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Durable, Rate Capable and High Energy Hybrid Supercapacitor From 

PANI/ZnO/SnO2 Nanocomposite with Zero-Waste Electrolyte Approach

Aranganathan Viswanathan*, and Vanchiappan Aravindan*

Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati-

517619, Andhra Pradesh, India.

ABSTRACT 

A hybrid supercapacitor material, polyaniline/ZnO/SnO2 of weight percentages of 58.34%: 

8.33%:33.33% (PZnSn), respectively, was synthesized in a facile in-situ single-step method. 

Remarkably, the constituent ZnO was synthesized at 90 °C in an in-situ single-step method along 

with two other constituents in 2 hrs. The astonishment is due to the point that the synthesis of ZnO 

generally involves calcination at high temperatures for a longer duration.  The energy storage 

performance was evaluated with two aqueous electrolytes, viz., 1 M H2SO4 (SA) and the liquid 

by-product that was obtained after the synthesis of PANI (SLP). The SLP provided 57.25% higher 

energy storage performance in relation to that provided by the SA. The PZnSn exhibited a durable 

and rate-capable energy storage property by exhibiting robustness up to 16,500 cycles at 0.4 V s‒1 

and 39 A g‒1, respectively, in the presence (ITP) of SA and up to 15,000 cycles at 0.4 V s‒1 and 42 

A g‒1 ITP of SLP, respectively,  in a real-time symmetric two electrode systems. The PZnSn 

displayed a remarkable trait of enhancement of energy storage with an increase in the number of 

charge and discharge cycles ITP of both the electrolytes. However, the enhancement provided by 
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SLP is higher than that of SA.  The maximum performance achieved from PZnSn  ITP of SLP is 

a Q of 347.2 C g‒1, an E of 57.87 W h kg‒1 (comparable with Ni-Cd batteries) and a P of 1.2 kW 

kg‒1 at 1 A g‒1. 

KEYWORDS: Hybrid supercapacitor, Stannic oxide, Zinc oxide, green electrolyte, by-product of 

PANI. 

Email IDs: ranguchemist@gmail.com (AV), and aravind.van@gmail.com (VA)

INTRODUCTION 

Hybrid supercapacitors are devices that contain electrode material that exhibits energy storage 

characteristics of both capacitive and battery types. Such materials are believed to impart high 

energy characteristics closer to batteries in terms of their specific energy (E), with the high specific 

power (P) of capacitors and supercapacitors. The combination of characters of both batteries and 

capacitors could be made by integrating both capacitive or pseudocapacitive type electrode 

materials with battery-type materials. The capacitive-type material involves surface capacitive 

processes (electrical double-layer formation and fast redox reactions) in energy storage, and the 

battery-type material involves bulk processes like intercalation. The combination of both surface 

and bulk energy storage processes is essential for achieving the high energy character in a charge 

storage device.

The well-known pseudocapacitive material and a conducting polymer is polyaniline (PANI)1,2, 

which is involved in the pseudocapacitive process by its redox transformation between the 

leucoemaraldine, emaraldine and pernigraniline forms3. In addition, it is expensive, facile to 
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synthesize, environmentally friendly, non-toxic, and has a theoretical specific capacity (Q) of ~294 

mAh g−14,5. The SnO2 is a known battery-type material6–8 (theoretical Q of ~790 mAh g−19), easy 

to synthesize, and involves the bulk process of energy storage predominantly. The ZnO is used in 

both batteries10–13 and supercapacitors14–19 for its versatile nature of both pseudocapacitive and 

battery-type energy storage behavior. The synthesis of ZnO in the wet method at low temperatures 

is not common, but it can be synthesized in the chemical reduction method not as an individual 

entity but with other metal derivatives when the purpose of the synthesis is to produce a double 

metal oxide, as reported in our earlier study 5. The electrolytes used in the supercapacitors are as 

imperative as other elements, as they play an essential role in determining the potential window 

and the quantity of energy stored in energy storage devices. The use of liquid by-products obtained 

after the synthesis of PANI was studied to be an effective method to increase the energy storage 

and the rate capability of the supercapacitors20,21. The use of this liquid by-product of the synthesis 

of PANI has exhibited 40 % 21 and 22 % 20 enhancement in energy storage in PANI-containing 

supercapacitors in relation to the conventional 1 M H2SO4. Therfore, it is intended to further 

explore the capability of this liquid by-product of the synthesis of PANI in this study.

Herein, an attempt has been made to produce a hybrid supercapacitor electrode material by 

integrating PANI, ZnO and SnO2 (PZnSn) by facile in-situ single-step method ITP of two 

electrolytes, which are 1 M H2SO4 and the liquid by-product of the synthesis of PANI. As this 

combination can undergo EDL formation, pseudocapactive reactions with a higher number of 

electrons are involved, and the bulk process of H+ intercalation is performed. It is anticipated that 

PZnSn will exhibit high-energy hybrid supercapacitor behavior. The synthetic method structural 

and energy storage characterizations of PZnSn are provided in the following sections.           

EXPERIMENTAL SECTION 
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Synthesis of polyaniline, zinc oxide and stannic oxide (PANI/ZnO/SnO2) (PZnSn) nanocomposite

The synthesis of the PZnSn composite was conducted based on the synthetic procedure mentioned 

in in the granted Indian patent 22. In the synthesis of PZnSn, the 350 µL of aniline was mixed with 

100 mL distilled water (DW) and stirred for 15 minutes, then 1.4 g of ammonium persulfate 

dissolved in a minimum amount of DW was added, following which 10 mL of 2 M CH3SO3H was 

also added as dopant and the reaction content was stirred at room temperature for 5 hrs. After 5 

hrs of oxidative polymerization, the pH of the reaction mixture was raised to 14 using 6 M NaOH 

and then the reduction reaction of the content was carried out using an appropriate amount of 

hydrazine hydrate for 2 hrs at 90°C. After 2 hrs of reduction reaction, 13.27 mL of SnCl4.5 H2O 

and 5 mL of ZnSO4.7 H2O were mixed and stirred at 45°C for 30 minutes. Then, the reaction 

mixture was cooled, and the targeted composite of PZnSn was extracted from the reaction mixture 

using the method mentioned in 20. Thus, the PANI/ZnO/SnO2 composite was obtained, and the 

weight composition of the composite was PANI 58.34%:ZnO 8.33%:SnO2 33.33%. The synthesis 

of PANI and its by-products are provided in the supporting information (section S1). The 

characterization (S2) and fabrication (S3) details are provided in the supporting information. 

