Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

The high recombination rate of photocarriers inhibits the photocatalytic efficiency of heterostructures due to the lack of a driving force for electron–hole separation. Herein, through Li–F co-doping, there was a large amount of interfacial charge transfer at the interface of the Li@g-C3N4/F@TiO2-B(001) heterostructure because of the noticeable Fermi level difference between the separated components. The built-in electric field induced by the significant interfacial charge transfer provided a strong driving force for the separation of photoinduced electron–hole pairs. Under the synergistic effect of the built-in electric field and band bending, the photoinduced electrons accumulated on the side of Li@g-C3N4, while the photoinduced holes were retained on the side of F@TiO2-B(001), indicating that the hydrogen evolution reaction (HER) takes place at the Li@g-C3N4 surface while the oxygen evolution reaction (OER) occurs at the F@TiO2-B(001) surface. Thermodynamic analysis of the HER proved that the Li@g-C3N4/F@TiO2-B(001) heterostructure as a HER photocatalyst had the lowest overpotential and strongest photocatalytic capacity compared with the pristine g-C3N4 and undoped g-C3N4/TiO2-B(001) heterostructure. The Li–F co-doping enhanced the interfacial interactions of the Li@g-C3N4/F@TiO2-B(001) heterostructure, promoted the separation of electron–hole pairs, and improved the photocatalytic performance. We believe that metal–nonmetal co-doping is a good strategy for promoting the separation of photoinduced carriers, which can also be used in other heterostructures to improve the photocatalytic capacity.

Graphical abstract: A Li–F co-doped g-C3N4/TiO2-B(001) heterostructure as an efficient hydrogen evolution photocatalyst

Page: ^ Top