI: 10.1039/d2ta01140a.
- 10 (111) Mohammadi, A. V.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and 11 nitrides (MXenes). *Science* **2021**, *372* (6547), 1165-+. DOI: ARTN abf1581
- 12 10.1126/science.abf1581.
- 13 (112) Zhu, Y. D.; Ma, X. Y.; Li, L. P.; Yang, Q. J.; Jin, F.; Chen, Z. N.; Wu, C. P.; Shi, H. B.; 14 Feng, Z. Q.; Yin, S. K.; et al. Surface Functional Modification by Ti3C2Tx MXene on PLLA 15 Nanofibers for Optimizing Neural Stem Cell Engineering. Adv Healthc Mater 2023. DOI: 16 10.1002/adhm.202300731. Zhang, J. B.; Tang, S.; Ding, N.; Ma, P.; Zhang, Z. T. Surface-modified 17 Ti3C2 MXene nanosheets for mesenchymal stem cell osteogenic differentiation via photothermal conversion. Nanoscale Adv 2023, 5 (11), 2921-2932. DOI: 10.1039/d3na00187c. Yuan, W. K.; 18 19 Zhu, L. L.; Zheng, Y. J.; Guo, W. Y.; Min, Y. L.; Fan, J. C. Surface Engineering with Interfacial 20 Poly(glutamic acid)/MXene/Aramid Nanofibers Protective Layer for Dendrite-Free Zinc Anodes. 21 Energ Fuel 2023, 37 (11), 8031-8041. DOI: 10.1021/acs.energyfuels.3c01058. Tokmedash, M. 22 A.; Nagpal, N.; Chen, P. Y.; VanEpps, J. S.; Min, J. H. Stretchable, Nano-Crumpled MXene 23 Multilayers Impart Long-Term Antibacterial Surface Properties. Adv Mater Interfaces 2023, 10 24 (16). DOI: 10.1002/admi.202202350. Sharma, V.; Sardana, S.; Dhiman, R.; Mahajan, A. Surface 25 engineered MXene with multi-electroactive sites for developing durable and efficient watersplitting electrolyzer. Appl Phys Lett 2023, 122 (19). DOI: Artn 191601 26
- 10.1063/5.0142311. Schultz, T.; Barmann, P.; Longhi, E.; Meena, R.; Geerts, Y.; Gogotsi, Y.;
 Barlow, S.; Marder, S. R.; Petit, T.; Koch, N. Work function and energy level alignment tuning at
 Ti3C2Tx MXene surfaces and interfaces using (metal-)organic donor/acceptor molecules. *Phys Rev Mater* 2023, 7 (4). DOI: ARTN 045002
- 10.1103/PhysRevMaterials.7.045002. Mustafa, M. N.; Abdah, M. A. A. M.; Numan, A.; Sulaiman,
 Y.; Walvekar, R.; Khalid, M. Development of high-performance MXene/nickel cobalt phosphate
 nanocomposite for electrochromic energy storage system using response surface methodology. J
 Energy Storage 2023, 68. DOI: ARTN 107880
- 35 10.1016/j.est.2023.107880. Guo, J. L.; Shang, Z. L.; Sun, Y.; Li, C. H.; Xia, J. Y.; Zou, Y. X.; Du,
- K.; Liu, G. Q.; Zhou, F.; Liu, W. M. Surface-modified Ti3C2Tx MXene as anti-wear and extreme
 pressure additive for PFPE supramolecular gel. *Tribol Int* 2023, *186*. DOI: ARTN 108611
- in 10.1016/j.triboint.2023.108611. Di, H. X.; Zhao, D.; Hui, X. B.; Wang, Z. X.; Yin, L. W.; Qian,
- 39 Z.; Guo, E. Y.; Wang, C. X. Surface Ti vacancy passivation of Ti3C2O2 MXene via transition
- 40 metal atoms as high-performance potassium-ion batteries anodes. *Appl Surf Sci* **2023**, *630*. DOI:
- 41 ARTN 157504
- 42 10.1016/j.apsusc.2023.157504. Bark, H.; Thangavel, G.; Liu, R. J.; Chua, D. H. C.; Lee, P. S.
- 43 Effective Surface Modification of 2D MXene toward Thermal Energy Conversion and
- 44 Management. *Small Methods* **2023**. DOI: ARTN 2300077
- 45 10.1002/smtd.202300077. Almarzooqi, N.; Hong, S. H. Y.; Verma, P.; Shaheen, A.; Schiffer, A.;
- 46 AlMarzooqi, F. Photothermal Surface Heating Membrane Distillation Using 3D-Printed Ti3C2TX

MXene-Based Nanocomposite Spacers. Acs Appl Mater Inter 2023, 15 (17), 20998-21007. DOI:
 10.1021/acsami.3c00830.

- (113) Kumar, S.; Mehdi, S. M. Z.; Ali, M.; Choi, S. R.; Yoo, S.; Kim, M.; Suleman, M.; Singh,
 T.; Seo, Y. Supercapacitors with enhanced energy storage and hydrogen evolution reaction
 performance via sequential alkali-modified MXenes. *Journal of Materials Chemistry C* 2024, *12*(46), 18732-18745.
- (114) Arole, K.; Blivin, J. W.; Saha, S.; Holta, D. E.; Zhao, X.; Sarmah, A.; Cao, H.; Radovic, M.;
 Lutkenhaus, J. L.; Green, M. J. Water-dispersible Ti3C2Tz MXene nanosheets by molten salt
 etching. *iScience* 2021, 24 (12), 103403. DOI: <u>https://doi.org/10.1016/j.isci.2021.103403</u>. Liu, L.
 Y.; Orbay, M.; Luo, S.; Duluard, S.; Shao, H.; Harmel, J.; Rozier, P.; Taberna, P. L.; Simon, P.
 Exfoliation and Delamination of Ti
- 12 C 13 T
- 14 MXene Prepared
- 15 Molten Salt Etching Route. ACS Nano **2022**, *16* (1), 111-118. DOI: 10.1021/acsnano.1c08498.
- 16 (115) Li, M.; Lu, J.; Luo, K.; Li, Y. B.; Chang, K. K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.;
- Eklund, P.; et al. Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to
 Synthesize Nanolaminated MAX Phases and MXenes. *Journal of the American Chemical Society* **2019**, *141* (11), 4730-4737. DOI: 10.1021/jacs.9b00574.
- 20 (116) Natu, V.; Barsoum, M. W. MXene Surface Terminations: A Perspective. *The Journal of* 21 *Physical Chemistry C* 2023, *127* (41), 20197-20206. DOI: 10.1021/acs.jpcc.3c04324.
- (117) Natu, V.; Barsoum, M. W. MXene Surface Terminations: A Perspective. *The Journal of Physical Chemistry C* 2023. DOI: 10.1021/acs.jpcc.3c04324.
- (118) Persson, I.; Naslund, L. A.; Halim, J.; Barsoum, M. W.; Darakchieva, V.; Palisaitis, J.;
 Rosen, J.; Persson, P. O. A. On the organization and thermal behavior of functional groups on
 Ti3C2 MXene surfaces in vacuum. 2d Mater 2018, 5 (1). DOI: ARTN 015002
- 27 10.1088/2053-1583/aa89cd.
- (119) Xiong, K. W.; Wang, P. H.; Yang, G.; Liu, Z. F.; Zhang, H. J.; Jin, S. W.; Xu, X. Functional
 Group Effects on the Photoelectronic Properties of MXene (Sc2CT2, T = O, F, OH) and Their
 Possible Photocatalytic Activities. *Sci Rep-Uk* 2017, 7. DOI: ARTN 15095
- 31 10.1038/s41598-017-15233-8.
- 32 (120) Hassan, M.; Ali, A.; Rasool, K.; Mahmoud, K. Ion conduction in polyvinylidene fluoride
- (PVDF)/MXene nanolayers membrane for water treatment applications. *Abstr Pap Am Chem S* 2016, 251.
- 35 (121) Qu, D. Y.; Jian, Y. Y.; Guo, L. H.; Su, C.; Tang, N.; Zhang, X. M.; Hu, W. W.; Wang, Z.;
- 36 Zhao, Z. H.; Zhong, P.; et al. An Organic Solvent-Assisted Intercalation and Collection (OAIC)
- 37 for Ti3C2Tx MXene with Controllable Sizes and Improved Yield. *Nano-Micro Lett* **2021**, *13* (1).
- 38 DOI: ARTN 188
- 39 10.1007/s40820-021-00705-4.
- 40 (122) Li, X.; Yin, X.; Han, M.; Song, C.; Sun, X.; Xu, H.; Cheng, L.; Zhang, L. A controllable
- 41 heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene. J
- 42 *Mater Chem C* **2017**, *5* (30), 7621-7628, 10.1039/C7TC01991B. DOI: 10.1039/C7TC01991B.

(123) Doo, S.; Chae, A.; Kim, D.; Oh, T.; Ko, T. Y.; Kim, S. J.; Koh, D.-Y.; Koo, C. M. Mechanism
and Kinetics of Oxidation Reaction of Aqueous Ti3C2Tx Suspensions at Different pHs and
Temperatures. *Acs Appl Mater Inter* 2021, *13* (19), 22855-22865. DOI: 10.1021/acsami.1c04663.
(124) Natu, V.; Hart, J. L.; Sokol, M.; Chiang, H.; Taheri, M. L.; Barsoum, M. W. Edge Capping
of 2D-MXene Sheets with Polyanionic Salts To Mitigate Oxidation in Aqueous Colloidal
Suspensions. *Angewandte Chemie International Edition* 2019, *58* (36), 12655-12660. DOI:
<u>https://doi.org/10.1002/anie.201906138</u>.

- 8 (125) Zhang, C. J.; Pinilla, S.; McEvoy, N.; Cullen, C. P.; Anasori, B.; Long, E.; Park, S.-H.; Seral-9 Ascaso, A.; Shmeliov, A.; Krishnan, D.; et al. Oxidation Stability of Colloidal Two-Dimensional 10 Titanium Carbides (MXenes). Chem Mater 2017, 29 (11), 4848-4856. DOI: 11 10.1021/acs.chemmater.7b00745.
- (126) Huang, S.; Mochalin, V. N. Hydrolysis of 2D Transition-Metal Carbides (MXenes) in
 Colloidal Solutions. *Inorganic Chemistry* 2019, 58 (3), 1958-1966. DOI:
 10.1021/acs.inorgchem.8b02890.
- (127) Xia, F. J.; Lao, J. C.; Yu, R. H.; Sang, X. H.; Luo, J. Y.; Li, Y.; Wu, J. S. Ambient oxidation
 of Ti3C2 MXene initialized by atomic defects. *Nanoscale* 2019, *11* (48), 23330-23337. DOI:
 10.1039/c9nr07236e.
- (128) Sang, X. H.; Xie, Y.; Lin, M. W.; Alhabeb, M.; Van Aken, K. L.; Gogotsi, Y.; Kent, P. R.
 C.; Xiao, K.; Unocic, R. R. Atomic Defects in Monolayer Titanium Carbide (Ti3C2Tx) MXene. *Acs Nano* 2016, *10* (10), 9193-9200. DOI: 10.1021/acsnano.6b05240.
- (129) Ibragimova, R.; Rinke, P.; Komsa, H.-P. Native Vacancy Defects in MXenes at Etching
 Conditions. *Chem Mater* 2022, *34* (7), 2896-2906. DOI: 10.1021/acs.chemmater.1c03179.
 Khaledialidusti, R.; Mishra, A. K.; Barnoush, A. Atomic defects in monolayer ordered double
 transition metal carbide (Mo2TiC2Tx) MXene and CO2 adsorption. *J Mater Chem C* 2020, *8* (14),
 4771-4779, 10.1039/C9TC06046D. DOI: 10.1039/C9TC06046D.
- (130) Doo, S.; Chae, A.; Kim, D.; Oh, T.; Ko, T. Y.; Kim, S. J.; Koh, D. Y.; Koo, C. M. Mechanism
 and Kinetics of Oxidation Reaction of Aqueous Ti3C2Tx Suspensions at Different pHs and
 Temperatures. *Acs Appl Mater Inter* 2021, *13* (19), 22855-22865. DOI: 10.1021/acsami.1c04663.
 Kim, D.; Ko, T. Y.; Kim, H.; Lee, G. H.; Cho, S.; Koo, C. M. Nonpolar Organic Dispersion of 2D
 Ti3C2Tx MXene Flakes via Simultaneous Interfacial Chemical Grafting and Phase Transfer
 Method. *Acs Nano* 2019, *13* (12), 13818-13828. DOI: 10.1021/acsanao.9b04088.
- (131) Li, J. B.; Qin, R. Z.; Yan, L.; Chi, Z.; Yu, Z. H.; Li, N. T.; Hu, M. J.; Chen, H. L.; Shan, G.
 C. Plasmonic Light Illumination Creates a Channel To Achieve Fast Degradation of Ti3C2TX
 Nanosheets. *Inorganic Chemistry* 2019, 58 (11), 7285-7294. DOI:
 10.1021/acs.inorgchem.9b00329.
- 36 (132) Zhao, X.; Vashisth, A.; Blivin, J. W.; Tan, Z.; Holta, D. E.; Kotasthane, V.; Shah, S. A.;
- 37 Habib, T.; Liu, S.; Lutkenhaus, J. L.; et al. pH, Nanosheet Concentration, and Antioxidant Affect
- the Oxidation of Ti3C2Tx and Ti2CTx MXene Dispersions. *Adv Mater Interfaces* 2020, 7 (20),
 2000845. DOI: https://doi.org/10.1002/admi.202000845.
- 40 (133) Kumar, S.; Park, H. M.; Singh, T.; Kumar, M.; Seo, Y. Long-Term Stability Studies and
- 41 Applications of Ti₃C₂T_x MXene. *International Journal of Energy Research* **2023**, *2023*, 5275439.
- 42 DOI: 10.1155/2023/5275439.
- 43 (134) Huang, S. H.; Mochalin, V. N. Hydrolysis of 2D Transition-Metal Carbides (MXenes) in
- 44 Colloidal Solutions. *Inorg Chem* **2019**, *58* (3), 1958-1966. DOI: 10.1021/acs.inorgchem.8b02890.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

(135) Li, X.; Xue, N.; Yao, Q.; Han, L.; Zhao, X.; Li, B.; He, T.; Tao, X. Obtaining Ambient Stable MXene Ti3C2T through Avoidance of Surface Oxidation Active Sites. *Adv Mater Interfaces* 2022, 9 (24), 2200991. DOI: https://doi.org/10.1002/admi.202200991.