Uniqueness of the synthetic method

The synthesis of PANI/ZnO/SnO2 is unique as it provides the composite containing ZnO at a lower 

temperature of 80 °C in  2 h without using any sophisticated setups and apparatuses because 

generally the synthesis of ZnO involves the synthesis of Zn(OH)2  by treating the solutions of zinc 

salt with bases like NaOH or KOH, and then calcinating the  Zn(OH)2 at 500 °C for getting the 

ZnO23.   ZnO is also synthesized using the hydrothermal method by heating the Zn(OH)2 at 150 - 

200 °C in an autoclave 24–26. The sol-gel method involves heating the sol-gel at 150 °C for 5 h27; 

the microemulsion method involves heating the emulsion at 140 °C for 5 h with reflux condenser28. 
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The solvothermal method involves heating at 120 °C for 5 h in a teflon-lined stainless steel 

autoclave29; the electrochemical deposition involves a three-electrode cell setup with the 

electrolyte of a mixture of Zn(NO3)2, KNO3 and KCl at 80 °C30, one of the wet chemical methods 

involve the heating of a mixture of aqueous solution Zn(NO3)2 and ammonia at 120 °C with reflux 

condenser for 12 h31, the flux method involves the reagents of ZnO at temperatures of range 450 

to 900 °C for 1 to 120 h 32, the electrospinning method involves the mixture of PVA and zinc 

acetate, a high voltage of 20 kV, and high-temperature calcination of 500 °C for 4-10 h33, the 

microwave method involves the exposure of reagents of ZnO to microwave produced at 510 to 

680 W for 10 to 15 min34 and the polyol method involves the heating the reagents of ZnO at 180 

°C for 30 min35.  Other than these solution-based methods, vapor phase approaches are also 

available for synthesizing ZnO and which are molecular beam epitaxy (MBE), thermal 

evaporation, physical vapor deposition, plasma enhanced chemical vapor deposition (PECVD), 

chemical vapor deposition, metal-organic chemical vapor deposition (MOCVD), and pulsed laser 

deposition36. These methods are also not free from sophisticated setups and apparatuses. In 

addition, the synthesis of composites of ZnO with PANI generally involves two-step synthesis, 

that is, synthesizing the PANI or PANI-containing composite and then adding pre-synthesized 

ZnO or adding the ZnO to PANI during its oxidative polymerization37–42 but here in this synthesis 

method the composite of ZnO made in the single step. Therefore, the presented method of synthesis 

of ZnO composite is facile, unique, scalable and effective.  

The usage of the liquid by-product that is attained after the synthesis of PANI as an 

electrolyte for supercapacitors is unique and beneficial, as proved in our early studies of 5,20,21. The 

usage of the liquid by-product of PANI and a liquid by-product of electrode composite after 

acidification has enhanced energy storage and aided the supercapacitors in moving to the realms 
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of batteries in terms of their specific energies. This approach of waste to wealth approach not only 

enhances the energy storage to significant extent but also reduces the waste discharged into the 

environment and reduces the cost involved in the domain of energy storage and conversion. 

RESULTS AND DISCUSSION 

Structural characterizations 

The XRD pattern of PZnSn (Figure. 1a) contains peaks corresponding to (002), (101), (200), (112) 

and (201) planes of ZnO (JCPDS No.: 01-1136) at 34.35°, 36.20°, 66.38°, 67.92° and 68.95°, 

respectively (Figure. S1). The peak corresponding to the plane of (211) of SnO2 is seen at 51.74 

(JCPDS No.: 41-1445). 
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Figure 1. a) XRD pattern, b) FT-IR, and c) Raman spectrum of PZnSn. 

The peak at 26.95° is brought by both (110) plane of SnO2 and (003) plane of PANI (JCPDS 

No.: 53-1717) (Figure. S2). The peak at 31.69° corresponds to both (100) plane of ZnO and (020) 

plane of PANI. The peak at 47.50° corresponds to both (102) plane of ZnO and (313) plane of 

PANI (Figure. S3). Thus, the characteristic peaks of constituents confirm the successful synthesis 

of the PZnSn composite. The FT-IR peak positions and the corresponding species are presented in 

supporting information (section S3). The Raman peaks (Figure. 1c) at 415(E1)43 and 778 cm‒1 

(B2g)44  are corresponding to ZnO and SnO2, respectively. The peaks at 1163, 1217, and 1491 cm‒1 

are due to C‒H of benzenoid rings, C‒N stretching of poloranic segments44 and C=N stretching 

vibrations of quinoid rings45 of PANI, respectively. The peaks at 1332, 1412, 1556 and 1586 cm‒1 

are also due to different vibrations of PANI44.

The FE-SEM images (Figure.2) depict the morphology of  PZnSn, in which the PANI is seen to 

be in the fiber morphology and the nanoparticles of ZnO and SnO2 are dispersed well across the 

bulk of the PZnSn. The PZnSn also has pores across its morphology to facilitate the effective 

electrolytic permeation across the PZnSn nanocomposite. The diameter of PANI nanofibers is 38 

to 54 nm, and that of pores is 59 to 88 nm (Figure. S4). The elemental maps (Figure. S5) of PZnSn 

evidently depict the effective dispersion of the elements and, in turn, the constituents across the 

PZnSn composite. 
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Figure 2. (a-d) FE-SEM images of PZnSn at different magnifications.

a) b)

c) d)
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Figure 3. XPS a) survey spectrum, core level spectra of  b) C1s, c) N1s, d) O1s, e) Zn2p and f) 

Sn3d of PZnSn.  

