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Nowadays, nanomaterials (NMs) are widely present in daily life due to their significant benefits, as
demonstrated by their application in many fields such as biomedicine, engineering, food, cosmetics,
sensing, and energy. However, the increasing production of NMs multiplies the chances of their release
into the surrounding environment, making human exposure to NMs inevitable. Currently, nanotoxicology
is a crucial field, which focuses on studying the toxicity of NMs. The toxicity or effects of nanoparticles
(NPs) on the environment and humans can be preliminary assessed in vitro using cell models. However,
the conventional cytotoxicity assays, such as the MTT assay, have some drawbacks including the
possibility of interference with the studied NPs. Therefore, it is necessary to employ more advanced
techniques that provide high throughput analysis and avoid interferences. In this case, metabolomics is
one of the most powerful bioanalytical strategies to assess the toxicity of different materials. By
measuring the metabolic change upon the introduction of a stimulus, this technique can reveal the
molecular information of the toxicity induced by NPs. This provides the opportunity to design novel and
efficient nanodrugs and minimizes the risks of NPs used in industry and other fields. Initially, this review
summarizes the ways that NPs and cells interact and the NP parameters that play a role in this
interaction, and then the assessment of these interactions using conventional assays and the challenges
encountered are discussed. Subsequently, in the main part, we introduce the recent studies employing
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1. Introduction

Nanomaterials are defined as materials with at least one
dimension smaller than 100 nm," while nanotechnology is
“Department of Chemistry and Materials Science, School of Chemical Engineering, — defined as the understanding and manipulation of matter at
Aalto University, 02150 Espoo, Finland. E-mail: mohammad.awashra@aalto.fi dimensions in the range of 1 to 100 nm, where unique
phenomena enable novel applications.> Nanotechnology intro-
duces many potential health, environmental, and industrial

*Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of
Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland. E-mail:
piotr.mlynarz@pwr.edu.pl

Mohammad Awashra started Prof. Piotr Mlynarz received his

X

pursuing his doctoral degree in
the Microfabrication  Group
(MFG) at Aalto University start-
ing in 2022. His research is
focused on studying the cell-
repellent behaviour of super-
hydrophobic surfaces with nano
and micro features. He received
his M.Sc. in Chemical Nano-
Engineering in 2021 from Aix-
Marseille University during the
Erasmus Mundus Joint Master

PhD in Chemistry in 2001 from
the Faculty of Chemistry,
University of Wroctaw and
Joined the Faculty of Chemistry
Wroctaw University of Science
and Technology in 2002. He is
a member of the Department of
Biochemistry, Molecular Biology
and Biotechnology, and Head of
the Bioanalytical group (2019).
His research is mainly focused
on the use of metabolomics

Program (CNE). He received his Bachelor of Chemistry from Birzeit
University in 2019.

methods in the field of civilization disease diagnostics and cell
metabolism.
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benefits®** and its applications are widespread in daily life,
transforming society.® For example, its applications in the food
industry range from agriculture® to food processing and pack-
aging.” Furthermore, nanotechnology is applied in drug
delivery,® imaging, diagnostics, cosmetics,’ clothing,' trans-
portation,™ biofuels,"”” and biosensors.”® Therefore, human
exposure to nanomaterials (NMs) nowadays is highly probable.
Depending on the type of product in which nanoparticles (NPs)
are used, exposure may occur through inhalation, dermal, and
oral pathways. Among them, inhalation is considered as the
most significant exposure route for airborne NPs.'*

Due to their high surface to volume ratio, high reactivity, and
tunable characteristic properties, NMs exhibit great benefits
such as enhanced targeting and imaging techniques.'
However, NMs may also cause some potential risks to human
health and the environment.'® Given that human and environ-
mental exposure to NMs are inevitable, nanotoxicity research is
attracting increasing attention.'” In the last decade, the number
of research studies on the toxicity of different types of NMs has
increased dramatically. NMs may affect human health in several
ways such as inflammation'® and heart problems.'>* Thus, to
understand the mechanisms of these effects, more investiga-
tions in the nanotoxicology field are necessary at the cellular
and sub-cellular levels. The scope of nanotoxicity depends on
many parameters that are related to the NM itself such as its
size, shape, chemical composition, and coating® or the exposed
cell type or tissue.”

When exposed to NPs, the cell can be affected via several
routes, including a decrease in cell viability and proliferation,*
inflammatory response, production of cytokines,*** oxidative
stress,*®*” generation of reactive oxygen species (ROS),>**° cell
membrane damage,*® mitochondrial damage,*®** cell cycle dys-
regulation,” DNA damage,** genotoxicity,* lipid peroxidation,
changes in cell morphology,* apoptosis® or necrosis,” and
metabolic changes.*® To study the cytotoxicity of NPs, many
conventional assays and biomarkers are used. For example, the
cell viability and proliferation can be investigated using
tetrazolium-based assays such as MTT,** MTS,* and WST-1.%¢
Alternatively, the cell inflammatory response can be investigated
by measuring inflammatory biomarkers, such as IL-8, IL-6, and
tumor necrosis factor, using ELISA.*” Moreover, for cell
membrane integrity, lactate dehydrogenase (LDH) and trypan
blue exclusion assays can be used,*” and for cell metabolism, the
Alamar Blue assay is frequently used.*® However, although these
assays afford general information about the cytotoxicity of NPs,
they do not give molecular information about the mechanism of
their cytotoxicity.***" Moreover, NPs can interfere with the
conventional assays, and thus the use of more than one assay is
important. In general, most of the studies on the cytotoxicity of
NPs mainly use the conventional (phenotypic) tests and assays.
Alternatively, some studies used other techniques based on the
change in epigenome, transcriptome, proteome, or metabolome
(omics techniques) induced by NPs.* These techniques are
beneficial to study the effect of NPs on cells at the molecular level
and explain the results of conventional essays. Among them,
metabolomics is one of the most powerful bioanalytical strate-
gies, enabling a picture of the metabolites of an organism in the

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Nanoscale Advances

course of a biological process to be obtained, which is the omics
technique of interest in this review.*®** The introduction of NPs
in a cell line may cause a change in the levels of certain metab-
olites, which may give a clue on their effect on cells. During the
past decade, many in vitro studies have used metabolomics to
investigate the cytotoxicity of NPs on different cell lines.

In this review, the ways NPs and cells interact and the effects
of the NP parameters on their interaction are discussed, fol-
lowed by an overview of the cytotoxicity of different NPs in in
vitro models, focusing on the use of metabolomics as a tool to
identify the mechanisms and molecular information of their
cytotoxicity.

2. Cellular uptake of NPs

The cytotoxic effects of NPs usually originate from their presence
inside cells.*> However, many applications of NMs in biomedi-
cine require their entry in the cell to achieve their goal. Therefore,
to further understand the cytotoxicity mechanisms of NPs on the
cell and its metabolism, it is important to first understand the
cellular uptake mechanisms of NPs. This will also aid the design
of environmentally safer NMs with enhanced cellular targeting
and uptake properties for therapeutic purposes.*

When immersed in a biological fluid, NPs are exposed to
a different medium than that employed for their synthesis. This
will force the NPs to interact with the surrounding medium,
which may alter their physical and chemical properties.** To
stabilize themselves, NPs tend “to catch” the surrounding
biomolecules (proteins, lipids, etc.) and form a biomolecular
corona or protein corona (in case they are surrounded by
proteins only), which may alter their identity.*

NPs may be taken up by the cell in an energy-independent
process, such as simple diffusion or translocation. However,
most NP uptake pathways are energy dependent via endocy-
tosis. Endocytosis is the formation of vesicles from the cell
plasma membrane to take up substances such as particles,
nutrients, and dead cells from the extracellular to the intracel-
lular environment.*® Endocytosis is described in two categories,
i.e., phagocytosis and pinocytosis.

