Multivalent 2D- and 3D-nanogels as carbohydrate-lectin binders†
Abstract
The development of synthetic glycoarchitectures for targeted bacterial adhesion represents a promising strategy in anti-adhesion therapy. This study presents the synthesis and characterization of two distinct mannosylated nanogel architectures. First, a spherical 3D-nanogel was prepared via nanoprecipitation and functionalized with α-D-mannose units. This system demonstrated enhanced precipitation kinetics in turbidity measurements with Concanavalin A and exhibited single-site binding behavior comparable to monovalent reference compounds when tested with intact E. coli strain ORN 178 (FimH+) via microscale thermophoresis. Cryo-TEM imaging revealed clear co-localization with bacterial pili, confirming specific bacterial interactions. The complementary sheet-like 2D-nanogel, synthesized using a removable graphene template and functionalized with α-D-mannose units, showed distinct dual binding characteristics with significantly different affinities in FimH binding studies. Notably, the high-affinity site of the 2D-nanogel maintained superior binding compared to the 3D architecture. Both architectures were extensively characterized using multiple analytical techniques, confirming their defined structures, sizes, and surface modifications. These findings provide fundamental insights into the influence of spatial ligand presentation on multivalent binding interactions, contributing to the rational design of glycoarchitectures for bacterial targeting.
- This article is part of the themed collection: Injectable Hydrogels