The XPS survey spectrum of PZnSn (Figure. 3a) composite contains the characteristic peaks of 

elements of PZnSn. The chemical nature of the elements was deduced by the deconvolution 
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process of the core level spectrum of each elements. The obtained peaks in the deconvolution 

process and their respective chemical nature of the elements confirm that the chemical forms of 

elements present in PZnSn are PANI, ZnO and SnO2 (Table 1).

Table 1 XPS peak positions and their respective chemical species 

Element Binding energy (eV) and species

C 1s 284.60 eV (C=C), 285.7 eV (C‒N) and 286.53 eV (C‒S)44 (Figure. 3a)

N 1s 398.63 eV (=N‒), 399.58 eV (‒NH‒) and 400.32 eV (+NH)3 (Figure. 3b)

O 1s 529.79 eV (Zn‒O)46,47, 531.39 eV (Sn4+‒O)44 and 532.98 eV (surface absorbed 
H2O)44 (Figure. 3c)

Zn 2p 1022.53 eV (2p3/2)48 and 1045.5 eV (2p1/2)  (doublet energy difference – 22.97 
eV) 49 (Figure. 3d)

Sn 3d 487.49 eV (3d5/2)50 and 495.98 eV (3d3/2)51 (doublet energy difference – 8.49 eV)52 
(Figure. 3e)

Electrochemical characterizations

The energy storage performance of the PZnSn composite was assessed in a 2-electrode (2-EL) 

system using 1 M H2SO4 (SA) and liquid by-product obtained after the synthesis of PANI (SLP) 

as electrolytes. The energy storage study of the PZnSn composite revealed that the PZnSn exhibits 

promising energy storage characteristics and exhibits a remarkable trait of increased energy 

storage with an increase in number of cycles (“increase in number of cycles” is abbreviated as 

INC) during the cyclic stability study at 0.4 V s‒1  ITP of both the electrolytes. This unique trait is 

not new, as similar observations have been made in the past with our other materials reported in 

3,5,20,53–56. The energy storage enhancement obtained from ITP of SLP is higher than that ITP of 

SA. In addition, ITP of SLP's maximum performance of PZnSn was obtained relatively quickly 
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11

compared to that ITP of SA. The durability studies were conducted at 0.4 V s‒1
, up to 16,500 and 

15,000 cycles of ITP of SA and SLP, respectively.  The maximum performance of PZnSn was 

brought about after 16,500 and 10,000 cycles of ITP of SA and SLP, respectively. The higher 

energy storage obtained ITP of SLP suggests the efficient reuse of liquid by-product of PANI as 

an electrolyte, remarking the point of “waste-to-wealth”.  

Table 2 The energy storage parameters of PZnSn ITP of SA after DNC at 1 A g‒1.

PZnSn Q (C g‒1) E (Wh kg‒1) P (kW kg‒1) ƞ (%)

Before cyclic study 162.1 27.01 1.2 91.63

After 4000 cycles 169.7 28.28 1.2 84.02

After 10,000 cycles 243.8 40.64 1.2 70.24

After 16,500 cycles 312.0 52.00 1.2 47.81

Table 3 The energy storage parameters of PZnSn ITP of SLP after DNC at 1 A g‒1.

PZnSn Q (C g‒1) E (Wh kg‒1) P (kW kg‒1) ƞ (%)

Before cyclic study 254.9 42.49 1.2 80.08

After 5000 cycles 308.6 51.43 1.2 77.69

After 10,000 cycles 347.2 57.87 1.2 59.85

After 15,000 cycles 288.3 48.06 1.2 68.69

The unique characteristics of the increase in energy storage (Eqn. S1) with INC were 

characterized at different points of the cyclic stability test, which were before the cyclic study and 

after 4000, 10,000, and 16,500 cycles for SA and SLP. After “different number of cycles” these 

points are abbreviated as DNC and used in the following paragraphs.   The energy storage 
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12

parameters like Q (Eqn. S2), E (Eqn. S3), specific power (P) (Eqn. S4), and columbic efficiency 

(ƞ) (Eqn. S5) of PZnSn obtained after DNC ITP of SA and SLP are shown in Table 2 and Table 3, 

respectively.   
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Figure 4. a) CV plots at 5 mV s‒1, b) charge and discharge (CD) plots at 1 A g‒1 of PZnSn ITP of 

SA and SLP, c) & d) capacitive and intercalation current offered by PZnSn ITP of SA at 5 mV s‒1, 

e) and f) capacitive and intercalation current offered by PZnSn ITP of SLP at 5 mV s‒1.

As it is in Table 2, with INC, the Q is increasing, but the ƞ is decreasing ITP of SA. At the end 

of 16,500 cycles, the obtained ƞ is 47.81%, which is lesser for supercapacitors and therefore, the 

cyclic stability was paused at this point in the case of SA. In the case of SLP, the energy storage 

performance begins to deteriorate after 10,000 cycles; therefore, it was stopped after 15,000 cycles. 

The entire findings and corresponding discussion of PZnSn are as follows.