- 4 (136) Chertopalov, S.; Mochalin, V. N. Environment-Sensitive Photoresponse of Spontaneously 5 Partially Oxidized Ti3C2 MXene Thin Films *Acs. Nano* **2018** *12* (6) 6109-6116 DOI:
- 5 Partially Oxidized Ti3C2 MXene Thin Films. *Acs Nano* **2018**, *12* (6), 6109-6116. DOI: 10.1021/acsnano.8b02379.
- (137) Hope, M. A.; Forse, A. C.; Griffith, K. J.; Lukatskaya, M. R.; Ghidiu, M.; Gogotsi, Y.; Grey,
 C. P. NMR reveals the surface functionalisation of Ti3C2 MXene. *Phys Chem Chem Phys* 2016,
- 9 18 (7), 5099-5102. DOI: 10.1039/c6cp00330c.
- (138) Kamysbayev, V.; Filatov, A. S.; Hu, H.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R. F.; Talapin,
 D. V. Covalent surface modifications and superconductivity of two-dimensional metal carbide
 MXenes. *Science* 2020, *369* (6506), 979-983. DOI: doi:10.1126/science.aba8311. Yoon, J.; Kim,
 S.; Park, K. H.; Lee, S.; Kim, S. J.; Lee, H.; Oh, T.; Koo, C. M. Biocompatible and OxidationResistant Ti3C2Tx MXene with Halogen-Free Surface Terminations. *Small Methods* 2023, *7* (8),
 2201579. DOI: <u>https://doi.org/10.1002/smtd.202201579</u>. Dash, A.; Vaßen, R.; Guillon, O.;
- Gonzalez-Julian, J. Molten salt shielded synthesis of oxidation prone materials in air. *Nature Materials* 2019, *18* (5), 465-470. DOI: 10.1038/s41563-019-0328-1.
- (139) Karlsson, L. H.; Birch, J.; Halim, J.; Barsoum, M. W.; Persson, P. O. A. Atomically Resolved
 Structural and Chemical Investigation of Single MXene Sheets. *Nano Lett* 2015, *15* (8), 49554960. DOI: 10.1021/acs.nanolett.5b00737.
- (140) Zheng, Y.; Chen, W.; Sun, Y.; Huang, C.; Wang, Z.; Zhou, D. High conductivity and stability
 of polystyrene/MXene composites with orientation-3D network binary structure. *Journal of Colloid and Interface Science* 2021, *595*, 151-158.
- (141) Lee, S.; Kim, E. H.; Yu, S.; Kim, H.; Park, C.; Lee, S. W.; Han, H.; Jin, W.; Lee, K.; Lee,
 C. E. Polymer-laminated Ti3C2TX MXene electrodes for transparent and flexible field-driven
 electronics. *ACS nano* 2021, *15* (5), 8940-8952.
- (142) Hao, Z.; Zhang, S.; Yang, S.; Li, X.; Gao, Y.; Peng, J.; Li, L.; Bao, L.; Li, X. Bridged Ti3C2T
 x MXene film with superior oxidation resistance and structural stability for high-performance
 flexible supercapacitors. *ACS Applied Energy Materials* 2022, 5 (3), 2898-2908.
- (143) Xu, Z.; Ding, X.; Li, S.; Huang, F.; Wang, B.; Wang, S.; Zhang, X.; Liu, F.; Zhang, H.
 Oxidation-resistant MXene-based melamine foam with ultralow-percolation thresholds for
 electromagnetic-infrared compatible shielding. *Acs Appl Mater Inter* 2022, *14* (35), 40396-40407.
- 33 (144) Chae, A.; Murali, G.; Lee, S. Y.; Gwak, J.; Kim, S. J.; Jeong, Y. J.; Kang, H.; Park, S.; Lee,
- A. S.; Koh, D. Y. Highly oxidation-resistant and self-healable MXene-based hydrogels for
 wearable strain sensor. *Advanced Functional Materials* 2023, *33* (24), 2213382.
- (145) Amin, I.; Brekel, H. v. d.; Nemani, K.; Batyrev, E.; de Vooys, A.; van der Weijde, H.;
 Anasori, B.; Shiju, N. R. Ti3C2T x MXene polymer composites for anticorrosion: an overview
 and perspective ACS Applied Materials & Interfaces 2022, 14 (28), 42740, 42758
- and perspective. ACS Applied Materials & Interfaces **2022**, 14 (38), 43749-43758.
- 39 (146) Zhao, K.; Lee, J. W.; Yu, Z. G.; Jiang, W.; Oh, J. W.; Kim, G.; Han, H.; Kim, Y.; Lee, K.;
- Lee, S. Humidity-tolerant moisture-driven energy generator with MXene aerogel–organohydrogel bilayer. *ACS nano* **2023**, *17* (6), 5472-5485.
- 42 (147) Liu, L.-X.; Chen, W.; Zhang, H.-B.; Ye, L.; Wang, Z.; Zhang, Y.; Min, P.; Yu, Z.-Z. Super-
- 43 tough and environmentally stable aramid. Nanofiber@ MXene coaxial fibers with outstanding
- 44 electromagnetic interference shielding efficiency. *Nano-Micro Letters* **2022**, *14* (1), 111.

(148) Lee, G. S.; Yun, T.; Kim, H.; Kim, I. H.; Choi, J.; Lee, S. H.; Lee, H. J.; Hwang, H. S.; Kim, J. G.; Kim, D.-w. Mussel inspired highly aligned Ti3C2T x MXene film with synergistic enhancement of mechanical strength and ambient stability. *Acs Nano* 2020, *14* (9), 11722-11732.

- enhancement of mechanical strength and ambient stability. *Acs Nano* 2020, *14* (9), 11722-11732.
 (149) Liu, N.; Li, Q.; Wan, H.; Chang, L.; Wang, H.; Fang, J.; Ding, T.; Wen, Q.; Zhou, L.; Xiao,
 X. High-temperature stability in air of Ti3C2T x MXene-based composite with extracted *kertanita*. *Nature Communications* 2022, *12* (1), 5551
- 6 bentonite. *Nature Communications* **2022**, *13* (1), 5551.
- (150) Zhang, H.-W.; Yang, L.-Y.; Huang, M.-L.; Cheng, M.-H.; Feng, Z.-S.; Meng, F.; Lin, Z.;
 Wang, Y. Flexible MXene/sodium alginate composite fabric with high structural stability and
 oxidation resistance for electromagnetic interference shielding. *Nano Research* 2024, 1-10.
- (151) Habib, T.; Zhao, X.; Shah, S. A.; Chen, Y.; Sun, W.; An, H.; Lutkenhaus, J. L.; Radovic,
 M.; Green, M. J. Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite
 films. *Npj 2d Mater Appl* 2019, *3* (1), 8. DOI: 10.1038/s41699-019-0089-3.
- (152) Kumar, S.; Park, H. M.; Kim, M.; Nasir, N.; Kumar, M.; Seo, Y. Application dependent
 stability of Ti3C2Tx MXene in PDLC-based smart-windows. *Ceramics International* 2022, 48
 (23), 35092-35099.
- (153) Zheng, Y.; Chen, W.; Wang, Z.; Wang, Q. Polystyrene/rGO composites with orientation-3d
 network binary structure and its surprising conductivity. *Macromolecules* 2018, *51* (20), 79938000. Yang, L.; Wang, Z.; Ji, Y.; Wang, J.; Xue, G. Highly ordered 3D graphene-based polymer
 composite materials fabricated by "particle-constructing" method and their outstanding
 conductivity. *Macromolecules* 2014, *47* (5), 1749-1756.
- (154) Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y.
 Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2T x MXene). *Chem Mater* 2017, *29* (18), 7633-7644.
- (155) Natu, V.; Hart, J. L.; Sokol, M.; Chiang, H.; Taheri, M. L.; Barsoum, M. W. Edge capping
 of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. *Angewandte Chemie* 2019, *131* (36), 12785-12790.
- (156) Wu, F.; Ye, Y.; Chen, R.; Zhao, T.; Qian, J.; Zhang, X.; Li, L.; Huang, Q.; Bai, X.; Cui, Y.
 Gluing Carbon Black and Sulfur at Nanoscale: A Polydopamine-Based'Nano-Binder'for DoubleShelled Sulfur Cathodes. *Advanced Energy Materials* 2017, 7 (3).
- (157) Kim, I. H.; Yun, T.; Kim, J. E.; Yu, H.; Sasikala, S. P.; Lee, K. E.; Koo, S. H.; Hwang, H.;
 Jung, H. J.; Park, J. Y. Mussel-Inspired Defect Engineering of Graphene Liquid Crystalline Fibers
 for Synergistic Enhancement of Mechanical Strength and Electrical Conductivity. *Advanced Materials* 2018, *30* (40), 1803267.
- (158) Tian, W.; VahidMohammadi, A.; Wang, Z.; Ouyang, L.; Beidaghi, M.; Hamedi, M. M.
 Layer-by-layer self-assembly of pillared two-dimensional multilayers. *Nature Communications*2019, 10 (1), 2558.
- 37 (159) Dong, M.; Hu, Y.; Yu, X.; Liu, M.; Bilotti, E.; Zhang, H.; Papageorgiou, D. G. Probing
- 38 Interfacial Interactions in Ternary Nanocomposites of Ti3C2Tx MXene Nanoplatelets,
- 39 Multiwalled Carbon Nanotubes, and Poly(vinyl alcohol) toward Synergistic Reinforcement. Acs
- 40 *Appl Polym Mater* **2024**, *6* (1), 207-217. DOI: 10.1021/acsapm.3c01816.
- 41 (160) Zhan, Y.; Zheng, X.; Nan, B.; Lu, M.; Shi, J.; Wu, K. Flexible MXene/aramid nanofiber
- 42 nanocomposite film with high thermal conductivity and flame retardancy. European Polymer
- 43 *Journal* **2023**, *186*, 111847. DOI: <u>https://doi.org/10.1016/j.eurpolymj.2023.111847</u>.
- 44 (161) Li, N.; Wang, X.; Liu, Y.; Li, Y.; Li, J.; Qin, Z.; Jiao, T. Ultrastretchable, Self-Adhesive and
- 45 conductive MXene nanocomposite hydrogel for body-surface temperature distinguishing and

- 1 electrophysiological signal monitoring. Chem Eng J 2024, 483. 149303. DOI: 2 https://doi.org/10.1016/j.cej.2024.149303.
- 3 (162) Bisht, N.; Jaiswal, S.; Vishwakarma, J.; Gupta, S. K.; Yeo, R. J.; Sankaranarayanan, S. K.
- 4 R. S.; Dhand, C.; Dwivedi, N. MXene enhanced Shape Memory Polymer Composites: The rise of
- 5 MXenes as fillers for stimuli-responsive materials. Chem Eng J 2024, 498, 155154. DOI: 6 https://doi.org/10.1016/j.cej.2024.155154.
- 7 (163) Ling, Z.; Ren, C. E.; Zhao, M.-Q.; Yang, J.; Giammarco, J. M.; Qiu, J.; Barsoum, M. W.; 8 Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance.
- 9 Proceedings of the National Academy of Sciences 2014, 111 (47), 16676-16681.
- 10 (164) Wan, S.; Li, X.; Wang, Y.; Chen, Y.; Xie, X.; Yang, R.; Tomsia, A. P.; Jiang, L.; Cheng, Q. 11 Strong sequentially bridged MXene sheets. Proceedings of the National Academy of Sciences 12 2020, 117 (44), 27154-27161. DOI: doi:10.1073/pnas.2009432117.
- 13 (165) Wang, L.; Qiu, H.; Song, P.; Zhang, Y.; Lu, Y.; Liang, C.; Kong, J.; Chen, L.; Gu, J. 3D 14 Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic 15 interference shielding performances and robust mechanical properties. Composites Part A: 16 Applied Science and Manufacturing 2019, 123, 293-300.
- 17 (166) Liu, J.; Zhang, H.-B.; Xie, X.; Yang, R.; Liu, Z.; Liu, Y.; Yu, Z.-Z. Multifunctional, 18 Superelastic, and Lightweight MXene/Polyimide Aerogels. Small 2018, 14 (45), 1802479. DOI: 19 https://doi.org/10.1002/smll.201802479.
- 20 (167) Luo, J.-Q.; Zhao, S.; Zhang, H.-B.; Deng, Z.; Li, L.; Yu, Z.-Z. Flexible, stretchable and 21 electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic 22 interference shielding. Composites Science and Technology 2019, 182, 107754.
- 23 (168) Zhang, H.; Wang, L.; Zhou, A.; Shen, C.; Dai, Y.; Liu, F.; Chen, J.; Li, P.; Hu, Q. Effects of 24 2-D transition metal carbide Ti 2 CT x on properties of epoxy composites. RSC advances 2016, 6 25 (90), 87341-87352.
- 26 (169) Liu, R.; Miao, M.; Li, Y.; Zhang, J.; Cao, S.; Feng, X. Ultrathin biomimetic polymeric 27 Ti3C2T x MXene composite films for electromagnetic interference shielding. ACS applied 28 materials & interfaces 2018, 10 (51), 44787-44795.
- 29 (170) Pan, Y.; Fu, L.; Zhou, Q.; Wen, Z.; Lin, C. T.; Yu, J.; Wang, W.; Zhao, H. Flammability, 30 thermal stability and mechanical properties of polyvinyl alcohol nanocomposites reinforced with delaminated Ti3C2Tx (MXene). Polymer Composites 2020, 41 (1), 210-218. 31
- 32 (171) Zhi, W.; Xiang, S.; Bian, R.; Lin, R.; Wu, K.; Wang, T.; Cai, D. Study of MXene-filled 33 polyurethane nanocomposites prepared via an emulsion method. Composites Science and 34 Technology 2018, 168, 404-411.
- 35 (172) Sheng, X.; Zhao, Y.; Zhang, L.; Lu, X. Properties of two-dimensional Ti3C2 36 MXene/thermoplastic polyurethane nanocomposites with effective reinforcement via melt 37 blending. Composites Science and Technology 2019, 181, 107710.
- 38 (173) Mazhar, S.; Qarni, A. A.; Haq, Y. U.; Haq, Z. U.; Murtaza, I. Promising PVC/MXene based
- 39 flexible thin film nanocomposites with excellent dielectric, thermal and mechanical properties.
- 40 *Ceramics International* **2020**, *46* (8), 12593-12605.
- 41 (174) Liu, S.; Wang, L.; Wang, X.; Liu, L.; Zhou, A.; Cao, X. Preparation, mechanical and thermal
- 42 characteristics of d-Ti3C2/PVA film. *Materials Today Communications* **2020**, *22*, 100799.
- 43 (175) Hatter, C. B.; Shah, J.; Anasori, B.; Gogotsi, Y. Micromechanical response of two-
- 44 dimensional transition metal carbonitride (MXene) reinforced epoxy composites. Composites Part
- 45 B: Engineering 2020, 182, 107603.