2.1 Phagocytosis

Phagocytosis is the cellular uptake of particulates (0.5-10 um) in
the plasma-membrane envelope. It is known as a host defence
mechanism, engulfing and internalizing cargos such as parti-
cles, dead cells, and cell debris.***” This mechanism is a ligand-
induced process, where NPs are engulfed by adsorbing opso-
nins, followed by their interaction with complement receptors
on the cell surface (see Fig. 1).*®

2.2 Pinocytosis

Pinocytosis is the cellular uptake of extracellular fluids and
dissolved solutes.*” It can be divided into macropinocytosis,
clathrin- and caveolae-independent endocytosis, and receptor-
mediated endocytosis. The latter is classified as clathrin-
dependent endocytosis and caveolae-dependent endocytosis
based on the proteins involved in the pathway.*

Nanoscale Adv, 2023, 5, 2674-2723 | 2675
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Fig. 1 Nanoparticle internalization via phagocytoses.

2.2.1 Macropinocytosis. This mechanism involves cytoskel-
eton rearrangements that induce the formation of membrane
ruffles, which fold back, resulting in the formation of large
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intracellular vacuoles (0.1-5 pm)* referred to as macropinosomes
(see Fig. 2). Macropinocytosis is actin-dependent endocytosis,
while it is independent of clathrin and membrane receptors.*
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Fig. 2 Pinocytosis internalization mechanisms. (1) Macropinocytosis. (2) Clathrin-mediated endocytosis. (3) Caveolae-mediated endocytosis.
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2.2.2 Clathrin-mediated endocytosis. Clathrin-mediated
endocytosis is the main process for the internalization of
many NPs, which is used by all eukaryotic cells to internalize
small particles and nutrients such as cholesterol. When the
plasma membrane is rich in clathrin and ligand-receptor
complexes start to form on the cell membrane surface, a cage of
clathrin starts to form around the vesicle, resulting in vesicles
with a diameter of 100-150 nm (see Fig. 2).*34%%

2.2.3 Caveolae-mediated endocytosis. Caveolae are bulb-
shaped invaginations in the plasma membrane, which are 50—
80 nm in size. These vesicles are coated by caveolin and cavin
and detached from the membrane by dynamin, which is a 100
kDa GTPase (see Fig. 2).%354°°

3. Role of physicochemical properties
of NPs in cellular uptake and
cytotoxicity

It is important to consider the physicochemical properties (size,
shape, surface functionalization, surface chemistry, chemical
composition, concentration, etc.) of NPs in their design for
biomedical or other applications. The interactions of NPs with
the cell membrane and organelles can significantly be altered at
the bio-nano interface by these physicochemical properties,
consequently changing the cellular uptake and nanotoxicity of
the NPs. Therefore, before starting to assess the biological
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responses of NPs, thorough and proper characterization of the
physicochemical properties of their core and surface should be
performed.*® In this part, we mainly focus on the effect of the
size, shape, and surface chemistry of NPs on their cytotoxicity
and cellular uptake (see Fig. 3). The effect of the NP core
composition is not discussed here given that the surface char-
acteristics are more important than the bulk characteristics in
this context.

3.1 Size

The size of NPs plays an important role in both their cellular
uptake and cytotoxicity. Thus, it is considered a key factor when
designing NPs for biomedical application. Due to the fact that
NPs possess a size between atoms and bulk materials, they lie
on the critical transition zone between two different worlds.*”**
It is worthy to mention that the original (primary) size of NPs
differs from their hydrodynamic size in biological media.* This
is mainly because of the formation of a biomolecular corona
and the aggregation of the NPs. In this case, the aggregation of
NPs can be prevented by manipulating the balance of attractive
and repulsive forces.® For instance, Fe;04 NPs can be stabilized
with citrate, preventing their aggregation due to electrostatic
repulsion.®* However, due to the formation of a biomolecular
corona and the different ionic strengths of biological solutions
compared to water, NPs may have new surface identity. Wei
et al.*® performed a cytotoxicity study on the different sizes of
TiO, (5 and 200 nm) and Al,O; (10 and 50 nm) NPs and observed

ATR
=1 )
Size

Physicochemical Properties of NPs

Surface Functionalization

Fig. 3 Physicochemical properties of NPs.
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the formation of aggregates in solution form when the NPs were
suspended in cell medium without serum, where the sizes of all
the NPs became 8-388-fold larger than their original sizes due
to the higher ionic strength of the medium compared to water.
Upon the addition of serum, the hydrodynamic sizes of the NPs
decreased to only 1.6-10 folds larger than their original sizes.
This is because the formation of the protein corona around the
NPs prevented them from aggregating due to steric repulsion.
The authors found that the smaller NPs (in terms of primary
size, rather than hydrodynamic size) for both TiO, and Al,O;
had higher cytotoxicity and much greater decrease in cell
metabolic activity.

When studying the NP-cell membrane interaction mecha-
nism dependence on the size of NPs, it was found that it has
a strong influence. Specifically, large NPs (>60 nm) may cause
steric hindrance, which prevents their interaction with the cell
membrane.®* Conversely, NPs smaller than the cut-off size of
receptor diffusion (<30 nm) may not recruit enough cell
membrane receptors in the interaction region to overcome the
elastic recoil force, preventing membrane wrapping from
occurring.® Moreover, the membrane receptors are known to
form clusters that are 10-50 nm in size. Thus, a 50 nm NP, for
example, needs to interact with only one receptor cluster, while
a 500 nm NP must interact with several clusters simultaneously.
This makes the internalization of the 50 nm NP energetically
more favourable than the 500 nm NP.*

In general, smaller-sized NPs have been reported to have
higher cellular uptake and higher cytotoxicity. For instance, Dong
et al® reviewed 76 carefully chosen literature reports that
included in vitro studies of the size-dependent cytotoxicity of
amorphous silica NPs (aSiO, NPs) and found that 76% of these
papers showed that smaller-sized aSiO, NPs exhibited greater
cytotoxicity. However, it is important to consider that the cell type
plays a role in this process given that it depends on the
predominant pathway of cellular uptake in each different cell.**%

For some NPs, the higher the cellular uptake of NPs, the
greater their cytotoxicity.®” Nonetheless, there are some excep-
tions, where the cytotoxicity of NPs is independent of their
cellular uptake. In these cases, the cytotoxicity is induced by
sources other than amount of toxicant, including the NP high
surface area, instability, and ion release. Gliga et al.®® found that
10 nm silver NPs (AgNPs) are more toxic to the human lung
BEAS-2B cell line than other NPs with higher uptake ratios due
to the release of more Ag’.

3.2 Shape

The shape of NPs can be controlled by manipulating the
experimental conditions during their synthesis, such as super-
saturation, reducing agents, temperature, surfactants, and
secondary nucleation.® There are many different shapes and
geometries of NPs, such as spherical, rod, flower, star, disc,
cubic, prismatic, and needle-like structures. The aspect ratio
(AR), which is the proportion between width and height of NPs,
is used to compare different shapes of NPs. For example,
spherical AuNPs have an AR of 1, while Au nanorods (AuNRs)
have a higher AR.