The higher faradaic area and longer discharge time (td) of PZnSn obtained in ITP of SLP are 

seen in Figure. 4a and Figure.4b, respectively. These higher faradaic areas and td indicate the 

higher energy storage ITP of SLP. The peaks and plateaus of CV plots and charge-discharge (CD) 

plots of PZnSn indicate its faradaic process of energy storage. As it is seen in the Figure. 4a ITP 

SLP the PZnSn has exhibited a new faradaic peak, which is attributed to the production of another 

intercalation process (Fig. 4f) at the potential range of 0.35 to 0.55 V, and which is the merit of 

usage of SLP and in turn the increased energy brought by it. The Q of PZnSn at 1 A g‒1 ITP of SA 

and SLP are 162 and 255 C g‒1, respectively. This Q of PZnSn obtained ITP of SLP, which is 

57.25% higher than that obtained ITP of SA. This higher Q obtained ITP of SLP is due to the 

higher occurrence of controlled intercalation reactions in its presence, in relation to that ITP of 

SA. The percentage contribution surface capacitive processes (EDL + redox reaction) and 

diffusion-controlled intercalation processes to the energy storage of PZnSn ITP of SA (Figure. 4c 

and 4d) and SLP (Figure. 4e and 4f) were obtained by the deconvolution of CV curves (Eqn. S6 

and Eqn. S7). The percentage of energy stored by capacitive processes and intercalation reactions 

ITP of SA is 36.36 and 63.64%, respectively, and ITP of SLP are 20.79 and 79.21%, respectively. 

Page 13 of 42 Energy Advances

E
ne

rg
y

A
dv

an
ce

s
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
m

aa
rt

 2
02

5.
 D

ow
nl

oa
de

d 
on

 1
0/

03
/2

02
5 

14
:3

9:
22

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4YA00617H

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ya00617h


14

This higher percentage of intercalation reactions occurring in ITP of SLP is bringing higher Q in 

PZnSn in its presence. 

The sustainability of PZnSn to the higher potential and current loadings is studied by subjecting 

it to different potential scans and current densities. The PZnSn ITP of both SA and SLP sustains 

the high potential scan of 0.2 V s‒1 (Figure. S6a and Figure. 5a). In the case of CD study, the PZnSn 

sustains up to a current density of 14 and 32 A g‒1 ITP of SA and SLP, respectively (Figure. S6b, 

Figure.5b and Figure. 5c). 
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Figure 5. a) CV curves at different scan rates and b) CD curves at different current densities of 

PZnSn ITP of SLP, c) Plots of specific capacity vs. current density, d) plots of specific energy vs 

specific power, e) plots coulombic efficiency vs current density, and f) % retention of Q vs. number 

of cycles.  
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The high current sustainability of PZnSn ITP of SLP indicates the better reversibility of energy 

storage reactions and the least structural degradation that are taking place at higher current loadings 

in its presence. The Q obtained at 1 and 14 A g‒1 ITP of SA  are 162 and 28 C g‒1 (17.28% 

retention), respectively (Figure. 5c).

The Q obtained at 1, 14 and 32 A g‒1 ITP of SLP are 255, 112 (43.93% retention) and 31 C g‒1 

(12.05% retention), respectively (Figure. 5c). The high rate capability of PZnSn ITP of SLP 

indicates the better electrolytic diffusion and a similar amount of energy storage reactions even at 

higher current loadings as they are at lower current loadings. The plots of P vs. E (Figure. 5d) of 

PZnSn are also following a similar trend as that of Figure. 5c. The E and P that are obtained at 1 

A g‒1 are 27.01 Wh kg‒1 and 1.2 kW kg‒1; and 42.49 Wh kg‒1 and 1.2 Wh kg‒1 ITP of SA and SLP, 

respectively.  The higher E obtained ITP of SLP is in the same order as those of Pb-lead acid and 

Ni-Cd batteries57 (Figure. 5d). The presence of SA provides the higher ƞ at all current densities in 

PZnSn in comparison with that obtained ITP of SLP. The low ƞ of PZnSn ITP of SLP is due to the 

higher occurrence of lower kinetics intercalation reactions in compassion with that ITP of SA. In 

both the electrolytic cases, the ƞ increases with an increase in current densities and reaches 100 % 

at higher current densities (Figure. 5e). The cyclic stability of PZnSn was evaluated ITP of both 

the electrolytes at 0.4 V s‒1 (Figure. 5f).

The change of Q (Eqn. S1) as a function of INC exhibits a trend of peaks and valleys in the cases 

of both the electrolytes, and the extent of peaks and valleys is lower in the case of SLP, which 

indicates more compatibility than the SLP has with PZnSn. This stability ITP of SLP also signifies 

the robustness and reversibility of energy storage reactions of PZnSn ITP of SLP. However, an 

overall increase in Q is observed (Figure. 5f). During the cyclic stability test, the consecutive 

increase and decrease of Q is attributed to the simultaneous structural breakdown and self-healing 

Page 16 of 42Energy Advances

E
ne

rg
y

A
dv

an
ce

s
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
m

aa
rt

 2
02

5.
 D

ow
nl

oa
de

d 
on

 1
0/

03
/2

02
5 

14
:3

9:
22

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4YA00617H

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ya00617h


17

of emaraldine salt form of PANI 58. The reason for an increase in Q with INC is that the continuous 

insertion and extraction of ions of SA and SLP increase the intercalation processes of the PZnSn. 

This increase in intercalation processes is the main reason for the increase in Q with INC. This 

intercalation process occurs until the electrode material is structurally damaged. This continuous 

diffusion of electrolytes unite the discrete parts of the PZnSn, and thus, the surface of electrode 

material that takes part in energy storage increases. Once the material damage occurs, the extent 

of energy storage reactions decreases, leading a reduction in the amount of energy stored. The peak 

and valley trend observed in the Q with INC (Fig. 5f) is due to the simultaneous structural 

breakdown and self-healing of emaraldine salt form of PANI58. Once the self-healing property of 

PANI is ceased, the continuous decrease in Q is observed due to the complete conversion of all 

emaraldine (half reduced and half oxidized form) to pernigraniline (completely oxidized form)20. 