(176) Wang, L.; Chen, L.; Song, P.; Liang, C.; Lu, Y.; Qiu, H.; Zhang, Y.; Kong, J.; Gu, J. Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application. *Composites Part B: Engineering* **2019**, *171*, 111-118.

4 (177) Shi, Y.; Liu, C.; Liu, L.; Fu, L.; Yu, B.; Lv, Y.; Yang, F.; Song, P. Strengthening, toughing
5 and thermally stable ultra-thin MXene nanosheets/polypropylene nanocomposites via
6 nanoconfinement. *Chemical Engineering Journal* 2019, *378*, 122267.

(178) Shayesteh Zeraati, A.; Mirkhani, S. A.; Sun, P.; Naguib, M.; Braun, P. V.; Sundararaj, U.
Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high
synthesis yield, and enhanced capacitance. *Nanoscale* 2021, *13* (6), 3572-3580,
10.1039/D0NR06671K. DOI: 10.1039/D0NR06671K.

(179) Naguib, M.; Saito, T.; Lai, S.; Rager, M. S.; Aytug, T.; Parans Paranthaman, M.; Zhao, M. Q.; Gogotsi, Y. Ti3C2Tx (MXene)–polyacrylamide nanocomposite films. *Rsc Adv* 2016, *6* (76),
 72069-72073, 10.1039/C6RA10384G. DOI: 10.1039/C6RA10384G.

(180) Hadi, Z.; Yeganeh, J. K.; Zare, Y.; Munir, M. T.; Rhee, K. Y. Predicting of electrical
conductivity for Polymer-MXene nanocomposites. *Journal of Materials Research and Technology*2024, 28, 4229-4238. DOI: <u>https://doi.org/10.1016/j.jmrt.2024.01.014</u>.

(181) Yu, Y.; Yi, P.; Xu, W.; Sun, X.; Deng, G.; Liu, X.; Shui, J.; Yu, R. Environmentally Tough
and Stretchable MXene Organohydrogel with Exceptionally Enhanced Electromagnetic
Interference Shielding Performances. *Nano-Micro Lett* 2022, *14* (1), 77. DOI: 10.1007/s40820022-00819-3.

(182) Cao, W.-T.; Chen, F.-F.; Zhu, Y.-J.; Zhang, Y.-G.; Jiang, Y.-Y.; Ma, M.-G.; Chen, F. Binary
Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with NacreInspired Structure and Superior Electromagnetic Interference Shielding Properties. *Acs Nano*2018, *12* (5), 4583-4593. DOI: 10.1021/acsnano.8b00997.

(183) Wang, D.; Lin, Y.; Hu, D.; Jiang, P.; Huang, X. Multifunctional 3D-MXene/PDMS
nanocomposites for electrical, thermal and triboelectric applications. *Composites Part A: Applied Science and Manufacturing* 2020, *130*, 105754.

(184) Mayerberger, E. A.; Urbanek, O.; McDaniel, R. M.; Street, R. M.; Barsoum, M. W.; Schauer,
C. L. Preparation and characterization of polymer-Ti3C2Tx (MXene) composite nanofibers
produced via electrospinning. *Journal of Applied Polymer Science* 2017, *134* (37), 45295.

(185) Naguib, M.; Saito, T.; Lai, S.; Rager, M. S.; Aytug, T.; Paranthaman, M. P.; Zhao, M.-Q.;
Gogotsi, Y. Ti 3 C 2 T x (MXene)–polyacrylamide nanocomposite films. *RSC advances* 2016, 6
(76), 72069-72073.

(186) Sobolčiak, P.; Ali, A.; Hassan, M. K.; Helal, M. I.; Tanvir, A.; Popelka, A.; Al-Maadeed,
M. A.; Krupa, I.; Mahmoud, K. A. 2D Ti3C2Tx (MXene)-reinforced polyvinyl alcohol (PVA)
nanofibers with enhanced mechanical and electrical properties. *PLoS One* **2017**, *12* (8) e0183705

anofibers with enhanced mechanical and electrical properties. *PLoS One* **2017**, *12* (8), e0183705.

37 (187) Sun, R.; Zhang, H. B.; Liu, J.; Xie, X.; Yang, R.; Li, Y.; Hong, S.; Yu, Z. Z. Highly 38 conductive transition metal carbide/carbonitride (MXene)@ polystyrene nanocomposites

39 fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding.

- 40 Advanced Functional Materials **2017**, *27* (45), 1702807.
- 41 (188) Tu, S.; Jiang, Q.; Zhang, X.; Alshareef, H. N. Large dielectric constant enhancement in 42 MXene percolative polymer composites. *ACS nano* **2018**, *12* (4), 3369-3377.
- 43 (189) Han, C.; Zhang, H.; Chen, Q.; Li, T.; Kong, L.; Zhao, H.; He, L. A directional piezoelectric
- 44 sensor based on anisotropic PVDF/MXene hybrid foam enabled by unidirectional freezing. Chem
- 45 Eng J **2022**, 450, 138280. DOI: <u>https://doi.org/10.1016/j.cej.2022.138280</u>.

1 2

(190) Safarkhani, M.; Far, B. F.; Huh, Y.; Rabiee, N. Thermally Conductive MXene. ACS 1 2 **Biomaterials** Science æ Engineering 2023. 9 (12),6516-6530. DOI: 3 10.1021/acsbiomaterials.3c01420.

- 4 (191) Liu, R.; Li, W. High-Thermal-Stability and High-Thermal-Conductivity Ti3C2Tx 5 MXene/Poly(vinyl alcohol) (PVA) Composites. Acs Omega 2018, 3 (3), 2609-2617. DOI: 6 10.1021/acsomega.7b02001.
- 7 (192) Cao, Y.; Deng, Q.; Liu, Z.; Shen, D.; Wang, T.; Huang, Q.; Du, S.; Jiang, N.; Lin, C.-T.; Yu, 8 J. Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets 9 2017, 7 (33), MXene. Rsc Adv 20494-20501, 10.1039/C7RA00184C. DOI: of 10 10.1039/C7RA00184C.
- 11 (193) Ji, C.; Wang, Y.; Ye, Z.; Tan, L.; Mao, D.; Zhao, W.; Zeng, X.; Yan, C.; Sun, R.; Kang, D. 12 J.; et al. Ice-Templated MXene/Ag-Epoxy Nanocomposites as High-Performance Thermal 13 Management Materials. Acs Appl Mater Inter 2020, 12 (21), 24298-24307. DOI: 14 10.1021/acsami.9b22744.
- 15 (194) Wang, M.; Liu, Y.; Zhang, H.; Wu, Y.; Pan, L. Thermal conductivities of Ti3C2Tx MXenes 16 and their interfacial thermal performance in MXene/epoxy composites – a molecular dynamics 17 simulation. International Journal of Heat and Mass Transfer 2022, 194, 123027. DOI: 18 https://doi.org/10.1016/j.ijheatmasstransfer.2022.123027.
- (195) Gholivand, H.; Fuladi, S.; Hemmat, Z.; Salehi-Khojin, A.; Khalili-Araghi, F. Effect of 19 20 surface termination on the lattice thermal conductivity of monolayer Ti3C2Tz MXenes. Journal 21 of Applied Physics 2019, 126 (6). DOI: 10.1063/1.5094294 (acccessed 10/22/2024).
- 22 (196) Cao, Y.; Deng, Q.; Liu, Z.; Shen, D.; Wang, T.; Huang, Q.; Du, S.; Jiang, N.; Lin, C.-T.; Yu, 23 J. Enhanced thermal properties of poly (vinylidene fluoride) composites with ultrathin nanosheets 24 of MXene. RSC advances 2017, 7 (33), 20494-20501.
- 25 (197) Liu, R.; Li, W. High-thermal-stability and high-thermal-conductivity Ti3C2T x MXene/poly 26 (vinyl alcohol)(PVA) composites. ACS omega 2018, 3 (3), 2609-2617.
- 27 (198) Yan, C.; Ji, C.; Zeng, X.; Sun, R.; Wong, C.-P. Interconnecting the promising MXenes via 28 Ag nanowire in epoxy nanocomposites for high-performance thermal management applications. 29 In 2018 19th International Conference on Electronic Packaging Technology (ICEPT), 2018; 30 IEEE: pp 510-512.
- 31 (199) Kang, R.; Zhang, Z.; Guo, L.; Cui, J.; Chen, Y.; Hou, X.; Wang, B.; Lin, C.-T.; Jiang, N.; 32 Yu, J. Enhanced thermal conductivity of epoxy composites filled with 2D transition metal carbides 33 (MXenes) with ultralow loading. Scientific reports 2019, 9 (1), 9135.
- 34 (200) Huang, Z. Y.; Wang, S. J.; Kota, S.; Pan, Q. W.; Barsoum, M. W.; Li, C. Y. Structure and 35 crystallization behavior of poly(ethylene oxide)/Ti3C2Tx MXene nanocomposites. *Polymer* **2016**, 36 102, 119-126. DOI: 10.1016/j.polymer.2016.09.011.
- 37 (201) Carey, M.; Hinton, Z.; Natu, V.; Pai, R.; Sokol, M.; Alvarez, N. J.; Kalra, V.; Barsoum, M.
- 38 W. Dispersion and Stabilization of Alkylated 2D MXene in Nonpolar Solvents and Their 39 Pseudocapacitive Behavior. Cell Rep Phys Sci 2020, 1 (4). DOI: ARTN 100042
- 40 10.1016/j.xcrp.2020.100042.
- 41 (202) Wei, L. F.; Ma, J. Z.; Zhang, W. B.; Pan, Z. Y.; Ma, Z. L.; Kang, S. L.; Fan, Q. Q. Enhanced
- 42 Antistatic and Self-Heatable Wearable Coating with Self-Tiered Structure Caused by Amphiphilic
- 43 MXene in Waterborne Polymer. Langmuir 2020. 36 (23).6580-6588. DOI: 44
 - 10.1021/acs.langmuir.9b03943.