2678 | Nanoscale Adv,, 2023, 5, 2674-2723
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It was proven that the cellular uptake and cytotoxicity of NPs
are affected by the AR of NPs. Given that AuNPs are common in
many biomedical applications, many studies investigated their
shape-dependent cellular uptake and cytotoxicity. For instance,
Wozniak et al.”® compared the in vitro cytotoxicity profiles of
different shapes and sizes of bare (non-coated) AuNPs in cancer
(HeLa) and normal (HEK293T) cell lines. They found that Au
nanospheres (AuNS) and AuNRs had higher cytotoxicity than
star-, flower- and prism-shaped AuNPs. However, the sizes of
these different AuNPs shapes also differed. Specifically, the
AuNSs and AuNRs had smaller sizes (10 nm and 38 x 16 nm,
respectively), while the flower-, prism-, and star-shaped AuNPs
had larger sizes (~370 nm, ~160 nm, and ~240 nm, respec-
tively). Thus, their sizes may also play a crucial role in this
cytotoxicity tendency, given that smaller NPs are known to have
higher cellular uptake and aggregation rate inside the cell,
which explains the observed cytotoxicity.

3.3 Surface charge

NPs can have negative, positive, or neutral surface charge
depending on their surface functional groups.” The surface
charge can affect the NP-cell membrane interactions, protein
corona, and consequently the cellular uptake of NPs.”” There-
fore, it is one of the most important physicochemical properties
to control when designing NPs for biomedical applications.
Generally, reports have shown that charged NPs have higher
cellular uptake than neutral NPs.** The cell membrane is
negatively charged due to the anionic head group of phospho-
lipids and the existence of some carbohydrates, such as sialic
acid.” Considering this, cationic NPs, in most nonphagocytic
cells, are taken up by the cells to a greater extent than anionic
NPs. However, in some cases, anionic NPs have greater cellular
uptake in phagocytic cells.””® The surface charge of NPs can
also tune their cellular uptake pathway. For instance, Untener
et al.”® reported that positively charged AuNRs had a higher
extent of internalization compared to their negatively charged
counterparts. It was found that cationic AuNRs were taken up
through macropinocytosis and clathrin-mediated endocytosis,
while anionic AuNRs were internalized through macro-
pinocytosis and caveolae-related mechanisms.

The cytotoxicity of NPs is also, as expected, affected by their
surface charge. Similar to the dependence of the cellular uptake
of NPs on their surface charge, in nonphagocytic cells, charged
NPs were found to be more cytotoxic than their neutral coun-
terparts, with the positively charged NPs, in most cases, being
more cytotoxic than negatively charged NPs.”* Moreover, the
surface charge of NPs does not only affect their cytotoxicity level
but also their mechanisms. A study by Schaeublin et al”
showed that although both charged and neutral AuNPs were
taken up in similar amounts and caused cell morphology
disruption and decreased cell viability through ROS generation
in a human keratinocyte cell line (HaCaT) model, only charged
NPs caused significant mitochondrial stress. This suggested
that the surface charge of AuNPs can affect the mechanism of
cell death. Further investigations on mitochondrial-mediated
toxicity revealed that neutral AuNPs did not affect the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Schematic representation of the mitochondrial membrane: different NP surface charges induce different mechanisms of cell death.”” The
neutrally charged NP (*) does not disrupt the mitochondrial membrane potential, and therefore apoptosis is not activated. The positively charged
NP (+) disrupts the slight negative charge on the cytosolic side of the outer membrane, leading to a disruption in the mitochondrial membrane
potential. The disruption damages the membrane and proteins, such as caspase activators, leak into the cytosol. The negatively charged NP (—)
increases the negative charge on the outer membrane, which leads to a disruption in the mitochondrial membrane potential. The mitochondria
compensate by releasing calcium ions that were stored in the matrix of the mitochondria. The spike in calcium induced apoptosis.””

mitochondrial outer membrane potential, which has a slight
negative charge, and thus apoptosis was not initiated, and the
authors suggested that necrosis may be the cell death mecha-
nism in this case. However, charged AuNPs affected this
membrane in different ways. On the one hand, cationic AuNPs
accumulated on the mitochondrial outer membrane due to its
slight negative charge, which eventually
membrane and caused the release of apoptotic proteins such as
caspase-3 inducing mitochondrial-mediated apoptosis. On the
other hand, anionic AuNPs increased this slight negative charge
on the outer membrane, which forced the mitochondria, trying
to adjust this potential disruption, to release the positively
charged calcium ions into the cytosol, inducing calcium-evoked
apoptosis (see Fig. 4).

damaged the

3.4 Hydrophobicity

It has been shown that the hydrophobicity of NPs can affect the
protein binding, cellular uptake, and cytotoxicity of NPs.”®*>

© 2023 The Author(s). Published by the Royal Society of Chemistry

The hydrophobicity and hydrophilicity of NPs can originate
from the core or the functionalities of the NPs. In a recent
systematic simulation study, Li et al.”® showed that changing
the spikes of virus-like NPs (VLP) significantly altered the
cellular uptake efficiency, while the effect of the core hydro-
phobicity of VLP was secondary. This study reported that VLP
with hydrophobic or amphiphilic spikes were internalized more
efficiently than that with hydrophilic spikes.

Generally, when keeping the other properties of NPs such as
surface charge constant, their hydrophobicity has a positive
trend with their cytotoxicity.” Muthukumarasamyvel et al.®
controlled the hydrophobicity of dicationic amphiphile-
stabilized AuNPs by conjugating the dicationic functionality
with different numbers and locations of H and OH groups. The
authors observed increasing anticancer or cytotoxicity proper-
ties with an increase in the surface hydrophobicity of the NPs
against A549 lung cancer cells.

Nanoscale Adv, 2023, 5, 2674-2723 | 2679
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3.5 Surface functionalization

Changing the ligands on the surface of NPs will mostly tune the
previous parameters (surface charge and hydrophobicity),
which affects the protein corona, cellular uptake, and cytotox-
icity of the NPs.””%*% However, the specific functionalities on
the surface of NPs can be useful for targeting purposes. Here,
overexpressed or unique receptors on the cell membrane are
targeted by functionalizing the NPs with a complementary
aptamer, protein, or antibody, which can specifically bind to the
cell receptors. Tao et al.* targeted cervical cancer cells through
folic acid (FA)-poly(ethylene glycol)-b-poly(lactide-co-glycolide)
blended NPs, which enhanced the efficacy of cancer chemo-
therapy through the targeted-delivery of anticancer drugs.

Lund et al® showed that AuNPs functionalized with 50%
PEG-NH,/50% glucose had an eighteen-fold higher internali-
zation rate than NPs functionalized with either PEG-NH, or
glucose alone due to their different organization patterns.
Alternatively, Yeh et al.*” studied the role of ligand coordination
of two quantum dots (QDs) on their cytotoxicity. The authors
found that monothiol-functionalized QDs had greater levels of
cytotoxicity compared to dithiol-functionalized QDs in HeLa
cell lines. However, the monothiol-functionalized QDs had
a higher charge density, and thus it is difficult to tell if this
tendency is solely related to the ligand coordination or charge
density.

Studying the dependency of cellular uptake and cytotoxicity
on a certain physicochemical property of NPs can be very
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Fig. 5 Various modes of action of NPs on cells.
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complex. For instance, changing their surface charge may lead
to a change in hydrophobicity, hydrodynamic size, and protein
corona. Furthermore, this may be done by changing the func-
tionalities and coating of the NPs.”>7”

Table 1 summarizes some recent studies exemplifying the
effect of the physicochemical properties of NPs on their cellular
uptake and cytotoxicity.