The plots of b-value vs. potential of PZnSn obtained ITP of SA (Figure. 6a) and SLP (Figure. 6b), 

obtained after DNC, substantiate this rationalism.  
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Figure 6.  The plots of b-values vs. potential of PZnSn ITP of a) SA & b) SLP after DNC. The 

deconvolution of the CV curve of PZnSn ITP SA was obtained after 16,500 cycles providing c) 

capacitive current and d) intercalation current. The deconvolution of the CV curve of PZnSn ITP 

SLP was obtained after 10,000 cycles providing e) capacitive current and f) intercalation current.
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The comparison of plots of b-values vs. potential (Figure.6a and Figure.6b) and CV curves that 

are attained after DNC ITP of SA (Figure. S7) and SLP (Figure. S8) evidently depict that the 

intense peaks that are present in CV profiles of PZnSn ITP of both the electrolytes are due to the 

intercalation processes, as they possess b-values (Eqn. S8) closer to 0.5. In addition, with INC, the 

current produced by these intercalation peaks increases, indicating the enhanced occurrence of 

intercalation processes. Since the intercalation process is bulk, it stores higher energy than redox 

reactions and the EDL formation process, which are surface phenomena. With INC, the quasi-

reversibility of the faradaic reactions increases, and this quasi-reversibility is attributed to the 

structural breakdown of PZnSn, which causes internal resistance. Because of this quasi-

reversibility and internal resistance, the ƞ decreases with INC in the cases of both the electrolytes. 

This above-mentioned internal resistance is seen in the form of increased IR drop with INC, which 

is to be discussed in successive sections.     

The deconvolution of CV curves that are obtained after 16,500 cycles and 10,000 cycles ITP of 

SA (Figure. 6c and 6d) and SLP (Figure. 6e and 5f), respectively, provide the percentage of energy 

stored by capacitive processes (Eqn. S7) (EDL + redox reaction) and intercalation reactions as 

27.17 and 72.83%; and 21 and 79%, respectively. In the case of SA, the percentages of 

intercalation reaction are increased with INC as indicated by the quantity of intercalation 

contribution after 16,500 cycles, whereas, in the case of SLP, the percentage of capacitive and 

intercalation contributions are intact in quantity; however, their magnitudes are increase as 

indicated by the migration of b-values closer to the value of 0.5 (Figure.6b) and increase of 

intensities of CV peaks with INC. This combined occurrence of all three energy storage processes, 

EDL formation, redox reaction and intercalation reactions, relatively to a higher extent, ITP of 

SLP is fetching the higher energy storage in its presence in PZnSn, in relation to that ITP of SA. 
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As seen in Figure. 6a and 6b, with INC, the potential range involved in the intercalation reaction 

increases; thus, the potential regions that are involved in the intercalation reaction are 0-0.4 V 

(Figure. 6a) and 0 - 0.8 V (Figure. 6b) in the cases of SA and SLP, respectively.  This long-order 

intercalation reaction ITP of SLP fetches higher energy storage in PZnSn in its presence. 

Figure 7. CV plots of PZnSn after DNC at 5 mV s‒1 ITP of a) SA & b) SLP. The CD plots of 

PZnSn after DNC at 1 A g‒1 ITP of c) SA & d) SLP.
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td (Figure. S9a and Figure. S9b) of PZnSn obtained after 16,500 and 10,000 cycles indicate the 

maximum energy stored in it after 16,500 and 10,000 cycles ITP of SA and SLP, respectively.  

Figure 8. a) CV plots at different scan rates and b) CD plots at different current densities of PZnSn 

after 16,500 cycles ITP of SA, c) CV plots at different scan rates, and d) CD plots at different 

current densities of PZnSn after 10,000 cycles ITP of SLP.
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cycles (Figure. 8a and Figure. 8b) and 10,000 cycles (Figure.8c and Figure. 8d) ITP of SA and 

SLP, respectively, is evident. The PZnSn consistently exhibits the faradaic nature even up to 0.2 

V s‒1 and 39 A g‒1 in the case of SA and up to 0.2 V s‒1 and 32 A g‒1 in the case of SLP. It is to be 

remarked that after 5000 cycles, the PZnSn is consistent in exhibiting a faradaic nature up to 42 A 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3

C
ur

re
nt

 (m
A

)

Potential (V)

5 mV s1 10 mV s1

30 mV s1 50 mV s1

80 mV s1 0.1 V s1

0.2 V s1

After 16500 cycles SA
a)

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

1.2
After 16500 cycles

Po
te

nt
ia

l (
V)

Time (s)

1 A g1

2 A g1

3 A g1

4 A g1

5 A g1

10 A g1

15 A g1

20 A g1

25 A g1

30 A g1

35 A g1

39 A g1

SA

b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

Cu
rr

en
t (

A)

Potential (V)

5 mV s1 10 mV s1

30 mV s1 50 mV s1

80 mV s1 0.1 V s1

0.2 V s1

SLP

After 10000 cyclesc)
C

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Po

te
nt

ia
l (

V)

Time (s)

1 A g1

2 A g1

3 A g1

4 A g1

5 A g1

10 A g1

15 A g1

20 A g1

25 A g1

30 A g1

32 A g1

SLP After 10000 cycles

d)

Page 21 of 42 Energy Advances

E
ne

rg
y

A
dv

an
ce

s
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
m

aa
rt

 2
02

5.
 D

ow
nl

oa
de

d 
on

 1
0/

03
/2

02
5 

14
:3

9:
22

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4YA00617H

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ya00617h


22

g‒1, which is the highest current tolerance obtained ITP of SLP. This decrease in current tolerance 

exhibited by PZnSn ITP of SLP after 10,000 cycles indicates the increase of quasi reversibility of 

energy storage reactions and increase of diffusional resistance due to the slight structural 

deformation in PZnSn with INC. The IR drop observed after 0, 4000, 10,000, and 16,500 cycles 

ITP of SA are 0.2735, 0.3477, 0.3456 and 0.2741 V, respectively. Similarly, the IR drop observed 

after fresh cell, 5000, 10,000, and 15,000 cycles ITP of SLP are 0.17, 0.22, 0.21 and 0.22 V, 

respectively. These increasing trends of IR drops in both cases are not so significant; therefore, the 

tradeoff between the slight structural deformation and the continuous enhancement of diffusion of 

electrolytes causing the increase in intercalation reactions and bringing higher energy storage with 

INC is implied. The relatively low IR drop exhibited by PZnSn ITP of SLP indicates the enhanced 

conductivity and better diffusion of ions of SLP into PZnSn in comparison with that of SA. 