Page 103 of 119

- (203) Srivatsa, S.; Packo, P.; Mishnaevsky, L.; Uhl, T.; Grabowski, K. Deformation of Bioinspired
- 2 MXene-Based Polymer Composites with Brick and Mortar Structures: A Computational Analysis. 3
 - Materials 2020, 13 (22). DOI: ARTN 5189
- 4 10.3390/ma13225189. Mao, H. W.; Gu, C.; Yan, S. Q.; Xin, Q.; Cheng, S.; Tan, P.; Wang, X. J.;
- 5 Xiu, F.; Liu, X. Q.; Liu, J. Q.; et al. MXene Quantum Dot/Polymer Hybrid Structures with Tunable
- 6 Electrical Conductance and Resistive Switching for Nonvolatile Memory Devices. Adv Electron 7 Mater 2020, 6 (1). DOI: ARTN 1900493
- 8 10.1002/aelm.201900493. Jin, X.; Zhang, W. S.; Liu, S. Y.; Zhang, T. P.; Song, Z. H.; Shao, W.
- 9 L.; Mao, R. Y.; Yao, M.; Jian, X. G.; Hu, F. Y. Highly stable Ti3C2Tx MXene-based sandwichlike structure via interfacial self-assembly of nitrogen-rich polymer network for superior sodium-10
- 11 ion storage performance. Chem Eng J 2023, 451. DOI: ARTN 138763
- 12 10.1016/j.cej.2022.138763. Sun, F. C.; Wang, X. Z.; Wu, D. C.; El-Khouly, M.; Zheng, T. A.; 13 Zhang, B.; Chen, Y. Conjugated Polymer-Functionalized 2D MXene Nanosheets for Nonvolatile 14 Memory Devices with High Environmental Stability. Acs Appl Nano Mater 2023, 6 (9), 7186-15 7195. DOI: 10.1021/acsanm.3c00220.
- (204) Lan, C. T.; Jia, H.; Qiu, M. H.; Fu, S. H. Ultrathin MXene/Polymer Coatings with an 16 17 Alternating Structure on Fabrics for Enhanced Electromagnetic Interference Shielding and Fire-Resistant Protective Performances. Acs Appl Mater Inter 2021, 13 (32), 38761-38772. DOI: 18 19 10.1021/acsami.1c11638.
- 20 (205) Cao, Y. W.; Jia, Y. C.; Meng, X. D.; Fan, X. Y.; Zhang, J.; Zhou, J.; Matoga, D.; Bielawski, 21 C. W.; Geng, J. X. Covalently grafting conjugated porous polymers to MXene offers a two-22 dimensional sandwich-structured electrocatalytic sulfur host for lithium-sulfur batteries. Chem 23 Eng J 2022, 446. DOI: ARTN 137365
 - 10.1016/j.cej.2022.137365.
- 25 (206) Guan, Q. Y.; Yan, H. J.; Cai, Y. Q. Strongly Modulated Exfoliation and Functionalization 26 of MXenes with Rationally Designed Groups in Polymer: A Theoretical Study. Chem Mater 2022, 27 34 (21), 9414-9424. DOI: 10.1021/acs.chemmater.2c01721.
- 28 (207) Zhang, P.; Yang, X. J.; Li, P.; Zhao, Y. Y.; Niu, Q. J. Fabrication of novel MXene 29 (Ti3C2)/polyacrylamide nanocomposite hydrogels with enhanced mechanical and drug release 30 properties. Soft Matter 2020, 16 (1), 162-169. DOI: 10.1039/c9sm01985e.
- (208) Lee, J. T.; Wyatt, B. C.; Davis, G. A.; Masterson, A. N.; Pagan, A. L.; Shah, A.; Anasori, 31
- B.; Sardar, R. Covalent Surface Modification of Ti3C2Tx MXene with Chemically Active 32
- 33 Polymeric Ligands Producing Highly Conductive and Ordered Microstructure Films. Acs Nano 34 **2021**, 15 (12), 19600-19612. DOI: 10.1021/acsnano.1c06670.
- 35 (209) Guo, Q. Q.; Zhang, X. X.; Zhao, F. Y.; Song, Q. C.; Su, G. H.; Tan, Y. X.; Tao, Q. C.; Zhou,
- 36 T.; Yu, Y. M.; Zhou, Z. H.; et al. Protein-Inspired Self-Healable Ti3C2 MXenes/Rubber-Based 37 Supramolecular Elastomer for Intelligent Sensing. Acs Nano 2020, 14 (3), 2788-2797. DOI:
- 38 10.1021/acsnano.9b09802.
- 39 (210) Tu, S. B.; Jiang, Q.; Zhang, J. W.; He, X.; Hedhili, M. N.; Zhang, X. X.; Alshareef, H. N.
- 40 Enhancement of Dielectric Permittivity of Ti3C2Tx, MXene/Polymer Composites by Controlling
- 41 Flake Size and Surface Termination. Acs Appl Mater Inter 2019, 11 (30), 27358-27362. DOI:
- 42 10.1021/acsami.9b09137. Idumah, C. I. Influence of surfaces and interfaces on MXene and
- 43 MXene hybrid polymeric nanoarchitectures, properties, and applications. J Mater Sci 2022, 57
- (31), 14579-14619. DOI: 10.1007/s10853-022-07526-9. 44

(211) Jiao, C. Y.; Deng, Z. M.; Min, P.; Lai, J. J.; Gou, Q. Q.; Gao, R.; Yu, Z. Z.; Zhang, H. B.
Photothermal healable, stretchable, and conductive MXene composite films for efficient electromagnetic interference shielding. *Carbon* 2022, *198*, 179-187. DOI: 10.1016/j.carbon.2022.07.017.

- 5 (212) Eom, W.; Shin, H.; Ambade, R. B.; Lee, S. H.; Lee, K. H.; Kang, D. J.; Han, T. H. Large-
- scale wet-spinning of highly electroconductive MXene fibers. *Nat Commun* 2020, *11* (1). DOI:
 10.1038/s41467-020-16671-1.
- 8 (213) Tian, W. Q.; VahidMohammadi, A.; Wang, Z.; Ouyang, L. Q.; Beidaghi, M.; Hamedi, M.
- 9 M. Layer-by-layer self-assembly of pillared two-dimensional multilayers. *Nat Commun* 2019, *10*.
 10 DOI: ARTN 2558
- 11 10.1038/s41467-019-10631-0.
- (214) Wu, X. Y.; Han, B. Y.; Zhang, H. B.; Xie, X.; Tu, T. X.; Zhang, Y.; Dai, Y.; Yang, R.; Yu,
 Z. Z. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-
- 14 performance electromagnetic interference shielding. *Chem Eng J* 2020, 381. DOI: ARTN 122622
- 15 10.1016/j.cej.2019.122622.
- 16 (215) Pan, Y.; He, M.; Wu, J.; Qi, H.; Cheng, Y. One-step synthesis of MXene-functionalized 17 PEDOT:PSS conductive polymer hydrogels for wearable and noninvasive monitoring of sweat 18 glucose. Sensors and Actuators *B*: Chemical 2024, 401, 135055. DOI: 19 https://doi.org/10.1016/j.snb.2023.135055.
- 20 (216) Yin, J. J.; Zhan, F. K.; Jiao, T. F.; Deng, H. Z.; Zou, G. D.; Bai, Z. H.; Zhang, Q. R.; Peng, 21 Q. M. Highly efficient catalytic performances of nitro compounds via hierarchical PdNPs-loaded 22 MXene/polymer nanocomposites synthesized through electrospinning strategy for wastewater 23 treatment. Chinese Chem Lett 2020, 31 (4), 992-995. DOI: 10.1016/j.cclet.2019.08.047. Huang, 24 X. X.; Wang, R.; Jiao, T. F.; Zou, G. D.; Zhan, F. K.; Yin, J. J.; Zhang, L. X.; Zhou, J. X.; Peng, 25 Q. M. Facile Preparation of Hierarchical AgNP-Loaded MXene/Fe3O4/Polymer Nanocomposites 26 by Electrospinning with Enhanced Catalytic Performance for Wastewater Treatment. Acs Omega 27 **2019**, 4 (1), 1897-1906. DOI: 10.1021/acsomega.8b03615.
- (217) Jiang, C. M.; Wu, C.; Li, X. J.; Yao, Y.; Lan, L. Y.; Zhao, F. N.; Ye, Z. Z.; Ying, Y. B.;
 Ping, J. F. All-electrospun flexible triboelectric nanogenerator based on metallic MXene
 nanosheets. *Nano Energy* 2019, *59*, 268-276. DOI: 10.1016/j.nanoen.2019.02.052.
- 31 (218) Yun, J.; Echols, I.; Flouda, P.; Wang, S. Y.; Easley, A.; Zhao, X. F.; Tan, Z. Y.; Prehn, E.;
- 32 Zi, G.; Radovic, M.; et al. Layer-by-Layer Assembly of Polyaniline Nanofibers and MXene Thin-
- Film Electrodes for Electrochemical Energy Storage. *Acs Appl Mater Inter* **2019**, *11* (51), 47929-
- 34 47938. DOI: 10.1021/acsami.9b16692.
- 35 (219) Zhang, H.; Wang, L. B.; Zhou, A. G.; Shen, C. J.; Dai, Y. H.; Liu, F. F.; Chen, J. F.; Li, P.;
- Hu, Q. K. Effects of 2-D transition metal carbide Ti2CTx on properties of epoxy composites. *Rsc Adv* 2016, 6 (90), 87341-87352. DOI: 10.1039/c6ra14560d.
- 38 (220) Zhang, S. S.; Tu, T. T.; Li, T. Y.; Cai, Y.; Wang, Z. Y.; Zhou, Y.; Wang, D.; Fang, L.; Ye,
- 39 X. S.; Liang, B. 3D MXene/PEDOT:PSS Composite Aerogel with a Controllable Patterning
- 40 Property for Highly Sensitive Wearable Physical Monitoring and Robotic Tactile Sensing. Acs
- *Appl Mater Inter* 2022, *14* (20), 23877-23887. DOI: 10.1021/acsami.2c03350.
 (221) Chen, Y. C.; Lin, Y. F.; Liu, C. T.; Liu, Y. C.; Lin, M. H.; Lan, G. Y.; Cheng, Y. S.; Yu, H.
- 42 (221) Chen, T. C., Lin, T. F., Liu, C. T., Liu, T. C., Lin, M. H., Lan, G. T., Cheng, T. S., Fu, H. 43 L.; Huang, C. C.; Chang, H. T.; et al. Facilitation of Osteogenic Differentiation of hASCs on
- 45 L., Huang, C. C., Chang, H. T., et al. Facilitation of Osteogenic Differentiation of IASCs of 44 PEDOT:PSS/MXene Composite Sponge with Electrical Stimulation. *Acs Appl Polym Mater* **2023**,
- 44 FEDOT: PSS/WXene Composite Sponge with Electrical Stillula 45 5 (7), 4753-4766. DOI: 10.1021/acsapm.3c00146.

(222) Liu, K.; Du, H. S.; Liu, W.; Zhang, M.; Wang, Y. X.; Liu, H. Y.; Zhang, X. Y.; Xu, T.; Si, C. L. Strong, flexible, and highly conductive cellulose nanofibril/PEDOT:PSS/MXene nanocomposite films for efficient electromagnetic interference shielding. *Nanoscale* **2022**, *14* (40), 14902-14912. DOI: 10.1039/d2nr00468b.

(223) Chang, G. J.; Zeng, L. J.; Xie, L.; Xue, B.; Zheng, Q. Ultrathin multifunctional
electromagnetic interference shielding MXene/ AgNWs/PEDOT:PSS coatings with superior
electro/photo-thermal transition ability and water repellency. *Chem Eng J* 2023, 470. DOI: ARTN
144033

- 10.1016/j.cej.2023.144033.
- 10 (224) Gu, Q.; Wang, J.; Peng, R. X.; Song, W.; Zhou, R.; Ge, Z. Y. Nonfullerene Organic Solar
- 11 Cells with 18.17% Efficiency Obtained Using a V2C/PEDOT:PSS Composite Hole-Transport
- 12 Layer. Acs Applied Energy Materials **2023**. DOI: 10.1021/acsaem.2c03883.
- (225) Deng, B. Z.; Lian, H.; Xue, B. T.; Song, R. C.; Chen, S.; Wang, Z. H.; Xu, T.; Dong, H. L.; 13 14 Wang, S. H. Niobium-Carbide MXene Modified Hybrid Hole Transport Layer Enabling High-15 Performance Organic Solar Cells Over 19%. Small 2023, 19 (23). DOI: 10.1002/smll.202207505. Т.; 16 Min, K.; Yi, Y.; Kim, S. (226)Nguyen, V. B. J.; Choi. C. G. 17 MXene(Ti3C2TX)/graphene/PDMS composites for multifunctional broadband electromagnetic 18 interference shielding skins. Chem Eng J 2020, 393. DOI: ARTN 124608
- 19 10.1016/j.cej.2020.124608.
- (227) Zhu, W. B.; Luo, H. S.; Tang, Z. H.; Zhang, H.; Fan, T.; Wang, Y. Y.; Huang, P.; Li, Y. Q.;
 Fu, S. Y. Ti3C2Tx MXene/Bamboo Fiber/PDMS Pressure Sensor with Simultaneous Ultrawide
 Linear Sensing Range, Superb Environmental Stability, and Excellent Biocompatibility. *Acs Sustain Chem Eng* 2022, *10* (11), 3546-3556. DOI: 10.1021/acssuschemeng.1c07994.
- (228) Xu, X. M.; Wu, H.; He, X.; Hota, M. K.; Liu, Z. X.; Zhuo, S. F.; Kim, H.; Zhang, X. X.;
 Alshareef, H. N. Iontronics Using V2CTx MXene-Derived Metal-Organic Framework Solid
 Electrolytes. *Acs Nano* 2020, *14* (8), 9840-9847. DOI: 10.1021/acsnano.0c02497.
- (229) Nguyen, V. T.; Nguyen, Q. D.; Min, B. K.; Yi, Y.; Choi, C. G. Ti3C2Tx MXene/carbon
 nanotubes/waterborne polyurethane based composite ink for electromagnetic interference
 shielding and sheet heater applications. *Chem Eng J* 2022, *430*. DOI: ARTN 133171
- 30 10.1016/j.cej.2021.133171.

(230) Jing, J. Y.; Ma, Z. L.; Jiang, R. C.; Zhang, Y.; Shao, L. Flexible
Polyurethane@Ti3C2Tx/Silver Nanowires Composite Films with Cocontinuous Segregated
Structures for Superior Electromagnetic Interference Shielding and Joule Heating. *Adv Eng Mater*2023, 25 (11). DOI: ARTN 2201938

- 35 10.1002/adem.202201938.
- 36 (231) Zhao, C. C.; Zhou, M.; Yu, H. B. High water and oxygen reactivity inducing excellent anti-
- 37 corrosive performance in waterborne Ti2CTx/epoxy composite coating. *Appl Surf Sci* 2022, 586.
 38 DOI: ARTN 152880
- 39 10.1016/j.apsusc.2022.152880.
- 40 (232) Liang, W. Y.; Zhitomirsky, I. MXene-polypyrrole electrodes for asymmetric 41 supercapacitors. *Electrochim Acta* **2022**, *406*. DOI: ARTN 139843
- 42 10.1016/j.electacta.2022.139843.