4. Cytotoxicity assessment

In vitro cytotoxicity of NPs is assessed using cell models.
Although this assessment does not replace the in vivo evaluation
of their cytotoxicity, it represents a screening bridge between
the investigation of the quality and in vivo application of
materials.*** Herein, we focus on the in vitro assessment of
nanotoxicity. In the case of in vivo assessment, readers are
encouraged to read the wholistic review by Kumar et al.** Many
in vitro assays are used to investigate or measure the cytotoxicity
of NPs. These assays can be categorized to five main categories
including cell viability and proliferation, ROS generation, cell
stress, cell morphology phenotyping, and cell-NP uptake
assays.’® Fig. 5 demonstrates some pathways of the effect of NPs
on cells.

4.1 Cell viability and proliferation

Cell viability assays focus on investigating the cell metabolic

activity and mitochondrial enzymes, such as lactate
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dehydrogenase (LDH), an enzyme that regulates pyruvate and
lactate levels through nicotinamide adenine dinucleotide (NAD)
oxidation.**® Tetrazolium salts can react with the mitochon-
drial dehydrogenase enzymes. This reaction leads to the
cleavage of the tetrazolium ring and conversion of these salts
into a colored formazan form, which can be detected using
colorimetry-spectroscopy. The detected activity of these
enzymes is an indication of the cell viability. One of the most
commonly used tetrazolium salts for assessing the cytotoxicity
of NPs is the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay.*® The other tetrazo-
lium salts wused include 3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfo phenyl)-2H-tetrazolium
(MTS), iodonitrotetrazolium (INT), and 4-[3-(4-iodophenyl)-2-(4-
nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1),
which different to the previous salts, produce the water-
soluble formazan. Other colorimetric/fluorimetric cytotoxicity
assays are also used, for example, neutral red, trypan blue,
lactate dehydrogenase (LDH), mitochondrial membrane
potential (MMP), and Alamar Blue (resazurin) assays.

Many types of interference between NPs and cell viability
assays have been reported. One way is the adsorption of the
mitochondrial activity-related proteins on the NP surfaces. This
may lead to the enzyme denaturation, giving false results of the
cell viability profiles.”” For instance, Stueker et al.®® used
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molecular dynamics simulation to investigate the effect of LDH
enzyme binding on functionalized AuNPs. The authors
observed that the dynamics of the side chains of the enzyme
were largely constrained in all four active sites. Another way of
interference is that the light absorbance spectra of the NPs can
interfere with the absorption window of the assay, leading to
false colorimetric measurements.® For example, Diaz et al.*®
reported that five NPs (magnetic iron/graphite, magnetite/silica,
bare and poly(ethylene glycol)(PEG)-ylated silica, and
magnetite/FAU zeolite) in culture medium after 72 h (in the
absence of cells) showed absorbance at the same wavelength
(525 nm) used in the MTT assay. This absorbance increases with
the NP concentration, depending on their type. The third way of
interference is that NPs may interact with the assay reagents.
For instance, Hoshino et al.*** reported that cysteamine-coated
quantum dots catalytically reduced MTT to formazan without
cellular metabolism taking place (see Fig. 6).

4.2 ROS generation and oxidative stress

Reactive oxygen species (ROS) are a type of unstable molecule
(free radicals) that contain oxygen and can easily react with the
other molecules in cells. The ROS include the superoxide anion
(0,'7), hydrogen peroxide (H,0,), and hydroxyl radical (HO").
ROS are normally produced by cells at certain levels to maintain

b.
Colorimetric reaction catalized by a NP
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Fig.6 Three ways of NPs interference with MTT cell viability test. (a) NPs in the absence of cells showed light absorbance at the same wavelength
of MTT assay (525 nm in this study). The absorbance of the 5 NPs was measured at a concentration of 32 ug mL™%. Data was obtained from ref.
100 (b) NPs can catalyze the reduction of the MTT (or another test agent) to its colored (or fluorescent) form without the existence of cell
enzymes. (c) NPs may adsorb and denature the cell enzymes that reduce the MTT dye to its colored form, giving false results.
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regular metabolism and homeostasis, which are considered as
critical signalling molecules in cell proliferation and
survival.®>'*> However, they may be produced through interac-
tions with exogenous sources such as NPs. If this event
produces excessive ROS that the cellular antioxidant defense
system (enzymatic antioxidants such as glutathione (GSH)
peroxidases) cannot handle, oxidative stress is triggered.'*>'*
This may lead to the destruction of organelles and bio-
molecules, including triggering membrane damage, lipid per-
oxidation, DNA damage, protein damage, apoptosis, necrosis,
and inflammatory response, leading to many diseases such as
cancer, diabetes, neurodegenerative, and cornea diseases.'***

NPs can generate ROS by acting as a catalyst in ROS gener-
ation reactions. For instance, Higashi et al.'®® reported the
catalytic generation of ROS by AuNPs and showed that this
reaction can be controlled by changing conditions such as the
type, concentration, and pH of the NP solution.

ROS detection can be performed by the direct measurement
of ROS levels or the measurement of their oxidative damage or
other outcomes.'”® Some direct methods for the detection of
ROS are fluorescein-compound-based tests and electron para-
magnetic resonance (EPR). The reactive fluorescein probes 2/,7-
difluorescein-diacetate (DCFH-DA) and dichlorodihydro-
(H, DCFDA) are non-fluorescent;
however, when they are exposed to the cell cytosol enzymes,
they get hydrolysed. Then, the cellular ROS oxidize them into
a highly fluorescent compound, dichlorofluorescein (DCF),
yielding an optical ROS concentration-dependent response,
which can be measured using fluorescence microscopy or flow
cytometry.'®” Alternatively, indirect approaches for the detection
of ROS include many assays that depend on the stimulated
oxidative effect of the ROS. One approach is by measuring the
enzymatic or non-enzymatic antioxidants levels.'*® Oxidative
stress can also be assessed by measuring the oxidative damage
of the cell biomolecules. These damaged biomolecules include
proteins, lipids, and DNA and can be detected by measuring the
protein carbonyl content,'*®*'* malondialdehyde levels,"*'"*
and 8-oxo-2"-deoxyguanosine (8-OdG) lesion,'>'* respectively.
Other genotoxicity assays include the comet, Ames, micronu-
cleus, and chromosome aberration assays.'*

During the course of measuring NP-induced ROS generation
and oxidative stress, NP-assay interferences may occur."*'"” In
colorimetric- and fluorimetric-dependent assays, NPs may
interact with the final form of the dyes in a way that alters, by
enhancing or reducing, the absorbance or fluorescence of the
dye. For example, Aranda et al."*® observed the quenching effect
of several NPs on the dye fluorescence emission in the DCFH-DA
assay, which was correlated with the cellular uptake of the NPs.
The authors suggested a threshold concentration of NPs at
which their oxidative effect can be detected, and they proposed
that changing the experimental conditions can reduce this
interference. Conversely, Pfaller et al.*"” reported the dye fluo-
rescence enhancement of the DCFH-DA assay in the presence of
Au or Fe,O; NPs. This confirms that both scenarios (quenching
and enhancement) may occur due to NP-probe interactions
during colorimetric- and fluorimetric assays.

fluorescein diacetate

© 2023 The Author(s). Published by the Royal Society of Chemistry
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4.3 Inflammatory response

The inflammatory response induced by NPs in a cell line can be
measured by detecting the produced inflammatory biomarkers.
Macrophages and other cells release many cytokines, which
play a crucial role in cell communication in the immune system
by, for instance, promoting inflammation. Interleukins (ILs),
such as IL-1B, IL-6, IL-8, and IL-10, in addition to other cyto-
kines, such as tumor necrosis factor TNF-o. and granulocyte-
macrophage colony-stimulating factor (GM-CSF), play
a central role in inflammation regulation. The expression of
these biomarkers can be assayed to determine the inflammatory
response caused by NPs. ELISA (enzyme-linked immunosorbent
assay) or western blotting, and electrophoretic mobility shift
assays (EMSAs) or real-time polymerase chain reaction (RT-PCR)
systems are used for the measurement of cytokines and the
related genetic expressions, respectively.'*#">