Figure. 9a depicts the increase of Q, sustainability to applied current and rate capability of PZnSn 

with INC ITP of SA. The Q obtained ITP SA at 1 A g‒1 before cyclic study; after 4000, 10,000 and 

16,500 cycles are 162, 169, 243, and 312 C g‒1, respectively. The maximum current tolerance 

exhibited by PZnSn ITP SA before the cyclic stability study after 4000, 10,000 and 16,500 cycles 

are 14, 25, 28 and 39 A g‒1, respectively. The retention of initial Q exhibited by the PZnSn  ITP 

SA at 14 A g‒1  are 17.28, 44.88, 43.86 and 45.23%, before the cyclic stability study, after 4000, 

10,000 and 16,500 cycles. The retention of initial Q exhibited by the PZnSn ITP of SA at the 

maximum current densities of 25, 28, and 39 A g‒1 are 28.88, 23.43 and 12% after 4000, 10,000 

and 16,500 cycles, respectively. The increase in Q and the rate capability is attributed to the higher 

magnitude of porosities present on the surface of PZnSn, causing better electrolyte permeation into 

the PZnSn with INC and enabling promising diffusion of electrolyte into PZnSn even at higher 

current densities as it occurs at lower current densities. The plots of E vs P (Figure. 8b) possess a 
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similar trend as that of Figure. 8a. The maximum E obtained from PZnSn ITP of SA at 1 A g‒1 and 

at a P of 1.2 kW kg‒1 are 27.01, 28.28, 40.64 and 52 Wh kg‒1 before cyclic study, after 4000, 

10,000 and 16,500 cycles, respectively.

Figure 9. Plots of a) specific capacity vs current density, b) specific energy vs. specific power, and 

c) columbic efficiency vs. current density of PZnSn obtained after DNC ITP of SA.

 The ƞ (Figure. 8c) obtained from PZnSn ITP of SA at 1 A g‒1 are 93.63, 84.02, 70.24 and 

47.81%, before the cyclic study, after 4000, 10,000 and 16,500 cycles, respectively. As the current 

density increases, the ƞ also increases and reaches the maximum of 100% at higher current 

densities during all points of cycling. The decrease of ƞ with INC is ascribed to the increase in the 
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extent of intercalation processes, whose kinetics is lower than that of surface capacitive processes 

and the increase of quasi-reversibility of the energy storage processes. After 16,500 cycles, the 

obtained ƞ is minimum, which indicates the occurrence of a greater extent of intercalation, higher 

energy storage caused by it and higher quasi-reversibility. This quasi-reversibility is seen in the 

form of b-values with a magnitude of more than one at lower potentials (Figure. 6a), and that 

region corresponds to the intercalation processes (Figure. 6d). 

Figure 10. Plots of a) specific capacity vs. current density, b) specific energy vs. specific power, 

and c) columbic efficiency vs. current density of PZnSn obtained after DNC ITP of SLP.
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Figure. 10a depicts the increase of Q, sustainability to applied current and rate capability of 

PZnSn with INC ITP of SLP. The Q obtained ITP SLP at 1 A g‒1 before the cyclic study; after 

5000, 10,000 and 15,000 cycles are 255, 309, 347, and 288 C g‒1, respectively.   The maximum 

current tolerance exhibited by PZnSn ITP SLP before the cyclic stability study, after 5000, 10,000 

and 15,000 cycles, are 32, 42, 32 and 28 A g‒1, respectively. The retention of initial Q exhibited 

by the PZnSn  ITP SLP at 28 A g‒1 is 20.21, 38.11, 25.16 and 12.82% before the cyclic stability 

study, after 5000, 10,000 and 15,000 cycles, respectively. The retention of initial Q exhibited by 

the PZnSn ITP of SLP at the maximum current densities of 32, 42, and 32 A g‒1 are 12.05, 15.24 

and 18.43% before the cyclic study, after 5000 and 10,000 cycles, respectively. The increase in Q 

and the rate capability ITP of SLP in relation to SA is attributed to the higher electrolyte 

permeation into the PZnSn with INC and enabling promising diffusion of electrolyte into the pores 

of PZnSn even at higher current densities as it occurs at lower current densities in comparison with 

SA. The plots of E vs. P (Figure. 10b) possess a similar trend as that of Figure. 10a. The maximum 

E obtained from PZnSn ITP of SLP at 1 A g‒1 and at a P of 1.2 kW kg‒1 are 42.49, 51.43, 57.86 

(comparable with Ni-Cd batteries) and 48.06 Wh kg‒1 before cyclic study, after 5000, 10,000 and 

15,000 cycles, respectively. The ƞ (Figure. 10c) obtained from PZnSn ITP of SLP at 1 A g‒1 are 

80.07, 77.69, 59.84 and 68.68 % before cyclic study after 5000, 10,000 and 15,000 cycles. The 

overall low ƞ of PZnSn ITP of SLP in comparison with that ITP of SA is attributed to the 

occurrence of higher extent low kinetic intercalation reaction ITP of SLP. In both the cases of SA 

(Figure. 9c) and SLP (Figure. 10c), as the current density increases, the ƞ also increases and reaches 

the maximum of 100% at higher current densities during all points of cycling. 

