Digital PCR: from early developments to its future application in clinics
Abstract
Digital PCR (dPCR) is the third generation of PCR technology, after conventional PCR and real-time quantitative PCR. It is based on the partitioning of a PCR mixture supplemented with the sample to analyse into a large number of parallel reactions, so that each partition contains either 0, 1 or a few nucleic acid targets, according to a Poisson distribution. Following PCR amplification, the fraction of positive partitions is extracted from an end-point measurement, allowing the computation of the target concentration. This calibration-free technology presents powerful advantages including high sensitivity, absolute quantification, high accuracy and reproducibility as well as rapid turnaround time and has therefore rapidly spread. Digital PCR offers a wide range of applications in research, clinical diagnostics, and biotechnology. Among the first clinically relevant applications of dPCR was its ability to detect rare genetic mutations within a background of wild-type genes. This breakthrough paved the way to tumour heterogeneity analysis in oncology and enabled liquid biopsy applications, such as the monitoring of treatment response. The scope of dPCR applications has since rapidly extended to include prenatal diagnosis through the detection of aneuploidy or inherited mutations, as well as pathogen identification via the detection of virus-specific genes or antibiotic-resistance genes in bacteria. This review focuses on the clinical applications of dPCR, highlighting its advantages over existing technologies and providing an outlook on future developments.
- This article is part of the themed collection: Lab on a Chip Review Articles 2025