NPs were reported to induce an inflammatory response in
different cell lines. Many studies used conventional assays to
measure this response.*"** However, these assays can also
interfere with NPs during the measurement of inflammatory
response in cell lines. Some inflammatory cytokines were re-
ported to be adsorbed on the NP surface, causing interference
(Fig. 7a). Guadagnini et al.***> investigated the interferences of
different NPs with some in vitro cytotoxicity assays. The authors
reported that Fe,O;, TiO,, and SiO, NPs significantly adsorbed

a.
Cytokines
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Fig. 7 Interference of NPs with ELISA assay. (a) NPs can adsorb
different cytokines on their surface. (b) IL-8 were quantified by ELISA
after 24 h of incubation with NPs at 75 ug cm™2 after elimination of
particles by centrifugation. Results (n = 6) are expressed as % of
control (cytokine incubated in the absence of NPs). *Significantly
different from the control (p < 0.05 ANOVA followed by Dunnett’s test).
(b) Is reproduced from ref. 122 with permission from Taylor & Francis.
Copyright 2015.
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IL-6, IL-8, and GM-CSF cytokines on their surfaces at different
levels at a NP concentration of 75 pg cm™>. Fig. 7b shows that all
the studied NPs adsorbed the IL-8 cytokine except PLGA-PEO
NPs, which surprisingly increased the apparent level of cyto-
kines, probably due to the stabilization of the peptides and their
protection from proteolysis. In the case of other NPs, the level of
adsorption depends on the NPs and the cytokine studied. OC-
Fe;O, NPs are the most cytokine-adsorbing NPs tested given
that cytokines could not be detected in the supernatants.
Furthermore, Piret et al'*® observed a high inter-laboratory
variability for the ELISA assay for IL1-B and TNF-o. measure-
ments and they suggested that testing of NP-cytotoxicity assay
interferences should be always performed. Readers should
kindly refer to ref. 122 for more information about the inter-
ference between different assay and NPs and some solutions to
this problem.

4.4 Apoptosis and necrosis

124 while necrosis

Apoptosis is a programmed cell death pattern,
is an unprogrammed cell death.'” Both patterns of cell death
can be an outcome of NP treatment.'****' Nickel ferrite
(NiFe,0,),"*® TiO,,"*” Fe,03,"** hydroxyapatite,'* and Ag"® NPs
induced apoptosis in A549, BEAS-2B, ECV304, C6, and HepG2
cell lines, respectively. Alternatively, Reus et al.™** reported dose-
dependent cell necrosis induced by SiO, NPs in BALB/c 3T3 cell
line. Apoptotic cell death is mostly non-inflammatory, while
necrotic cell death can be inflammatory.** Both pathways are
extremes, and many cases are a complex combination of both.
For instance, Kumar et al.*** observed that AgNPs caused cell
death in L-929 fibroblast cell lines in association with both
necrosis and apoptosis. The cell death pathway is controlled by
many parameters such as the surface charge, concentration,
and exposure time of NPs. Schaeublin et al.”” reported that
charged AuNPs caused cell death through apoptosis, while
neutral AuNPs caused it through necrosis (see Fig. 4).

Many assays are used to detect apoptosis and necrosis.
Phosphatidylserine (PS) migration to the extracellular side of
the cell membrane and caspase activation into initiator and
effector enzymes are two events that accompany apoptosis and
can be used as markers to detect it. Externalized PS on the
surface of the cell can be detected using fluorescein iso-
thiocyanate (FITC)-labelled Annexin-V. Annexin-V specifically
binds to the exposed PS on the cell surface in the early apoptotic
cells, and then can be measured via flow cytometry or fluores-
cent microscopy. Alternatively, the membrane-impermeable
propidium iodide (PI) dye exclusion assay is used for the iden-
tification of cellular necrosis. PI binds to DNA in the nucleus
and stains it only when the cell membrane integrity is lost
(which is an event that accompanies necrosis). Thus, a combi-
nation of the above-mentioned assays can determine the
pattern of cell death.”®* For instance, Vafaei et al.*** used the
Annexin V-FITC/PI staining kit to study the apoptotic efficacy of
zinc-phosphate NPs (ZnPNPs) against the MCF-7 breast cancer
cell line. The untreated cells with NPs showed a live cell
(Annexin V-FITC—/PI-) percentage of 98.6%. Conversely, after
exposure to ZnPNPs, the apoptotic cell (Annexin V-FITC+/PI—)
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Fig. 8 Evaluation of apoptosis and necrosis activities in MCF-7 cells
using Annexin-V/PI staining. (Left) Untreated cells (control) and (Right)
cells treated with ZnPNPs. Reproduced from ref. 135, with permission.
Copyright © 2020, Springer Science Business Media, LLC, part of
Springer Nature.

ratio increased from 0.190% to 44.8% and the necrotic cell
(Annexin V-FITC+/PI+) percentage increased to 1.34% (see
Fig. 8).

Flow cytometry-based assays have negligible NP interfer-
ences."*® Bancos et al.**® reported that SiO, NPs have low or no
interference with flow cytometry assays. However, other colori-
metric and fluorimetric-based assays face the same problems
mentioned in the previous sections.

5. Metabolomics for the cytotoxicity
assessment of NPs

In general, most studies on the cytotoxicity of NPs use the
conventional (phenotypic) assays. However, many of these
assays, as mentioned before, have been reported to interfere
with the NPs because of their color, fluorescence, chemical
activity, light scattering, etc. Thus, to precisely reveal the cyto-
toxicity of NPs, it is necessary to use a combination of more than
two assays. This involves testing for NP interferences and
eliminating them by changing experimental conditions or
comparing the results of two similar tests, which is a complex
and time-consuming process. However, many reports only used
one or two cytotoxicity assays and ignored any potential inter-
ference with NPs."” In addition, even though the conventional
cytotoxicity assays can reveal that a certain cytotoxicity outcome
happened, these assays are limited in terms of detecting the
molecular information that caused this event.

The current toxicological assays need to be updated and new
tools should be incorporated progressively in this field."*® A
more advanced and emerging approach to study the toxicity of
particles is the “omics” technique, which is based on the change
in epigenome, transcriptome, proteome, genome, lipidome,
and metabolome profiles introduced by internal or external
stimuli. In increasing number of studies are using this
approach to investigate the in vitro and in vivo toxicity induced
by NPs. The determination of new targets and biomarkers for
NP toxicity is one of the strengths of the omics technique.
Moreover, the omics technique has high sensitivity, which is
useful because of the low levels of environmental exposure to
NPs that sometimes cannot be detected using the conventional

© 2023 The Author(s). Published by the Royal Society of Chemistry
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assays.”® Another strength is that unlike the conventional
assays, the omics technique has low or no interferences with
NPS‘39,122

In the field of toxicology, the most related omics discipline is
metabolomics.**® Metabolomics, one of the newest in the omics
era, is an emerging field, which is broadly defined as the
comprehensive measurement of all metabolites and low-
molecular-weight molecules in a biological specimen (tissues,
cells, fluids, or organisms),” and is one of the most powerful
bioanalytical strategies that allow a picture of the changes of
metabolites levels of an organism to be obtained during the
course of a biological process either as a footprint (analysis of
extracellular metabolites) or fingerprint (analysis of intracel-
lular metabolites).”* The detailed analysis of low molecular
weight compounds provided by nuclear magnetic resonance
(NMR) spectroscopy or mass spectrometry (MS), besides the
analysis performed by the powerful chemometric software
(MetaboAnalyst),"* provides an accurate and quick detection
and comparison of many types of chemical entities including
carbohydrates, amino acids, nucleotides, lipids, steroids, fatty
acids, and their derivatives, which are produced by cell
metabolism."*!