All the Nyquist plots of PZnSn obtained ITP SA(Figure. 11a) contain a semi-circle at a higher 

frequency region (HFR) and a linear Warburg portion at a lower frequency region (LFR), 
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indicating the capacitive behavior of the PZnSn ITP SA. The resistance along the real axis of the 

Nyquist plots is associated with the series resistance of the PZnSn. The series resistance is the 

cumulative of the solution resistance (Rs), charge-transfer resistance (Rct), and Warburg diffusional 

resistance (W). This series resistance decreases with INC, indicating a reduction in overall 

resistance with INC ITP SA. 
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Figure 11. a) Nyquist plot, b) EC fitment to Nyquist plot obtained after 4000 cycles, c)Bode phase 

angle plots, d) Bode impedance plots and e) capacitance vs. log frequency plots of PZnSn obtained 

after DNC ITP SA. 

Table 4 The magnitudes of electrical parameters of PZnSn composites obtained ITP of SA by 

equivalent circuit fitment of Rs(RctQ1)((RleakCdl)(Q2))W. 

PZnSn Rs (Ω) Rct (Ω) Q1 (F) n1 Rleak (Ω) Cdl (F) Q2 (F) n2 W (Ω)

Before cyclic study 0.23 0.01 8.52×E‒14 0.80 2.10 0.79 1.18×E‒4 0.82 2.33

After 4000 cycles 0.19 0.3 2.10×E‒3 0.57 0.90 2.14 0.0358 0.71 2.35

After 10,000 
cycles 0.21 1.13 0.0483 0.69 0.18 2.43 6.22×E‒6 0.99 2.53

After 16,500 
cycles 0.20 1.77 0.0203 0.82 0.21 17.23 5.49×E‒6 0.99 11.38

Table 5 The magnitudes of electrical parameters of PZnSn composites obtained ITP of SLP by 

equivalent circuit fitment of Rs(RctQ1)((RleakCdl)(Q2))W. 

PZnSn Rs (Ω) Rct (Ω) Q1 (F) n1 Rleak (Ω) Cdl (F) Q2 (F) n2 W (Ω)

Before cyclic 
study 0.20 0.56 0.01 0.59 0.24 1.02 3.15×E‒2 0.35 4.45

After 5000 
cycles 0.20 0.26 0.79 0.47 0.37 1.40 7.20×E‒4 0.47 2.19

After 10,000 
cycles 0.25 0.08 1.25 0.64 0.37 1.20 3.35×E‒3 0.62 2.13

After 15,000 
cycles 0.31 0.22 0.45 0.99 0.66 1.01 3.69×E‒2 0.35 2.19
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The magnitudes of electrical elements involved in the energy storage processes are attained by 

the fitment of equivalent circuit (EC) Rs(RctQ1)((RleakCdl)(Q2))W (Table 4) (Figure. 11b) to Nyquist 

plots obtained ITP SA, indicate that with INC the Rs is decreasing; and Rct, Cdl and W are increasing. 

The explanations of electrical elements present in EC are provided in supporting information. The 

decrease in Rs and increase in Cdl are attributed to the enhancement of energy storage with INC. 

The increase of Rct and W are accounted for the increase of IR drop with INC and the reduction in 

the ƞ  with INC ITP of SA, respectively. The lower IR drop obtained before the cyclic stability 

study ITP of SA in relation to other points in the cyclic stability study is associated with its low 

Rct. The increase of W with INC indicates the increase of resistance against the diffusion of 

electrolytic ions with INC, and this resistance is the reason behind the decrease of ƞ with INC ITP 

SA. The Bode Phase angles (Figure. 11c) at LFR decrease with INC, indicating the migration from 

the state of capacitor behavior to supercapacitor behavior. The relaxation time (τo) (Eqn. S10) of 

PZnSn obtained before the cyclic study, after 4000 and 10,000 cycles are 0.81, 0.87 and 0.89 s, 

respectively. The phase angle plot obtained after 16,500 cycles did not reach the phase angle of 

‒45°, and therefore, the τo after 16,500 cycles was left uncalculated. The increase of τo indicates 

the increase in energy storage with INC. The variation of Bode impedance plots obtained ITP of 

SA (Figure. 11d) with INC is in agreement with the variation of series resistance with INC. The 

decrease in overall resistance resulted in overall increase of energy storage with INC (Figure. 9e). 

The impedance and capacitance (Eqn. S11) obtained ITP of SA at LFR of 0.01 Hz are 21.03, 8.57, 

8.0, and 1.19 Ω; and 0.76, 1.86, 1.99, and 13.38 F, before cyclic study, after 4000, 10,000 and 

16,500 cycles, respectively. 

Page 28 of 42Energy Advances

E
ne

rg
y

A
dv

an
ce

s
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
m

aa
rt

 2
02

5.
 D

ow
nl

oa
de

d 
on

 1
0/

03
/2

02
5 

14
:3

9:
22

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4YA00617H

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ya00617h


29

Figure 12. a) Nyquist plots, b) Bode impedance plots and d) capacitance vs. log frequency plots of 

PZnSn obtained after DNC ITP SLP. 