1 2

3

4

- (233) Liu, G. Y.; Zou, J. H.; Tang, Q. Y.; Yang, X. Y.; Zhang, Y. W.; Zhang, Q.; Huang, W.;
- 2 Chen, P.; Shao, J. J.; Dong, X. C. Surface Modified Ti3C2 MXene Nanosheets for Tumor
- 3 Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy. Acs Appl Mater Inter 2017,
- 4 9 (46), 40077-40086. DOI: 10.1021/acsami.7b13421.
- 5 (234) Mayerberger, E. A.; Street, R. M.; McDaniel, R. M.; Barsoum, M. W.; Schauer, C. L.
- 6 Antibacterial properties of electrospun Ti3C2Tz (MXene)/chitosan nanofibers. Rsc Adv 2018, 8 7 (62), 35386-35394. DOI: 10.1039/c8ra06274a.
- 8 (235) Yousaf, T.; Areeb, A.; Murtaza, M.; Munir, A.; Khan, Y.; Waseem, A. Silane-Grafted 9 MXene (Ti3C2TX) Membranes for Enhanced Water Purification Performance. Acs Omega 2022, 10 7 (23), 19502-19512. DOI: 10.1021/acsomega.2c01143.
- 11 (236) Likitaporn, C.; Okhawilai, M.; Kasemsiri, P.; Qin, J. Q.; Potiyaraj, P.; Uyama, H. High 12 electrolyte uptake of MXene integrated membrane separators for Zn-ion batteries. Sci Rep-Uk 13 **2022**, *12* (1). DOI: ARTN 19915
- 10.1038/s41598-022-24578-8. 14
- 15 (237) Basara, G.; Saeidi-Javash, M.; Ren, X.; Bahcecioglu, G.; Wyatt, B. C.; Anasori, B.; Zhang, 16 Y. L.; Zorlutuna, P. Electrically conductive 3D printed Ti (3) C (2) T x MXene-PEG composite 17 constructs for cardiac tissue engineering. Acta Biomater 2022, 139, 179-189. DOI: 18 10.1016/j.actbio.2020.12.033.
- 19 (238) Jiang, C. G.; Xie, W. Y.; Wu, D. F. Balancing the Overall Performance of Poly(vinyl 20 alcohol)/MXene Composite Organohydrogels for Flexible Strain Sensors. Acs Appl Polym Mater 21 **2023**, 5 (1), 370-380. DOI: 10.1021/acsapm.2c01546370.
- (239) Liu, J. H.; Meng, X. J.; Dong, F.; Ren, S. Y.; Wang, B.; Tan, F. Highly Stretchable and 22 23 Sensitive Ti3C2TX MXene/Sodium Alginate/ Acrylamide Hydrogel for Flexible Electronic 24 Sensors. Acs Appl Polym Mater 2022. DOI: 10.1021/acsapm.2c01169.
- 25 (240) Tang, T. T.; Wang, S. C.; Jiang, Y.; Xu, Z. G.; Chen, Y.; Peng, T. S.; Khan, F.; Feng, J. B.; Song, P. G.; Zhao, Y. Flexible and flame-retarding phosphorylated MXene/polypropylene 26 27 composites for efficient electromagnetic interference shielding. J Mater Sci Technol 2022, 111, 28 66-75. DOI: 10.1016/j.jmst.2021.08.091.
- 29 (241) Zhang, Y. K.; Chen, C.; Chen, Z. F.; Zhang, T. T.; Wang, Y. L.; Cao, S. Y.; Ma, J. Superior 30 Anticorrosion Performance of Well-Dispersed MXene- Polymer Composite Coatings Enabled by 31 Covalent Modification and Ambient Electron-Beam Curing. Acs Appl Mater Inter 2023, 15 (8), 32 11099-11110. DOI: 10.1021/acsami.2c22184.
- 33 (242) Oian, Y.; Zhong, J.; Ou, J. P. Improvement in alkali-resistance of basalt fiber-reinforced 34 polymer by Ti3C2TX (MXene) modified matrix. Polym Composite 2023, 44 (4), 2581-2591. DOI:
- 35 10.1002/pc.27265. Hou, K.; Yang, Y. F.; Zhou, H.; Chen, X. M.; Ge, S. B. Enhanced Yield of
- 36 Large-Sized Ti3C2Tx MXene Polymers Nanosheets via Cyclic Ultrasonic-Centrifugal Separation.
- 37 Polymers-Basel 2023, 15 (6). DOI: ARTN 1330
- 38 10.3390/polym15061330.
- 39 (243) Kim, T. M.; Ryplida, B.; Lee, G. B.; Park, S. Y. Cancer cells targeting H2O2-responsive
- 40 MXene-integrated hyaluronic acid polymer dots coated sensor. J Ind Eng Chem 2023, 120, 188-194. DOI: 10.1016/j.jiec.2022.12.025. 41
- 42
- (244) Zhou, Y.; Zou, Y. B.; Peng, Z. Y.; Yu, C. Y.; Zhong, W. B. Arbitrary deformable and high-43 strength electroactive polymer/MXene anti-exfoliative composite films assembled into high
- 44 performance, flexible all-solid-state supercapacitors. Nanoscale 2020, 12 (40), 20797-20810. DOI:
- 45 10.1039/d0nr04980h.
(245) Deng, Q. H.; Feng, Y. F.; Li, W.; Xu, X. Q.; Peng, C.; Wu, Q. Strong interface effect induced 1 2 high-k property in polymer based ternary composites filled with 2D layered Ti3C2 MXene 3 nanosheets. J Mater Sci-Mater El 2019, 30 (10), 9106-9113. DOI: 10.1007/s10854-019-01239-7. 4 (246) Zheng, X. H.; Shen, J. K.; Hu, Q. L.; Nie, W. Q.; Wang, Z. Q.; Zou, L. H.; Li, C. L. Vapor phase polymerized conducting polymer/MXene textiles for wearable electronics. Nanoscale 2021. 5 6 13 (3), 1832-1841. DOI: 10.1039/d0nr07433k. Sharma, S.; Chhetry, A.; Ko, S.; Park, J. Y. Highly 7 Sensitive and Stable Pressure Sensor Based on Polymer-Mxene Composite Nanofiber Mat for 8 Wearable Health Monitoring. Proc Ieee Micr Elect 2020, 810-813. Kim, K. N.; Kim, S. Y.; Choi, 9 S. H.; Lee, M.; Song, W.; Lim, J.; Lee, S. S.; Myung, S. All-Printed Wearable Triboelectric 10 Nanogenerator with Ultra-Charged Electron Accumulation Polymers Based on MXene 11 Nanoflakes. Adv Electron Mater 2022, 8 (12). DOI: 10.1002/aelm.202200819. (247) Zhang, R. N.; Liu, Q.; Wang, Z. Z.; Yang, X. D.; Guo, Y. X. Conductive polymer doped

(247) Zhang, R. N.; Liu, Q.; Wang, Z. Z.; Yang, X. D.; Guo, Y. X. Conductive polymer doped two-dimensional MXene materials: opening the channel of magnesium ion transport. *Rsc Adv* **2022**, *12* (7), 4329-4335. DOI: 10.1039/d1ra08690a. Parajuli, D.; Murali, N.; Devendra, K. C.;
Karki, B.; Samatha, K.; Kim, A. A.; Park, M.; Pant, B. Advancements in MXene-Polymer
Nanocomposites in Energy Storage and Biomedical Applications. *Polymers-Basel* **2022**, *14* (16).
DOI: ARTN 3433

18 10.3390/polym14163433.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Downloaded on 9/03/2025 22:11:54.

Open Access Article. Published on 28 februari 2025.

- (248) Zhou, Z. H.; Panatdasirisuk, W.; Mathis, T. S.; Anasori, B.; Lu, C. H.; Zhang, X. X.; Liao,
 Z. W.; Gogotsi, Y.; Yang, S. Layer-by-layer assembly of MXene and carbon nanotubes on
 electrospun polymer films for flexible energy storage. *Nanoscale* 2018, *10* (13), 6005-6013. DOI:
 10.1039/c8nr00313k.
- (249) Liu, Y. Q.; Xu, D. R.; Ding, Y.; Lv, X. X.; Huang, T. T.; Yuan, B. L.; Jiang, L.; Sun, X. Y.;
 Yao, Y. Q.; Tang, J. A conductive polyacrylamide hydrogel enabled by dispersion-enhanced
 MXene@chitosan assembly for highly stretchable and sensitive wearable skin. *J Mater Chem B*2021, 9 (42), 8862-8870. DOI: 10.1039/d1tb01798e. Maleski, K.; Mochalin, V. N.; Gogotsi, Y.
 Dispersions of Two-Dimensional Titanium Carbide MXene in Organic Solvents. *Chem Mater*2017, 29 (4), 1632-1640. DOI: 10.1021/acs.chemmater.6b04830.
- (250) Li, K.; Wang, X. H.; Li, S.; Urbankowski, P.; Li, J. M.; Xu, Y. X.; Gogotsi, Y. An Ultrafast
 Conducting Polymer@MXene Positive Electrode with High Volumetric Capacitance for
 Advanced Asymmetric Supercapacitors. *Small* 2020, *16* (4). DOI: ARTN 1906851
- 32 10.1002/smll.201906851.
- 33 (251) Bao, W. Z.; Liu, L.; Wang, C. Y.; Choi, S.; Wang, D.; Wang, G. X. Facile Synthesis of
- 34 Crumpled Nitrogen-Doped MXene Nanosheets as a New Sulfur Host for Lithium-Sulfur Batteries.
- 35 Adv Energy Mater 2018, 8 (13). DOI: ARTN 1702485
- 36 10.1002/aenm.201702485. Mehdi, S. M. Z.; Ghulam Abbas, H.; Ali, M.; Rizvi, S. B. H.; Choi, S.
- 37 R.; Goak, J. C.; Seo, Y.; Kumar, S.; Lee, N. Enhanced Electrochemical Performance and
- Theoretical Insights of Ni-Intercalated Ti3C2T x MX ene. *Energy & Environmental Materials*,
 e12876.
- 40 (252) Harris, J. K.; Ratcliff, E. L. Ion diffusion coefficients in poly(3-alkylthiophenes) for energy
- 41 conversion and biosensing: role of side-chain length and microstructure. J Mater Chem C 2020, 8
- 42 (38), 13319-13327. DOI: 10.1039/d0tc03690k.
- 43 (253) Chen, C.; Boota, M.; Xie, X. Q.; Zhao, M. Q.; Anasori, B.; Ren, C. E.; Miao, L.; Jiang, J. J.;
- 44 Gogotsi, Y. Charge transfer induced polymerization of EDOT confined between 2D titanium
- 45 carbide layers. *J Mater Chem A* **2017**, *5* (11), 5260-5265. DOI: 10.1039/c7ta00149e.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

(254) Xue, H.; Huang, P.-H.; Göthelid, M.; Strömberg, A.; Niklaus, F.; Li, J. Ultrahigh-Rate On-1 2 Paper PEDOT: PSS-Ti2C Microsupercapacitors with Large Areal Capacitance. Adv Funct Mater 3

- **2024**, *34* (49), 2409210. DOI: https://doi.org/10.1002/adfm.202409210.
- 4 (255) Yao, Y.; Feng, W.; Chen, M.; Zhong, X.; Wu, X.; Zhang, H.; Yu, Y. Boosting the 5 Electrochemical Performance of Li–S Batteries with a Dual Polysulfides Confinement Strategy. 6 Small 2018, 14 (42), 1802516. DOI: https://doi.org/10.1002/smll.201802516.
- 7 (256) Qin, L. Q.; Tao, Q. Z.; Liu, X. J.; Fahlman, M.; Halim, J.; Perssona, P. O. A.; Rosen, J.; 8 Zhang, F. L. Polymer-MXene composite films formed by MXene-facilitated electrochemical 9 polymerization for flexible solid-state microsupercapacitors. Nano Energy 2019, 60, 734-742. 10 DOI: 10.1016/j.nanoen.2019.04.002.
- 11 (257) Liu, S. M.; Chen, M. X.; Xie, Y.; Liu, D. H.; Zheng, J. F.; Xiong, X.; Jiang, H.; Wang, L. 12 C.; Luo, H.; Han, K. Nb2CTx MXene boosting PEO polymer electrolyte for all-solid-state Li-S 13 batteries: two birds with one stone strategy to enhance Li+ conductivity and polysulfide 14 adsorptivity. Rare Metals 2023. DOI: 10.1007/s12598-022-02260-2. Zhang, Y. X.; Wu, F.; Huang, 15 Y. X.; Li, S. J.; Li, C.; Wang, Z. H.; Xie, M. A novel gel polymer electrolyte doped with MXene 16 enables dendrite-free cycling for high-performance sodium metal batteries. J Mater Chem A 2022, 17 10 (21), 11553-11561. DOI: 10.1039/d2ta00452f. Xu, H. S.; Zhang, H.; Wang, Y. F.; Tang, C.; 18 Xiao, T. Y.; Xu, Z.; Li, H.; Xu, F. G.; Mai, Y. Y. Two-dimensional sandwich-like MXene-19 conductive polymer nanocomposite with in-plane cylindrical mesopores for long cycling lithium-20 sulfur batteries. 2d Mater 2023, 10 (2). DOI: ARTN 024006
- 21 10.1088/2053-1583/acbec4. Pan, Q. W.; Zheng, Y. W.; Kota, S.; Huang, W. C.; Wang, S. J.; Qi, 22 H.; Kim, S.; Tu, Y. F.; Barsoum, M. W.; Li, C. Y. 2D MXene-containing polymer electrolytes for 23 all-solid-state lithium metal batteries. Nanoscale Adv 2019, 1 (1), 395-402. DOI: 24 10.1039/c8na00206a.
- 25 (258) Liu, C. K.; Tian, Y.; An, Y. L.; Yang, Q. L.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Robust 26 and flexible polymer/MXene-derived two dimensional TiO2 hybrid gel electrolyte for dendrite-27 free solid-state zinc-ion batteries. Chem Eng J 2022, 430. DOI: ARTN 132748
- 28 10.1016/j.cej.2021.132748.
- 29 (259) Li, X.; Lu, Y. L.; Shi, Z. H.; Liu, G.; Xu, G.; An, Z. J.; Xing, H.; Chen, Q. M.; Han, R. P. 30 S.; Liu, Q. J. Onion-inspired MXene/chitosan-quercetin multilayers: Enhanced response to H2O 31 molecules for wearable human physiological monitoring. Sensor Actual B-Chem 2021, 329. DOI: 32 ARTN 129209
- 33 10.1016/j.snb.2020.129209.
- 34 (260) Zhou, J.; Shokouh, S. H. H.; Komsa, H. P.; Rieppo, L.; Cui, L. F.; Lv, Z. P.; Kordas, K.
- 35 MXene-Polymer Hybrid for High-Performance Gas Sensor Prepared by Microwave-Assisted In-
- 36 Situ Intercalation. Adv Mater Technol-Us 2022, 7 (9). DOI: ARTN 2101565
- 37 10.1002/admt.202101565.
- 38 (261) Sharma, S.; Chhetry, A.; Sharifuzzaman, M.; Yoon, H.; Park, J. Y. Wearable capacitive
- 39 pressure sensor based on MXene composite nanofibrous scaffolds for reliable human physiological
- 40 signal acquisition. ACS applied materials & interfaces **2020**, 12 (19), 22212-22224.
- 41 (262) Wang, K.; Lou, Z.; Wang, L. L.; Zhao, L. J.; Zhao, S. F.; Wang, D. Y.; Han, W.; Jiang, K.;
- 42 Shen, G. Z. Bioinspired Interlocked Structure-Induced High Deformability for Two-Dimensional
- 43 Titanium Carbide (MXene)/Natural Microcapsule-Based Flexible Pressure Sensors. Acs Nano
- 44 **2019**, *13* (8), 9139-9147. DOI: 10.1021/acsnano.9b03454.