Currently, metabolomics is applied in many fields such as
disease fingerprinting, biotechnology, environmental and plant
research, toxicology and safety research, clinical medicine, and
pharmacology.’*****'** Our group has been investigating the
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metabolic changes in serum, urine, and feces induced by
different diseases such as lung cancer and diabetes, or other
stimuli such as kidney transplant.*****® Due to the non-invasive
sampling in the metabolomic approach, the relatively low
number of metabolites (compared to transcripts and proteins),
and good level of knowledge about the role of most metabolites,
metabolomics provides a well-grounded and precise method-
ology to investigate the biochemical effects and toxicity of
NPs,®*'*” and it can present insight into the genotype and
phenotype changes with a biological response.'*® Moreover,
single-cell metabolomics is achievable today, making it possible
to determine phenotypic heterogeneity among individual
cells.’ Many cellular activities such as intercellular signal
transduction, energy transfer, cell proliferation, and differenti-
ation occur at the metabolite molecular level and are regulated
by the presence and level of specific metabolites. Furthermore,
metabolites are the end result of the expression of functional
genome, transcriptome, and proteome (see Fig. 9).***'*' This
indicates that metabolomics can detect many NP cytotoxicity
outcomes and reveal the molecular information behind these
events even at low levels of NP exposure and with no interfer-
ences. Therefore, it is a great tool in nanotoxicology, which is
being applied to reveal the effect and toxicity of NPs in many
fields including environmental and agricultural fields**>*** and
cancer research.'” Metabolomics can help in better under-
standing of the transition from in vitro to in vivo systems of NP
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o
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o

RNA polymerase
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Fig. 9 Overview of the connection of the main omics-sciences: genomics, transcriptomics, proteomics, and metabolomics. Metabolomics

represents the final output of cellular processes.
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toxicity and its effect given that it is applied in both types of
experiment.****” Furthermore, metabolomics can be combined
with other omics techniques to provide a more comprehensive
understanding of the effects of NPs on cells.*?**%

When comparing NMR- and MS-based metabolomics,
generally, NMR has lower sensitivity than MS, and thus it is
considered more suitable to analyze extracellular metabolites
(exometabolome), which is done by the analysis of the cell
culture media. Alternatively, the more sensitive MS techniques
are more suitable for the analysis of relatively low levels of
intracellular metabolites (endometabolome), especially when
isolated from a limited number of cells. However, both analysis
techniques are complementary and should be used simulta-
neously to maximize the metabolic window.

This emerging technique has not yet been widely applied for
the investigation of NP cytotoxicity in in vitro systems and more
research needs to be done on different NPs and cell lines. In this
section, we focus on the metabolic changes induced by different
NPs in different cells in vitro. The workflow of a metabolomics
experiment is demonstrated in Fig. 10. This review does not go
into detail on the workflow of metabolomics. In this case, for
a detailed demonstration of how metabolomic workflows
generate data, the reader is directed to read the following
reviews and book chapters.?**¢*-1¢¢
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5.1 AuNPs

Gold nanoparticles (AuNPs) are very common in the biomedical
field. AuNPs have many unique properties such as ease of
synthesis, tunable size, ease of surface modification, surface
plasmon resonance (SPR), and X-ray attenuation.'*” This makes
them the center of attention in many applications, including
the growing field of nanomedicine, biosensors, targeted drug
delivery, radiation therapy, photothermal therapy, biomedical
imaging, and cancer diagnostics and therapeutics.'
Metabolomics is used in several studies to assess the cyto-
toxicity of AuNPs and reveal their molecular information. Au
nanorods (AuNRs) are one example of AuNPs that have strong
absorption in the near-infrared spectral region and can be used
in tumor thermal therapy (hyperthermia), and also in targeted
tumor therapy. Wang et al.'®® observed, using conventional
assays, that AuNRs have a unique influence on cell viability by
causing the death of cancer cells (A549 cell line), while having
negligible effect on normal cells (16HBE and MSC cell lines).
The authors showed that AuNRs were released from the lyso-
some of cancer cells, and then translocated into the mito-
chondria, causing oxidative stress by the production of ROS.
Alternatively, the normal cells had more intact lysosomes, and
thus the AuNRs were not released in the cell cytoplasm.
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Fig. 10 Metabolomics workflow for NMR- or MS-based metabolomics. DA: discriminant analysis; PCA: principal component analysis; PLS:

partial least squares; and OPLS: orthogonal partial least squares.
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However, the molecular information during this cellular
translocation was unclear. Later, the same group,'*® used
a metabonomic approach, a subset of metabolomics,"”® by
applying "H NMR and multivariate data analysis, to study the
metabolic change with time during the exposure of A595 and
16HBE cell lines to AuNRs. The authors found that both cell
lines had intracellular disruption by the reduction of lactate
levels and by causing oxidative stress. However, the normal cells
resisted this oxidative stress by de novo GSH synthesis, unlike
the cancer cells, which did not trigger this pathway, causing
severe damage of their mitochondria (see Fig. 11). The
metabonomic study further indicated the downregulation of
nucleosides and nucleotides in the cancer cells, indicating cell
death. Alternatively, the amino acid levels were upregulated in
the normal cells, indicating cell stress. This study shows the
usefulness of metabolomics in revealing the molecular infor-
mation of the effect of NPs on cells, after conventional assays
played the role of a general scanner for these effects.
Metabolomics can help in identifying biomarkers for NP
cytotoxicity. For example, Xu et al.’* investigated the potential
harmful effects of AuNRs on male reproduction by studying the
metabolic change in spermatocyte-derived cells (GC-2) and
Sertoli (TM-4) cell line after exposure to 10 nM of AuNRs.
Employing metabolomics, the authors observed a strong
downregulation in glycine levels in TM-4 cells, while there was

View Article Online
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no significant change in GC-2 cells. To identify what may
accompany this reduction of glycine (potential biomarker), high
content screening (HCS) and JC staining were used, and it was
found that AuNRs decreased the membrane permeability and
mitochondrial membrane potential of TM-4 cells. Moreover, the
authors observed a disruption in the mRNA and protein levels
of blood-testis barrier (BTB) factors using RT-PCR and western
blot. Then, to confirm that glycine is a biomarker for these
events, the authors repeated the experiments after adding
glycine to the medium and noticed that the cells recovered from
the previous harmful effects. This experiment reveals that
glycine can be recognized as a biomarker to the changes in
membrane permeability, mitochondrial membrane potential,
and blood-testis barrier (BTB) factors in further similar
experiments.

Huang et al.'”* observed that spherical AuNPs (20 nm) were
not cytotoxic against the human dermal fibroblast (HDF) cell
line. The authors combined bioinformatics with metabolomics
to determine the molecular information of this toxicity resis-
tance. Firstly, they detected that 29, 30 and 27 metabolites were
differentially expressed in HDFs after 4, 8, and 24 h treatment
with AuNPs, respectively. Among them, only six metabolites
were determined to be key metabolites using bioinformatics
techniques including expression pattern analysis and metabolic
pathway analysis using MetaboAnalyst online tool. The key
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Fig. 11 Summary of various metabolic responses of A549 (Right) and 16HBE (Left) cells to AUNR exposure. Metabolites in red or blue represent
a significant increase or decrease in their levels, respectively, in the AuNR-treated groups compared with the non-treated groups. (This figure has
been reprinted from ref. 169 with permission. Copyright © 2013, Elsevier Ltd).
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metabolic pathway was identified to be the GSH pathway with
GSH as the key metabolite. Subsequently, these results were
verified and it was found that the increase in GSH levels after
AuNP treatment may be the reason behind the toxicity resis-
tance behaviour of the cells, given that GSH can trigger an
oxidative stress protection mechanism that helps in avoiding
cytotoxicity.*®® This reveals that GSH can be considered as
a biomarker for oxidative stress resistance.