Similarly, the EIS results of PZnSn ITP of SLP (Figure.12) depict the decreased resistance 

(Figure. 12a) with INC, indicating the better diffusion of electrolytic ions and increased energy 

storage with INC ITP of SLP. However, it is intriguing to note that the maximum performance 

was obtained after 10,000 ITP of SLP, but impedance (Figure. 12b) and the capacitance 

(Figure.12c) corresponding to the EIS analysis after 5000 cycles are found to be the least and 

highest, respectively. This puzzle could be understood when the charge storage characters obtained 

after 5000 and 10,000 cycles ITP of SLP cycles are compared. That is, the higher energy storage 

obtained after 10,000 cycles holds true only up to 3 A g‒1, after which all the Q that are obtained 
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after 10,000 cycles are lower than that obtained after 5000 cycles. In addition, the rate capability 

and the tolerance to the higher current are found to be superior after 5000 cycles. Therefore, it is 

rational that PZnSn experiences lower impedance and stores higher energy after 5000 cycles ITP 

of SLP, which is seen in the EIS results of PZnSn obtained ITP of SLP. The magnitudes of 

electrical elements that are obtained by fitting the same EC to the Nyquist plots of PZnSn that are 

obtained ITP of SLP after DNC (Table 5) evidently depict that with INC, the overall resistances 

are decreasing, the overall capacitances are increasing, and the least resistance and maximum 

capacitance are obtained after 5000 cycles. The rate capability and the coulombic efficiencies 

follow the same trend as that of W obtained after DNC. The PZnSn exhibits maximum rate 

capability after 5000 cycles, as it possesses the least W at that point ITP of SLP.

In order to study the contributions and nature of electrolytes used, their EIS studies were carried 

out by making devices that contain electrolytes (SA and SLP), separator and current collector 

without electrode material, and the findings are displayed in Figure. S10. As seen, the Nyquist 

plots have the distorted semicircle and a Warburg (Figure.S10a) showing the double layer 

formation at the solid (separator and current collector) and liquid (electrolytes) interface. The Bode 

impedance plots (Figure.S10b) and log frequency vs capacitance plots (Figure.S10c) show that the 

SLP exhibits lower impedance and higher capacitance ITP of SLP, signifying its superiority to SA. 

The obtained impedance and capacitance ITP of SA and SLP are 4.862 and 4.127 kΩ; and 3.27 

and 3.86 mF, respectively, at 0.01 Hz. The open circuit potential (OCP) obtained for these 

electrodeless devices are 167.4 mV and 206.7 mV ITP of SA and SLP, respectively. This high 

OCP obtained ITP of SLP indicates its lower internal resistance and higher ability to store energy 

in relation to that ITP of SA. Thus, the higher energy storage ITP of SLP is substantiated. The 
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comparable performance of PZnSn with the reported ones is seen in Table 6, and the obtained 

results are comparable and even better than some of the reports published elsewhere. 

Table 6 Comparison of energy storage performance of PZnSn with similar composites.

Composite Electrolyte

Potential 
window

(V)

E

(Wh kg‒1)

P  

(kW kg‒1)
Cyclic stability

Ref.

2-EL systems

PANI/ZnO/VO2 1 M H2SO4 1.2 88.10 at 1 A g‒1 2.154

Good cyclic 
stability up to 
16,812 cycles at 
0.4 A g–1

5

PANI/CuO/NiO 0.1 M Na2SO41.6 35.0 at 3.5 A g‒1 1.326 86% retention up 
to 10000 cycles

59

PANI/CuO/SnO2 1 M H2SO4 1.2 42.73  at 1 A g‒1 1.200
45.64% up 
retention to 5000 
cycles at 0.4 V s–1

44

PANI/CuO/SnO2 

1 M H2SO4 + 
1 M 
CH3SO3H 
(1:1)

1.2 50.26  at 1 A g‒1 1.200
55.56%  retention 
up to 12500 cycles 
at 0.4 V s–1

44

Present work 
PANI/ZnO/SnO2

1 M H2SO4 1.2 52.00  at 1 A g‒1 1.200
No deterioration 
up to 16,500 
cycles at 0.4 V s–1

-

Present work 
PANI/ZnO/SnO2

By-product 
of PANI 1.2 57.87 at 1 A g‒1 1.200

No deterioration 
up to 15,000 
cycles at 0.4 V s–1

-

3-EL systems

PANI/Y2O3-ZnO 1 M KOH 1.0 73.08 9.135 94.9% retention 
up to 5000 cycles 

60
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CONCLUSION

A composite, polyaniline/ZnO/SnO2 of weight percentages of 58.34%: 8.33%:33.33% (PZnSn), 

respectively, was synthesized in a facile in-situ single-step method. The energy storage 

performance was evaluated with two aqueous electrolytes, viz., 1 M H2SO4 (SA) and the liquid 

by-product that was obtained after the synthesis of PANI (SLP). The SLP provided 57.25% higher 

energy storage performance in relation to that provided by the SA. The PZnSn exhibited a durable 

and rate-capable energy storage property by exhibiting robustness up to 16500 cycles at 0.4 V s‒1 

and 39 A g‒1, respectively, in the presence (ITP) of SA and up to 15,000 cycles at 0.4 V s‒1 and 42 

A g‒1 ITP of SLP, respectively, in a real-time symmetric two electrode systems. The PZnSn 

displayed a remarkable trait of energy storage enhancement with an increase in charge and 

discharge cycles ITP of both the electrolytes. However, the enhancement provided by SLP is 

higher than that of SA. The maximum performance achieved from PZnSn  ITP of SLP is a Q of 

347 C g‒1, an E of 57.87 Wh kg‒1 (comparable with Ni-Cd batteries) and a P of 1.2 kW kg‒1 at 1 

A g‒1. Therefore, the PZnSn ITP of SLP would be suitable for fabricating hybrid supercapacitors 

that provide high energy, high rate capability, and durability. The use of SLP in energy storage 

brings the entire work under the umbrella of “waste into wealth” and the concept of “green energy 

storage”. 
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Synthesis of PANI and its by-product (S1), Characterization details (S2), Fabrication details 

(S3), Fig. S1, Fig. S2, Fig. S3, Fig. S4, Fig. S5, FT-IR Spectrum of PZnSn (F4), Formulae used 

(S5) (Eqn. S1-S8), Fig. S6, Fig. S7, Fig. S8, Fig. S9, Fig. S10, Descriptions of electrical elements 

of equivalent circuit (S6), Eqn. S9-S11.   
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