1 (263) Qin, R. Z.; Hu, M. J.; Li, X.; Liang, T.; Tan, H. Y.; Liu, J. Z.; Shan, G. C. A new strategy

- 2 for the fabrication of a flexible and highly sensitive capacitive pressure sensor. *Microsyst Nanoeng*
- 3 **2021**, 7 (1). DOI: ARTN 100
- 4 10.1038/s41378-021-00327-1.
- 5 (264) Riazi, H.; Taghizadeh, G.; Soroush, M. MXene-Based Nanocomposite Sensors. *Acs Omega*6 (17), 11103-11112. DOI: 10.1021/acsomega.0c05828.
- (265) Jin, L.; Wu, C. L.; Wei, K.; He, L. F.; Gao, H.; Zhang, H. X.; Zhang, K.; Asiri, A. M.;
 Alamry, K. A.; Yang, L.; et al. Polymeric Ti3C2Tx MXene Composites for Room Temperature
 Ammonia Sensing. Acs Appl Nano Mater 2020, 3 (12), 12071-12079. DOI: 10.1021/acsanm.0c02577.
- 11 (266) Ge, G.; Zhang, Y. Z.; Zhang, W. L.; Yuan, W.; El-Demellawi, J. K.; Zhang, P.; Di Fabrizio,
- E.; Dong, X. C.; Alshareef, H. N. Ti3C2Tx MXene-Activated Fast Gelation of Stretchable and
 Self-Healing Hydrogels: A Molecular Approach. *Acs Nano* 2021, *15* (2), 2698-2706. DOI:
 10.1021/acsnano.0c07998.
- (267) Li, X. B.; He, L. Z.; Li, Y. F.; Chao, M. Y.; Li, M. K.; Wan, P. B.; Zhang, L. Q. Healable,
 Degradable, and Conductive MXene Nanocomposite Hydrogel for Multifunctional Epidermal
 Sensors. *Acs Nano* 2021, *15* (4), 7765-7773. DOI: 10.1021/acsnano.1c01751.
- (268) Shao, Y. M.; Zhu, Y.; Zheng, R.; Wang, P.; Zhao, Z. Z.; An, J. Highly sensitive and selective 18 19 surface molecularly imprinted polymer electrochemical sensor prepared by Au and MXene 20 modified glassy carbon electrode for efficient detection of tetrabromobisphenol A in water. Adv 21 Compos Hybrid Ma 2022, 5 (4), 3104-3116. DOI: 10.1007/s42114-022-00562-8. Peng, Z. Q.; 22 Zhang, X. D.; Zhao, C. M.; Gan, C. S.; Zhu, C. H. Hydrophobic and stable MXene/ reduced 23 graphene oxide/polymer hybrid materials pressure sensors with an ultrahigh sensitive and rapid 24 response speed pressure sensor for health monitoring. Mater Chem Phys 2021, 271. DOI: ARTN 25 124729
- 10.1016/j.matchemphys.2021.124729. Gong, L. G.; Qi, X. X.; Yu, K.; Gao, J. Q.; Zhou, B. B.;
 Yang, G. Y. Covalent conductive polymer chain and organic ligand ethylenediamine modified
 MXene-like-{AlW12O40} compounds for fully symmetric supercapacitors, electrochemical
 sensors and photocatalysis mechanisms. *J Mater Chem A* 2020, 8 (11), 5709-5720. DOI:
 10.1039/c9ta14103k.
- (269) Tran, M. H.; Brilmayer, R.; Liu, L.; Zhuang, H.; Hess, C.; Andrieu-Brunsen, A.; Birkel, C.
 S. Synthesis of a smart hybrid MXene with switchable conductivity for temperature sensing. *ACS Applied Nano Materials* 2020, *3* (5), 4069-4076.
- 34 (270) Zhang, Y.; Chen, K.; Li, Y.; Lan, J.; Yan, B.; Shi, L.; Ran, R. High-strength, self-healable,
- temperature-sensitive, MXene-containing composite hydrogel as a smart compression sensor. ACS
 applied materials & interfaces 2019, 11 (50), 47350-47357.
- 37 (271) Echols, I. J.; An, H.; Zhao, X.; Prehn, E. M.; Tan, Z.; Radovic, M.; Green, M. J.; Lutkenhaus,
- 38 J. L. pH-Response of polycation/Ti 3 C 2 T x MXene layer-by-layer assemblies for use as resistive
- 39 sensors. *Molecular Systems Design & Engineering* **2020**, *5* (1), 366-375.
- 40 (272) Sharma, S.; Chhetry, A.; Zhang, S.; Yoon, H. Md. Sharifuzzaman, X. Hui, JY Park. *ACS* 41 *Nano* **2021**, *15*, 4380.
- 42 (273) Li, L.; Fu, X.; Chen, S.; Uzun, S.; Levitt, A. S.; Shuck, C. E.; Han, W.; Gogotsi, Y.
- 43 Hydrophobic and stable MXene–polymer pressure sensors for wearable electronics. *ACS applied*
- 44 *materials & interfaces* **2020**, *12* (13), 15362-15369.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

(274) Shi, X.; Wang, H.; Xie, X.; Xue, Q.; Zhang, J.; Kang, S.; Wang, C.; Liang, J.; Chen, Y. 1 2 Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic

- 3 microscale "brick-and-mortar" architecture. ACS nano 2018, 13 (1), 649-659.
- 4 (275) Lu, Y.; Qu, X.; Zhao, W.; Ren, Y.; Si, W.; Wang, W.; Wang, Q.; Huang, W.; Dong, X. 5 Highly stretchable, elastic, and sensitive MXene-based hydrogel for flexible strain and pressure 6 sensors. Research 2020.
- 7 (276) Li, X.; He, L.; Li, Y.; Chao, M.; Li, M.; Wan, P.; Zhang, L. Healable, degradable, and 8 conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors. ACS nano 9 **2021**, *15* (4), 7765-7773.
- 10 (277) Wang, Q.; Pan, X.; Lin, C.; Gao, H.; Cao, S.; Ni, Y.; Ma, X. Modified Ti3C2TX (MXene) 11 nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for 12 wearable bioelectronics. Chemical Engineering Journal 2020, 401, 126129.
- 13 (278) Luo, J. Q.; Zhao, S.; Zhang, H. B.; Deng, Z. M.; Li, L. L.; Yu, Z. Z. Flexible, stretchable 14 and electrically conductive MXene/natural rubber nanocomposite films for efficient 15 electromagnetic interference shielding. Compos Sci Technol 2019, 182. DOI: ARTN 107754
- 16 10.1016/j.compscitech.2019.107754. Yang, H. T.; Li, J. L.; Xiao, X.; Wang, J. H.; Li, Y. F.; Li, 17 K. R.; Li, Z. P.; Yang, H. C.; Wang, Q.; Yang, J.; et al. Topographic design in wearable MXene 18 sensors with in-sensor machine learning for full-body avatar reconstruction. *Nat Commun* **2022**, 19 13 (1). DOI: ARTN 5311
- 20 10.1038/s41467-022-33021-5. Sun, J. L.; Chang, Y.; Dong, L.; Zhang, K. K.; Hua, Q. L.; Zang, J. 21 H.; Chen, Q. S.; Shang, Y. Y.; Pan, C. F.; Shan, C. X. MXene enhanced self-powered alternating 22 current electroluminescence devices for patterned flexible displays. *Nano Energy* **2021**, *86*. DOI: 23 ARTN 106077
- 24 10.1016/j.nanoen.2021.106077.
- 25 (279) Wan, Y. J.; Li, X. M.; Zhu, P. L.; Sun, R.; Wong, C. P.; Liao, W. H. Lightweight, flexible 26 MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding. Compos Part a-Appl S 2020, 130. DOI: ARTN 105764
- 28 10.1016/j.compositesa.2020.105764.
- 29 (280) Han, R.; Zheng, L.; Li, G.; Chen, G.; Ma, S.; Cai, S.; Li, Y. Self-poled poly (vinylidene 30 fluoride)/MXene piezoelectric energy harvester with boosted power generation ability and the 31 roles of crystalline orientation and polarized interfaces. ACS Applied Materials & Interfaces 2021, 32 13 (39), 46738-46748.
- 33 (281) Zhao, Q.; Yang, L.; Ma, Y.; Huang, H.; He, H.; Ji, H.; Wang, Z.; Qiu, J. Highly sensitive, 34 reliable and flexible pressure sensor based on piezoelectric PVDF hybrid film using MXene 35 nanosheet reinforcement. Journal of Alloys and Compounds 2021, 886, 161069.
- 36 (282) Zhao, L. J.; Wang, L. L.; Zheng, Y. Q.; Zhao, S. F.; Wei, W.; Zhang, D. W.; Fu, X. Y.; Jiang, 37 K.; Shen, G. Z.; Han, W. Highly-stable polymer-crosslinked 2D MXene-based flexible
- 38 biocompatible electronic skins for in vivo biomonitoring. Nano Energy 2021, 84. DOI: ARTN
- 39 105921

27

- 40 10.1016/j.nanoen.2021.105921.
- 41 (283) Wu, X. M.; Huang, B.; Lv, R. Y.; Wang, Q. G.; Wang, Y. Highly flexible and low
- 42 capacitance loss supercapacitor electrode based on hybridizing decentralized conjugated polymer
- 43 chains with MXene. Chem Eng J 2019, 378. DOI: ARTN 122246

10.1016/j.cej.2019.122246. Raagulan, K.; Braveenth, R.; Kim, B. M.; Lim, K. J.; Lee, S. B.; Kim, M.; Chai, K. Y. An effective utilization of MXene and its effect on electromagnetic interference shielding: flexible, free-standing and thermally conductive composite from MXene-PAT-poly(p-aminophenol)-polyaniline co-polymer. *Rsc Adv* 2020, *10* (3), 1613-1633. DOI: 10.1039/c9ra09522e. Kong, N.; Lv, K.; Chen, W. T.; Guan, J.; Zhao, P. F.; Tao, J. L.; Zhang, J. Z. Natural Polymer Template for Low-Cost Producing HighPerformance Ti3C2Tx MXene Electrodes for Flexible Supercapacitors. *Acs Appl Mater Inter* 2022, *14* (51), 56877-56885. DOI: 10.1021/acsami.2c18559. Gund, G. S.; Park, J. H.; Harpalsinh, R.; Kota, M.; Shin, J. H.; Kim, T. I.; Gogotsi, Y.; Park, H. S. MXene/Polymer Hybrid Materials for Flexible AC-Filtering Electrochemical Capacitors. *Joule* 2019, *3* (1), 164-176. DOI: 10.1016/j.joule.2018.10.017.

(284) Yun, J.; Park, J.; Ryoo, M.; Kitchamsetti, N.; Goh, T. S.; Kim, D. Piezo-triboelectric
hybridized nanogenerator embedding MXene based bifunctional conductive filler in polymer
matrix for boosting electrical power. *Nano Energy* 2023, *105*, 108018.

(285) Wang, S.; Shao, H.-Q.; Liu, Y.; Tang, C.-Y.; Zhao, X.; Ke, K.; Bao, R.-Y.; Yang, M.-B.;
Yang, W. Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear
pressure sensor. *Composites Science and Technology* 2021, *202*, 108600.

(286) Guo, M.; Jiang, J.; Qian, J.; Liu, C.; Ma, J.; Nan, C. W.; Shen, Y. Flexible robust and
high-density FeRAM from array of organic ferroelectric nano-lamellae by self-assembly. *Advanced Science* 2019, 6 (6), 1801931.

- (287) Martins, P.; Lopes, A.; Lanceros-Mendez, S. Electroactive phases of poly (vinylidene
 fluoride): Determination, processing and applications. *Progress in polymer science* 2014, *39* (4),
 683-706.
- (288) Mokhtari, F.; Usman, K. A. S.; Zhang, J.; Komljenovic, R.; Simon, Z. a.; Dharmasiri, B.;
 Rezk, A.; Sherrell, P. C.; Henderson, L. C.; Varley, R. J. Enhanced Acoustoelectric Energy
 Harvesting with Ti3C2T x MXene in an All-Fiber Nanogenerator. *ACS Applied Materials & Interfaces* 2025.
- (289) Rana, S. S.; Rahman, M. T.; Salauddin, M.; Sharma, S.; Maharjan, P.; Bhatta, T.; Cho, H.;
 Park, C.; Park, J. Y. Electrospun PVDF-TrFE/MXene nanofiber mat-based triboelectric
 nanogenerator for smart home appliances. *ACS applied materials & interfaces* 2021, *13* (4), 49554967.
- (290) Kou, L.; Haque, R.; Sadri, R.; Auliya, R. Z.; Kaur, M.; Roberts, E. P.; Gan, W. C.;
 Mohammad Haniff, M. A. S.; Dee, C. F.; Ooi, P. C. Enhanced Piezoelectric Nanogenerator Based
 on Tridoped Graphene and Ti3CNT x MXene Quasi-3D Heterostructure. *Industrial & Engineering*
- 34 *Chemistry Research* **2024**, *63* (36), 15853-15868.
- 35 (291) Kim, Y.; Wu, X.; Lee, C.; Oh, J. H. Characterization of PI/PVDF-TrFE composite nanofiber-
- based triboelectric nanogenerators depending on the type of the electrospinning system. ACS
 Applied Materials & Interfaces 2021, 13 (31), 36967-36975.
- 38 (292) Min, G.; Pullanchiyodan, A.; Dahiya, A. S.; Hosseini, E. S.; Xu, Y.; Mulvihill, D. M.;
- 39 Dahiya, R. Ferroelectric-assisted high-performance triboelectric nanogenerators based on
- 40 electrospun P (VDF-TrFE) composite nanofibers with barium titanate nanofillers. *Nano Energy*
- 41 **2021**, *90*, 106600.