Lindeque et al.'”® used MS metabolomics to study the effect
of citrate-, poly-(sodium styrene sulfonate)-, and poly-
vinylpyrrolidone (PVP)-capped AuNPs on the intracellular
metabolites of HepG2 cells. Surprisingly, after 3 h of treatment,
a holistic depletion of intracellular metabolites was observed
for all the capped AuNPs. Usually, metabolic changes result in
the upregulation of the metabolite levels because of secondary
pathways, clearance issues, and reduced enzyme function-
ality."* Firstly, the authors suggested that a loss of cell
membrane integrity happened, but the exometabolomic data,
measured using the NMR technique, was not consistent with
this reasoning. Subsequently, they hypothesized that the AuNPs
bind to the intracellular metabolites with or without replacing
the surface coatings.

Gioria et al."”® combined proteomics and metabolomics to
gain a further understanding of the effects of two sizes, i.e., 5
and 30 nm, of AuNPs on the human colon adenocarcinoma
Caco-2 cell line. The proteome and metabolome are directly
interconnected and influence each other given that the protein
levels can change the metabolic profile of a cell system and vice
versa. Genomics and transcriptomics were excluded from this
study due to their restricted value given that they provide
limited information about phenotyping. The authors used
liquid chromatography high-resolution tandem mass spec-
trometry (LC-HRMS/MS) and two-dimensional gel electropho-
resis (2DE) to obtain qualitative and quantitative data of de-
regulated metabolites and proteins, respectively. Subse-
quently, the data was combined and interpreted using systems
biology analysis. After 72 h of exposure to AuNPs, 61 proteins
and 35 metabolites in the cell extract were identified to be up-/
down-regulated. The internalization mechanism was found to
be endocytosis due to the downregulation of the SH3GL1 and
EAA1 proteins, which are involved in the endocytic pathway.
The smaller-sized AuNPs caused a greater number of de-
regulated proteins and metabolites due to their higher inter-
nalization in the cells. Concerning metabolomics, the metabo-
lite propionylcarnitine (C-3 carnitine) and glycine levels
increased upon exposure to AuNPs, which indicates apoptosis.
This study further reported the accumulation of GSH in both 5
and 30 nm AuNP-treated cells, which indicates that an anti-
oxidative mechanism occurred as a self-defense system
against oxidative stress. These results were confirmed using
fluorescence microscopy analysis, where the over-expression of
Annexin-V and nuclear fragmentation induced by AuNPs were
evident, emphasizing that apoptosis occurred.

Omics technology together with complementary methods
not only offer a promising tool in nanotoxicology to understand
the molecular mechanisms of NP toxicity, but they also enhance
the development and design of nano-drugs. For instance, Ali

© 2023 The Author(s). Published by the Royal Society of Chemistry
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et al."’® combined MS-based metabolomics and proteomics
results through network analysis to better understand the
molecular mechanism of AuNR photo-thermal therapy in the
human oral squamous cell carcinoma (HSC-3) cell line. The
results showed an upregulation in phenylalanine, which is
considered an outcome of apoptosis pathways, indicating the
good photo-thermal therapy efficiency of the AuNRs. Table 2
summarizes the studies that used the metabolomics technique
to assess the effect of AuNPs in vitro on different cell lines.

5.2 AgNPs

Silver nanoparticles (AgNPs) have various interesting biological
properties and are known for their well-reported antibacterial
activity."® They have a wide range of applications including
cosmetics, textiles, and biomedical products. Also, their thera-
peutic application as antiviral and anticancer drugs is expected
to be further expanded.'**'*> Regarding the use of AgNPs as
potential drug carriers for cancer therapy from proteogenomic
and metabolomic perspectives, the reader is directed to the
review by Raja et al.'® AgNPs have been shown to influence
different cells causing apoptosis, lipid peroxidation, and DNA
damage.187—190

One of the advantages of metabolomics is that it is capable of
detecting early biochemical events and metabolic changes even
during the absence of a significant cytotoxic response by
conventional assays. Carrola et al.** studied the effect of citrate-
stabilized 30 nm AgNPs on the human epidermis keratinocyte
(HaCaT) cell line after 48 h of exposure at two concentrations,
i.e., 40 pg mL™" (close to ICso = 38.7 + 2.5 pg mL ') and 10 pug
mL~"' (no significant cell viability loss). Using NMR-based
metabolomics, the authors observed that most metabolic
changes happened at the lower concentration, which allowed
the detection of early biochemical events, including upregu-
lated GSH-based antioxidant protection, downregulated tricar-
boxylic acid (TCA) cycle activity, energy depletion, and cell
membrane modification. In a similar study,’ NMR metab-
olomics was used to assess the metabolic effects of two types of
coated AgNPs towards the human hepatoma (HepG2) cell line
and significant metabolome changes were observed at a sub-
toxic concentration of AgNPs. These changes include energy
production, antioxidant defence system, protein degradation,
and lipid metabolism pathways, suggesting that the cells have
metabolism-mediated protective mechanisms against AgNPs.
In the third study by this group,' they investigated the effect of
size and surface chemistry of AgNPs on the metabolic change
caused in the HaCaT cell line. The authors used citrate-coated
AgNPs with a diameter of 10, 30, and 60 nm, and 30 nm
AgNPs coated with citrate, polyethylene glycol (PEG), or bovine
serum albumin (BSA). It was found that the largest NPs and the
PEG-coated NPs had the least impact on cell metabolism and
viability, which is the expected tendency, as mentioned before
in Section 3. Furthermore, Carrola et al.*®* used NMR metab-
olomics to characterize the responses of RAW 264.7 macro-
phages to subtoxic concentrations of AgNPs (30 nm) and ionic
silver (Ag"). They observed that the exposure to AgNPs caused
a downregulation in intracellular glucose utilization, possibly
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due to the reprogramming of the TCA cycle towards anaplerotic
fuelling and production of anti-inflammatory metabolites. Also,
an upregulation in the synthesis of GSH was observed, enabling
the cells to control the ROS levels. In contrast, macrophages
exposed to Ag" at equivalent subtoxic concentrations showed
reduced metabolic activity, lower ability to counterbalance ROS
generation, and alterations in membrane lipids. This indicates
that the ionic form of silver has a greater effect on the cells and
is one of the sources of AgNP cytotoxicity.

