Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Over the last several years, chemists and engineers have identified the utility of using twin-screw extruders for performing large-scale organic chemistry mechanochemically. This equipment is convenient as it is familiar to several relevant industries for its use in formulation, and it is also well-equipped for temperature control and intense grinding of materials. However, the research and development scale of mechanochemistry is just like that of conventional synthesis: milligrams. These milligram-scale reactions are performed in batch-type reactors, often a ball mill. Commercially available ball mills do not have strict temperature control, limiting the information that can be obtained to inform the scale-up process reliably. This work uses an in-house modified, temperature-controlled, ball mill to bridge the knowledge gap regarding predictable, well-informed, economical, and reliable mechanochemical scale-ups. Included in this work is the first extrusion example of a nucleophilic aromatic substitution.

Graphical abstract: Milligram-scale, temperature-controlled ball milling to provide an informed basis for scale-up to reactive extrusion

Page: ^ Top