1 2

3

4

5

6

7

8

9

10

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

- 42 (293) Wang, D.; Zhang, D.; Li, P.; Yang, Z.; Mi, Q.; Yu, L. Electrospinning of flexible poly (vinyl
- 43 alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum
- 44 diselenide piezoelectric nanogenerator. *Nano-micro letters* **2021**, *13*, 1-13.

- 1 (294) Zheng, W.; Li, T.; Jin, F.; Qian, L.; Ma, J.; Wei, Z.; Ma, X.; Wang, F.; Sun, J.; Yuan, T.
- Interfacial Polarization Locked Flexible β-Phase Glycine/Nb2CTx Piezoelectric Nanofibers. *Small* 2024, 2308715.
- 4 (295) Kim, J.; Jang, M.; Jeong, G.; Yu, S.; Park, J.; Lee, Y.; Cho, S.; Yeom, J.; Lee, Y.; Choe, A.
 5 MXene-enhanced β-phase crystallization in ferroelectric porous composites for highly-sensitive
- 6 dynamic force sensors. Nano Energy 2021, 89, 106409.
- 7 (296) Auliya, R. Z.; Ooi, P. C.; Sadri, R.; Talik, N. A.; Yau, Z. Y.; Mohammad Haniff, M. A. S.;
- Goh, B. T.; Dee, C. F.; Aslfattahi, N.; Al-Bati, S. Exploration of 2D Ti3C2 MXene for all solution
 processed piezoelectric nanogenerator applications. *Scientific Reports* 2021, *11* (1), 17432.
- (297) Bhatta, T.; Maharjan, P.; Cho, H.; Park, C.; Yoon, S. H.; Sharma, S.; Salauddin, M.; Rahman,
- 11 M. T.; Rana, S. S.; Park, J. Y. High-performance triboelectric nanogenerator based on MXene 12 functionalized polyvinylidene fluoride composite nanofibers. *Nano Energy* **2021**, *81*, 105670.
- (298) Li, X.; Wang, W.; Cai, W.; Liu, H.; Liu, H.; Han, N.; Zhang, X. Mxene/multiwalled carbon
 nanotube/polymer hybrids for tribopiezoelectric nanogenerators. *ACS Applied Nano Materials*2022, 5 (9), 12836-12847.
- (299) Shepelin, N. A.; Sherrell, P. C.; Skountzos, E. N.; Goudeli, E.; Zhang, J.; Lussini, V. C.;
 Imtiaz, B.; Usman, K. A. S.; Dicinoski, G. W.; Shapter, J. G. Interfacial piezoelectric polarization
 locking in printable Ti3C2T x MXene-fluoropolymer composites. *Nature communications* 2021, *12* (1), 3171.
- (300) Wu, W.; Zhao, W.; Sun, Q.; Yu, B.; Yin, X.; Cao, X.; Feng, Y.; Li, R. K.; Qu, J. Surface
 treatment of two dimensional MXene for poly (vinylidene fluoride) nanocomposites with tunable
 dielectric permittivity. *Composites Communications* 2021, *23*, 100562.
- (301) Tu, S.; Qiu, L.; Liu, C.; Zeng, F.; Yuan, Y.-Y.; Hedhili, M. N.; Musteata, V.; Ma, Y.; Liang,
 K.; Jiang, N. Suppressing Dielectric Loss in MXene/Polymer Nanocomposites through Interfacial
 Interactions. *ACS nano* 2024, *18* (14), 10196-10205.
- (302) Li, Y.; Bai, X.; Liu, J.; Yang, B. Stretchable MXene/PVDF Piezoelectric Sensor for Finger
 Motion Detection and Tactile Recognition. In 2024 IEEE 37th International Conference on Micro *Electro Mechanical Systems (MEMS)*, 2024; IEEE: pp 113-116.
- (303) Ji, X.; Ge, L.; Liu, C.; Tang, Z.; Xiao, Y.; Chen, W.; Lei, Z.; Gao, W.; Blake, S.; De, D.
 Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer
 theranostics. *Nature communications* 2021, *12* (1), 1124.
- 32 (304) Feng, W.; Wang, R.; Zhou, Y.; Ding, L.; Gao, X.; Zhou, B.; Hu, P.; Chen, Y. Ultrathin
- 33 molybdenum carbide MXene with fast biodegradability for highly efficient theory-oriented
- photonic tumor hyperthermia. Advanced Functional Materials 2019, 29 (22), 1901942.
 (205) Fu X: Li C: Chang X: Up X: There W: Wei O: Li D. Diamage and the second seco
- 35 (305) Fu, Y.; Li, C.; Cheng, Y.; He, Y.; Zhang, W.; Wei, Q.; Li, D. Biomass aerogel composite 36 containing BaTiO3 nanoparticles and MXene for highly sensitive self-powered sensor and
- 37 photothermal antibacterial applications. *Composites Part A: Applied Science and Manufacturing*
- **2023**, *173*, 107663.
- 39 (306) McLellan, K.; Li, T. R.; Sun, Y. C.; Jakubinek, M. B.; Naguib, H. E. 4D Printing of MXene
- 40 Composites for Deployable Actuating Structures. Acs Appl Polym Mater 2022. DOI:
- 41 10.1021/acsapm.2c01192XXX-XXX.
- 42 (307) McLellan, K.; Li, T. R.; Sun, Y. C.; Jakubinek, M. B.; Naguib, H. E. 4D Printing of MXene
- 43 Composites for Deployable Actuating Structures. *Acs Appl Polym Mater* **2022**, *4* (12), 8774-8785.
- 44 DOI: 10.1021/acsapm.2c01192.

- 1 (308) Cao, W. T.; Ma, C.; Mao, D. S.; Zhang, J.; Ma, M. G.; Chen, F. MXene-Reinforced Cellulose
- 2 Nanofibril Inks for 3D-Printed Smart Fibres and Textiles. *Adv Funct Mater* **2019**, *29* (51). DOI:
- 3 ARTN 1905898
- 4 10.1002/adfm.201905898.
- 5 (309) Li, K.; Zhao, J.; Zhussupbekova, A.; Shuck, C. E.; Hughes, L.; Dong, Y. Y.; Barwich, S.;
- Vaesen, S.; Shvets, I. V.; Mobius, M.; et al. 4D printing of MXene hydrogels for high-efficiency
 pseudocapacitive energy storage. *Nat Commun* 2022, *13* (1). DOI: ARTN 6884
- 8 10.1038/s41467-022-34583-0.
- 9 (310) Li, Y. W.; Peng, S. Q.; Kankala, R. K.; Wu, L. X.; Chen, A. Z.; Wang, S. B. 3D printing of
 10 mechanically robust MXene-encapsulated polyurethane elastomer. *Compos Part a-Appl S* 2022,
 11 *163*. DOI: ARTN 107182
- 12 10.1016/j.compositesa.2022.107182.
- (311) Liu, H. B.; Huang, Z. Y.; Chen, T.; Su, X. Q.; Liu, Y. N.; Fu, R. L. Construction of 3D
 MXene/Silver nanowires aerogels reinforced polymer composites for extraordinary
 electromagnetic interference shielding and thermal conductivity. *Chem Eng J* 2022, 427. DOI:
 ARTN 131540
- 10.1016/j.cej.2021.131540. Chu, X.; Wang, Y. H.; Cai, L. C.; Huang, H. C.; Xu, Z.; Xie, Y. T.;
 Yan, C.; Wang, Q.; Zhang, H. T.; Li, H.; et al. Boosting the energy density of aqueous MXenebased supercapacitor by integrating 3D conducting polymer hydrogel cathode. *Susmat* 2022, *2* (3),
 379-390. DOI: 10.1002/sus2.61.
- (312) Bora, P. J.; Anil, A. G.; Ramamurthy, P. C.; Tan, D. Q. MXene interlayered crosslinked
 conducting polymer film for highly specific absorption and electromagnetic interference shielding. *Materials Advances* 2020, 1 (2). DOI: 10.1039/d0ma00005a. Sun, R. H.; Zhang, H. B.; Liu, J.;
 Xie, X.; Yang, R.; Li, Y.; Hong, S.; Yu, Z. Z. Highly Conductive Transition Metal
 Carbide/Carbonitride(MXene)@polystyrene Nanocomposites Fabricated by Electrostatic
 Assembly for Highly Efficient Electromagnetic Interference Shielding. *Adv Funct Mater* 2017, 27
 (45). DOI: ARTN 1702807
- 28 10.1002/adfm.201702807.
- (313) Li, R. S.; Ding, L.; Gao, Q.; Zhang, H. M.; Zeng, D.; Zhao, B. A.; Fan, B. B.; Zhang, R.
 Tuning of anisotropic electrical conductivity and enhancement of EMI shielding of polymer
 composite foam via CO2-assisted delamination and orientation of MXene. *Chem Eng J* 2021, *415*.
- 32 DOI: ARTN 128930
- 33 10.1016/j.cej.2021.128930.
- 34 (314) Liu, J.; Zhang, H. B.; Sun, R. H.; Liu, Y. F.; Liu, Z. S.; Zhou, A. G.; Yu, Z. Z. Hydrophobic,
- 35 Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference
- 36 Shielding. Adv Mater 2017, 29 (38). DOI: ARTN 1702367
- 37 10.1002/adma.201702367. Sun, Y.; Ding, R.; Hong, S. Y.; Lee, J.; Seo, Y. K.; Nam, J. D.; Suhr,
- 38 J. MXene-xanthan nanocomposite films with layered microstructure for electromagnetic
- 39 interference shielding and Joule heating. *Chem Eng J* **2021**, *410*. DOI: ARTN 128348
- 40 10.1016/j.cej.2020.128348.
- 41 (315) Zhang, Q. M.; Wang, Q.; Cui, J.; Zhao, S.; Zhang, G. F.; Gao, A. L.; Yan, Y. H. Structural
- 42 design and preparation of Ti3C2Tx MXene/polymer composites for absorption-dominated

electromagnetic interference shielding. Nanoscale Adv 2023, 5 (14), 3549-3574. DOI:
 10.1039/d3na00130j.

- 3 (316) Chang, G.; Zeng, L.; Xie, L.; Xue, B.; Zheng, Q. Ultrathin multifunctional electromagnetic
- interference shielding MXene/AgNWs/PEDOT:PSS coatings with superior electro/photo-thermal
 transition ability and water repellency. *Chem Eng J* 2023, 470, 144033. DOI:
 https://doi.org/10.1016/j.cej.2023.144033.
- 7 (317) Zeng, Z. H.; Wu, N.; Wei, J. J.; Yang, Y. F.; Wu, T. T.; Li, B.; Hauser, S. B.; Yang, W. D.;
- 8 Liu, J. R.; Zhao, S. Y. Porous and Ultra-Flexible Crosslinked MXene/Polyimide Composites for
- 9 Multifunctional Electromagnetic Interference Shielding. *Nano-Micro Lett* **2022**, *14* (1). DOI:
- 10 ARTN 59
- 11 10.1007/s40820-022-00800-0.
- 12 (318) Hussain, K.; Mehboob, S.; Ahmad, I.; Mumtaz, M.; Khan, A. R.; Mujtaba-ul-Hassan, S.;
- 13 Mehran, M. T.; Iqbal, Z.; Ahmad, J.; Mehmood, M.; et al. Terahertz time-domain spectroscopy of
- thin and flexible CNT-modified MXene/polymer composites. *Appl Phys a-Mater* **2021**, *127* (5).
- 15 DOI: ARTN 382
- 16 10.1007/s00339-021-04525-6.
- (319) Monastyreckis, G.; Mishnaevsky, L.; Hatter, C. B.; Aniskevich, A.; Gogotsi, Y.;
 Zeleniakiene, D. Micromechanical modeling of MXene-polymer composites. *Carbon* 2020, *162*,
 402-409. DOI: 10.1016/j.carbon.2020.02.070.
- (320) Liu, R. T.; Miao, M.; Li, Y. H.; Zhang, J. F.; Cao, S. M.; Feng, X. Ultrathin Biomimetic
 Polymeric Ti3C2Tx MXene Composite Films for Electromagnetic Interference Shielding. *Acs Appl Mater Inter* 2018, *10* (51), 44787-44795. DOI: 10.1021/acsami.8b18347.
- (321) Nie, Y.; Huang, J. K.; Ma, S. Y.; Li, Z. C.; Shi, Y. K.; Yang, X. F.; Fang, X.; Zeng, J. B.;
 Bi, P. Y.; Qi, J. T.; et al. MXene-hybridized silane films for metal anticorrosion and antibacterial
 applications. *Appl Surf Sci* 2020, *527*. DOI: ARTN 146915
- 26 10.1016/j.apsusc.2020.146915.
- (322) Zhang, F. Y.; Liu, W. Q.; Wang, S.; Liu, C. H.; Shi, H. Y.; Liang, L. Y.; Pi, K. Surface
 functionalization of Ti3C2Tx and its application in aqueous polymer nanocomposites for
 reinforcing corrosion protection. *Compos Part B-Eng* 2021, *217*. DOI: ARTN 108900
- 30 10.1016/j.compositesb.2021.108900.
- 31 (323) He, D. M.; Cai, M.; Yan, H.; Lin, Q. L.; Fan, X. Q.; Zhang, L.; Zhu, M. H. Tribological
- 32 properties of Ti3C2Tx MXene reinforced interpenetrating polymers network coating. Tribol Int
- 33 **2021**, *163*. DOI: ARTN 107196
- 34 10.1016/j.triboint.2021.107196.
- 35 (324) Zou, Y.; Jin, X.; Zhang, X. P.; Kong, X. L.; Zhang, Q.; Xie, X. H.; Liu, C. J.; Ke, L. N.; Liu,
- 36 W. G.; Wang, W. A multifunctional biomedical patch based on hyperbranched epoxy polymer and
- 37 MXene. *Sci China Technol Sc* **2021**, *64* (12), 2744-2754. DOI: 10.1007/s11431-021-1843-3.
- 38 (325) Chen, K.; Chen, Y. H.; Deng, Q. H.; Jeong, S. H.; Jang, T. S.; Du, S. Y.; Kim, H. E.; Huang,
- 39 Q.; Han, C. M. Strong and biocompatible poly(lactic acid) membrane enhanced by Ti3C2Tz
- 40 (MXene) nanosheets for Guided bone regeneration. *Mater Lett* **2018**, *229*, 114-117. DOI:
- 41 10.1016/j.matlet.2018.06.063.
- 42 (326) Li, Z. L.; Zhang, H.; Han, J.; Chen, Y.; Lin, H.; Yang, T. Surface Nanopore Engineering of
- 43 2D MXenes for Targeted and Synergistic Multitherapies of Hepatocellular Carcinoma (vol 30,
- 44 1706981, 2018). Adv Mater **2019**, 31 (27). DOI: ARTN 1902282

