Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Donor–acceptor (D–A) conjugated polymers like P(NDI2OD-T2) are important constituents of the active layer of energy conversion devices like all-polymer solar cells. A cost-effective and environmentally amiable pathway for the synthesis of this and similar D–A polymers is highly desirable for the large-scale production of these materials. In this report we have combined two cost-effective approaches, namely, direct heteroarylation polymerization (DHAP) and a recyclable heterogeneous catalyst (SiliaCat Pd-DPP), for the multi-batch synthesis of P(NDI2OD-T2). The general applicability of the approach was first established with a series of conjugated small molecules based on naphthalene diimide and bithiophene derivatives (N1 to N6). The Meitlis hot filtration test and inductively coupled plasma-optical emission spectroscopy (ICP-OES) were conducted to estimate the quantity of leached palladium in the final reaction product. Catalyst recyclability up to five cycles was demonstrated for N1 with <2 ppm leached palladium impurity. A comparison was made with the homogeneous catalyst Pd2dba3 which indicated the presence of much higher levels of palladium impurity in the final product. The polymerization of P(NDI2OD-T2) was demonstrated using the regular monomers (NDIOD-Br2 and bithiophene) and also using a modified monomer with activated bithiophene (naphthalene diimide substituted bithiophene) under DHAP conditions employing SiliaCat Pd-DPP as the recyclable heterogeneous catalyst. The modified monomer proved to be amenable to DHAP polymerization using SiliaCat Pd-DPP as the heterogeneous catalyst, which could be consecutively reused four times with reproducible molecular weights in the range of Mn/Mw: 27.1/49.0 to 33.5/61.3.

Graphical abstract: Exploring SiliaCat Pd-DPP as a recyclable heterogeneous catalyst for the multi-batch direct heteroarylation polymerization for P(NDI2OD-T2)

Page: ^ Top