10.1002/adma.201902282. Murugan, C.; Sharma, V.; Murugan, R. K.; Malaimegu, G.;
 Sundaramurthy, A. Two-dimensional cancer theranostic nanomaterials: Synthesis, surface
 functionalization and applications in photothermal therapy. *J Control Release* 2019, 299, 1-20.
 DOI: 10.1016/j.jconrel.2019.02.015. Lin, H.; Gao, S. S.; Dai, C.; Chen, Y.; Shi, J. L. A Two Dimensional Biodegradable Niobium Carbide (MXene) for Photothermal Tumor Eradication in
 NIR-I and NIR-II Biowindows (vol 139, pg 16235, 2017). *J Am Chem Soc* 2020, *142* (23), 10567 10567. DOI: 10.1021/jacs.0c04999.

8 (327) Xing, C. Y.; Chen, S. Y.; Liang, X.; Liu, Q.; Qu, M. M.; Zou, Q. S.; Li, J. H.; Tan, H.; Liu,
9 L. P.; Fan, D. Y.; et al. Two-Dimensional MXene (Ti3C2)-Integrated Cellulose Hydrogels:
10 Toward Smart Three-Dimensional Network Nanoplatforms Exhibiting Light-Induced Swelling
11 and Bimodal Photothermal/Chemotherapy Anticancer Activity. *Acs Appl Mater Inter* 2018, *10*12 (33), 27631-27643. DOI: 10.1021/acsami.8b08314.

(328) Dai, C.; Chen, Y.; Jing, X. X.; Xiang, L. H.; Yang, D. Y.; Lin, H.; Liu, Z.; Han, X. X.; Wu,
R. Two-Dimensional Tantalum Carbide (MXenes) Composite Nanosheets for Multiple ImagingGuided Photothermal Tumor Ablation. *Acs Nano* 2017, *11* (12), 12696-12712. DOI:
10.1021/acsnano.7b07241.

(329) Liu, A. P.; Liu, Y.; Liu, G. J.; Zhang, A. T.; Cheng, Y. J.; Li, Y.; Zhang, L.; Wang, L. S.;
Zhou, H.; Liu, J. Q.; et al. Engineering of surface modified Ti3C2Tx MXene based dually
controlled drug release system for synergistic multitherapies of cancer. *Chem Eng J* 2022, *448*.
DOI: ARTN 137691

- 21 10.1016/j.cej.2022.137691.
- (330) Yao, B.; Zhang, J.; Fan, Z. Q.; Ding, Y. D.; Zhou, B.; Yang, R. L.; Zhao, J. F.; Zhang, K. 22 23 Rational Engineering of the DNA Walker Amplification Strategy by Using a Au@Ti3C2@PEI-24 Ru(dcbpy)(3)(2+) Nanocomposite Biosensor for Detection of the SARS-CoV-2 RdRp Gene. Acs 25 Appl Mater Inter 2021, 13 (17), 19816-19824. DOI: 10.1021/acsami.1c04453. Lei, Y. J.; Zhao, E. N.; Zhang, Y. Z.; Jiang, Q.; He, J. H.; Baeumner, A.; Wolfbeis, O. S.; Wang, Z. L.; Salama, K. N.; 26 27 Aishareef, H. N. A MXene-Based Wearable Biosensor System for High-Performance In Vitro 28 Perspiration Analysis. Small 2019, 15 (19). DOI: ARTN 1901190 29 10.1002/smll.201901190.
- (331) Lin, B.; Yuen, A. C. Y.; Oliver, S.; Liu, J. J.; Yu, B.; Yang, W.; Wu, S. Y.; Yeoh, G. H.;
 Wang, C. H. Dual functionalisation of polyurethane foam for unprecedented flame retardancy and
 antibacterial properties using layer-by-layer assembly of MXene chitosan with antibacterial metal
 particles. *Compos Part B-Eng* 2022, *244*. DOI: ARTN 110147
- 34 10.1016/j.compositesb.2022.110147.
- 35 (332) Liu, L.; Zhu, M. H.; Ma, Z. W.; Xu, X. D.; Seraji, S. M.; Yu, B.; Sun, Z. Q.; Wang, H.;
- 36 Song, P. G. A reactive copper-organophosphate-MXene heterostructure enabled antibacterial, self-
- 37 extinguishing and mechanically robust polymer nanocomposites. *Chem Eng J* **2022**, *430*. DOI:
- 38 ARTN 132712
- 39 10.1016/j.cej.2021.132712.
- 40 (333) Rasool, K.; Mahmoud, K. A.; Johnson, D. J.; Helal, M.; Berdiyorov, G. R.; Gogotsi, Y.
- 41 Efficient Antibacterial Membrane based on Two-Dimensional Ti3C2Tx (MXene) Nanosheets. Sci
- 42 *Rep-Uk* **2017**, 7. DOI: ARTN 1598
- 43 10.1038/s41598-017-01714-3.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 februari 2025. Downloaded on 9/03/2025 22:11:54.

- 1 (334) Yang, H. G.; Zheng, Q.; Zhang, P.; Nie, G. C.; Ali, T.; Raza, S. Fabrication of MXene
- (Ti2C3Tx) based conducting polymer materials and their applications as anticancer and metal ions
 removal from wastewater. *Surf Interfaces* 2023, *36*. DOI: ARTN 102493
- 4 10.1016/j.surfin.2022.102493.
- 5 (335) Rabiee, N.; Bagherzadeh, M.; Jouyandeh, M.; Zarrintaj, P.; Saeb, M. R.; Mozafari, M.;
- Shokouhimehr, M.; Varma, R. S. Natural Polymers Decorated MOF-MXene Nanocarriers for Codelivery of Doxorubicin/pCRISPR. *Acs Appl Bio Mater* 2021, *4* (6), 5106-5121. DOI:
 10.1021/acsabm.1c00332.
- 9 (336) Yang, C.; Luo, Y.; Lin, H.; Ge, M.; Shi, J. L.; Zhang, X. L. Niobium Carbide MXene
 10 Augmented Medical Implant Elicits Bacterial Infection Elimination and Tissue Regeneration. *Acs*11 *Nano* 2021, *15* (1), 1086-1099. DOI: 10.1021/acsnano.0c08045.
- (337) Tao, N.; Liu, Y. D.; Wu, Y. J.; Li, X. L.; Li, J.; Sun, X. Y.; Chen, S.; Liu, Y. N. Minimally
 Invasive Antitumor Therapy Using Biodegradable Nanocomposite Micellar Hydrogel with
 Functionalities of NIR-II Photothermal Ablation and Vascular Disruption. *Acs Appl Bio Mater*2020, 3 (7), 4531-4542. DOI: 10.1021/acsabm.0c00465.
- (338) Wu, X.; Ding, M. M.; Xu, H.; Yang, W.; Zhang, K. S.; Tian, H. L.; Wang, H. T.; Xie, Z. L.
 Scalable Ti3C2Tx MXene Interlayered Forward Osmosis Membranes for Enhanced Water
 Purification and Organic Solvent Recovery. *Acs Nano* 2020, *14* (7), 9125-9135. DOI:
 10.1021/acsnano.0c04471.
- (339) Ihsanullah, I. MXenes (two-dimensional metal carbides) as emerging nanomaterials for
 water puri fication: Progress, challenges and prospects. *Chem Eng J* 2020, 388. DOI: ARTN
 124340
- 23 10.1016/j.cej.2020.124340.
- 24 (340) Abraham, J.; Vasu, K. S.; Williams, C. D.; Gopinadhan, K.; Su, Y.; Cherian, C. T.; Dix, J.; 25 Prestat, E.; Haigh, S. J.; Grigorieva, I. V.; et al. Tunable sieving of ions using graphene oxide 26 membranes. Nat Nanotechnol 2017, 12 (6), 546-+. DOI: 10.1038/Nnano.2017.21. Thomas, M.; 27 Corry, B.; Hilder, T. A. What Have We Learnt About the Mechanisms of Rapid Water Transport, 28 Ion Rejection and Selectivity in Nanopores from Molecular Simulation? Small 2014, 10 (8), 1453-29 1465. DOI: 10.1002/smll.201302968. Richards, L. A.; Schafer, A. I.; Richards, B. S.; Corry, B. 30 The Importance of Dehydration in Determining Ion Transport in Narrow Pores. Small 2012, 8 (11), 31 1701-1709. DOI: 10.1002/smll.201102056.
- (341) Wang, J.; Zhang, Z. J.; Zhu, J. N.; Tian, M. T.; Zheng, S. C.; Wang, F. D.; Wang, X. D.;
 Wang, L. Ion sieving by a two-dimensional Ti3C2Tx alginate lamellar membrane with stable
 interlayer spacing. *Nat Commun* 2020, *11* (1). DOI: ARTN 3540
- 35 10.1038/s41467-020-17373-4.
- 36 (342) Zeng, Y. X.; Wang, P.; He, B. L.; Liu, S. J.; Ye, Q.; Zhou, F. Fabrication of zwitterionic
- 37 polymer-functionalized MXene nanosheets for anti-bacterial and anti-biofouling applications.
- 38 *Prog Org Coat* **2023**, *183*. DOI: ARTN 107727
- 39 10.1016/j.porgcoat.2023.107727.
- 40 (343) Khosla, A.; Sonu; Awan, H. T. A.; Singh, K.; Gaurav; Walvekar, R.; Zhao, Z. H.; Kaushik,
- 41 A.; Khalid, M.; Chaudhary, V. Emergence of MXene and MXene-Polymer Hybrid Membranes as
- 42 Future- Environmental Remediation Strategies. Adv Sci 2022, 9 (36). DOI:
- 43 10.1002/advs.202203527.

(344) Hou, C.; Huang, C.; Yu, H.; Shi, S. Surface-Engineered Ti3C2T with Tunable Work
Functions for Highly Efficient Polymer Solar Cells. *Small* 2022, *18* (21), 2201046. DOI:
<u>https://doi.org/10.1002/smll.202201046</u>. Wen, J.; Sun, Z.; Qiao, Y.; Zhou, Y.; Liu, Y.; Zhang, Q.;
Liu, Y.; Jiao, S. Ti3C2 MXene-Reduced Graphene Oxide Composite Polymer-Based Printable
Electrolyte for Quasi-Solid-State Dye-Sensitized Solar Cells. *ACS Applied Energy Materials* 2022,

- 6 5 (3), 3329-3338. DOI: 10.1021/acsaem.1c03928.
- 7 (345) Liu, Y.; Xiao, H.; Goddard III, W. A. Schottky-barrier-free contacts with two-dimensional
- semiconductors by surface-engineered MXenes. *Journal of the American Chemical Society* 2016, *138* (49), 15853-15856. Li, G.; Li, N.; Peng, S.; He, B.; Wang, J.; Du, Y.; Zhang, W.; Han, K.;
- Dang, F. Highly efficient Nb2C MXene cathode catalyst with uniform O-terminated surface for lithium–oxygen batteries. *Advanced Energy Materials* **2021**, *11* (1), 2002721.
- (346) Deng, B.; Lian, H.; Xue, B.; Song, R.; Chen, S.; Wang, Z.; Xu, T.; Dong, H.; Wang, S.
 Niobium-Carbide MXene Modified Hybrid Hole Transport Layer Enabling High-Performance
- 14 Organic Solar Cells Over 19%. *Small* **2023**, *19* (23), 2207505.
- (347) Yang, T.; Wang, M.; Duan, C.; Hu, X.; Huang, L.; Peng, J.; Huang, F.; Gong, X. Inverted
 polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte. *Energy & Environmental Science* 2012, 5 (8), 8208-8214.
- 18 (348) Huang, C.; Shi, S.; Yu, H. Work function adjustment of Nb2CT x nanoflakes as hole and
- 19 electron transport layers in organic solar cells by controlling surface functional groups. ACS
- 20 Energy Letters 2021, 6 (10), 3464-3472.

21

Data Availability Statement:

No new data was created in this review. All data referenced are from previously published sources and are available in the respective cited articles.