Huang et al.”’> compared the effect of AgNPs and AuNPs, and
showed that while AuNPs had no cytotoxicity, AgNPs induced
grade 1 cytotoxicity after HDF cells were exposed to them for
72 h. Using metabolomics, the citrate cycle pathway was
determined to be the key metabolic pathways in the AgNP-
treated cells with malic acid as the key metabolite. Thus, the
mechanism of AgNP cytotoxicity is by the upregulation of citric
acid content, which indicated the inhibition of malic acid
synthesis, influencing the production of ATP (mitochondrial
dysfunction) and inhibiting cell proliferation, leading to cyto-
toxicity (see Fig. 12). Conversely, AuNPs were not cytotoxic due
to the triggering of the antioxidant defence system by the
upregulation of GSH. Kim et al."® used high-resolution magic
angle spinning (HR-MAS) NMR-based metabolomics to study
the cytotoxicity of AgNPs against human Chang liver cells. The
authors observed the depletion of GSH, lactate, taurine, and

Transmembrane . . @ Endoplasmic

protein i Mitaichondra € Reticulum
Key metabolites:
Glutathione (GSH) T
Leukotriene C4 T =
Arachidonic acid T Antioxidant
Uridinel mef:hanlsm p
Indolelactic acid 4 activated

GSH1T
0%
N e® Py
Yy =3 <0
O -
AuNPs

Pathways affected:

GSH metabolism
D-Glutamine and D-glutamate
metabolism

Pyrimidine metabolism
Vitamin B6 metabolism
Cysteine and methionine
metabolism

Sphingolipid metabolism

.

View Article Online

Review

glycine levels, while most amino acids, choline analogues, and
pyruvate were upregulated by the AgNPs. It is probable that the
downregulation of GSH induced the conversion of lactate and
taurine to pyruvate.

The effect of AgNPs was also studied on non-mammalian
cells such as yeast and unicellular alga. Babele et al'*®
studied the effect of 1.0 mg L™" of 50-100 nm-sized AgNPs,
prepared using aqueous gooseberry extract, on yeast Saccha-
romyces cerevisiae cells. Untargeted '"H NMR-based metab-
olomics revealed a several-fold increase or decrease in the
levels of 55 different metabolites, including the ones involved
in amino acid metabolism, glycolysis, and tricarboxylic acid
(TCA) cycle, organic acids, nucleotide metabolism, urea cycle,
and lipids metabolism. The authors noticed a reduced level of
GSH, which indicates that oxidative stress occurred, leading to
the strong cytotoxicity of AgNPs to the yeast cells. Qu et al.**”
investigated the effect of AgNPs on the performance of
Chlorella vulgaris F1068 unicellular green alga in phosphorus
assimilation (phosphorus removal by algae-based biotech-
nology). Using MS-based metabolomics, the authors observed
the inhibition of algal assimilation. AgNPs disturbed the
metabolic responses related to the phosphorus assimilation
by reducing the levels of guanine, glutamine, alanine, and
aspartic acid and increasing the levels of succinic acid. The
NPs also inhibited phospholipid metabolism by the
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Fig. 12 Comparison of the metabolic changes induced due to the interactions between AuNPs or AgNPs with HDFs cells. While AgNPs (Right)
induced cytotoxicity in the HDF cells, the effect of AUNPs (Left) was suppressed by an antioxidant mechanism.*’
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downregulation of glycerol-3-phosphate and myo-inositol and
upregulation of serine. Furthermore, GSH metabolism was
affected by the NPs, which induced oxidative stress in the alga
cells (upregulation of glycine). Cao et al.**® showed that the
effect of AgNPs on Chlorella pyrenoidosa can be altered by the
number of repeated exposures. In this study, NP single expo-
sure had a greater impact on the C. pyrenoidosa metabolome
than repeated exposure. Table 3 summarizes the studies that
used the metabolomics technique to assess the effect of AgNPs
in vitro on different cell lines.

5.3 TiO, NPs

Micro-titania (titanium oxide, TiO,) particles are known as
biologically inert in humans, enabling their use in many prod-
ucts such as cosmetics and pharmaceuticals.”**** Nano-titania
(TiO, NPs) are also used as additives in many products such as
sunscreen products, paints, printing ink, rubber, paper, sugar,
cement, toothpaste, film, biomedical ceramics, implanted
biomaterials, antimicrobial plastic packaging, and self-cleaning
sanitary ceramicss.**® However, TiO, NPs can enter the body via
inhalation, ingestion, and dermal contact and they have been
shown to exert significant toxic effects, such as cell metabolic
change, chronic pulmonary inflammation,*” and pro-
inflammatory effects in cells.*”® Raja et al>*” reviewed the
microenvironmental influence of TiO, NP-induced mechanical
stimuli on tumor cells and showed using the omics analysis that
the exposure of cancer cells to TiO, NPs caused gene mutations,
protein alterations, and metabolite changes.

Chen et al.*** observed mitochondrial dysfunction caused by
TiO, NPs in a macrophage (RAW) cell line and primary mouse
bone marrow-derived macrophages (BMDM) using a combina-
tion of metabolomics, lipidomics, and proteomics. The targeted
UPLC-MS-based metabolomic analysis revealed a significant
upregulation in the production of COX-2 metabolites including
PGD2, PGE2, and 15dPGJ2, indicating an inflammatory
response in macrophages. The authors also used GC-MS-based
metabolic flux analysis, which is a technique that uses MS to
track the fate of stable isotope tracers (e.g., *C-glucose and *°>N-
glutamine), allowing the investigation of the contribution of

206

specific metabolic pathways to the prevailing levels of specific
metabolites,*'* to measure the metabolic flux in the tricarboxylic
acid (TCA) cycle using "*C-labelled glutamine. They observed
a downregulation in TCA cycle metabolism and ATP production
caused by significant mitochondrial dysfunction after the
exposure of macrophages to TiO, NPs. In a similar study, Tucci
et al.>*® studied the response of the human keratinocyte HaCaT
cell line after exposure to 10-100 nm TiO, NPs and found that
the NPs were only present in the phagosomes of the cells
without their internalization in any other cytoplasmic organelle.
Specifically, “268” metabolites were detected using GC/LC-MS-
based metabolomics, of which 85 metabolites were found to
be significantly altered at 100 pg mL ™" dose of NPs. As stated in
other studies, TiO, NPs have shown significant and rapid effects
on mitochondrial function by altering energy metabolism and
anabolic pathways. However, they did not affect the cell cycle
phase distribution or cell death.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Jin et al.*** used GC/TOFMS-based metabolomics to study the
metabolic changes in L1929 cells and their corresponding
culture media induced by 5 nm-TiO, NPs. At concentrations
higher than 100 pg mL™", the NPs caused a depletion in the
cellular carbohydrate metabolism (the major biochemical
metabolism pathway) after causing energy metabolism disrup-
tion, pentose phosphate pathway inhibition, nicotinamide
metabolism block, mitochondria damage, and oxidative stress
activation. Bo, Jin, Liu et al*" again used GC/TOFMS-based
metabolomics to study the change in amino acid levels in
L929 cells after they were exposed to TiO, NPs. The study
revealed that seven metabolic pathways among the regulated
pathways were significantly altered including 12 amino acids,
i.e., 1-a-alanine, B-alanine, glycine, L-aspartate, .-methionine, r-
cysteine, glutamate, L-pyroglutamate, L-asparagine, L-glutamine,
S-adenosyl methionine, and t-lysine.

In dental science, the use of TiO, NPs as an additive to glass
ionomer cements is known to improve their mechanical and
antibacterial properties. However, the study by Garcia-
Contreras et al** showed that these NPs may induce pro-
inflammation in human gingival fibroblast (HGF) cells. Never-
theless, the molecular mechanism of the pro-inflammatory
action of TiO, NPs on these cells was still unclear. MS metab-
olomics was used to reveal the mechanism of this pro-
inflammatory action by the treatment of HGF cells with IL-1b
alone or in combination with TiO, NPs.?*® A total of 109
metabolites was successfully identified and quantified by CE/
TOFMS. Most amino acids levels were downregulated at high
concentrations of TiO, NPs, while ophthalmate, a-amino-
adipate, kynurenine, and f-alanine were upregulated. The
activation of the urea cycle, polyamine, S-adenosylmethionine,
and GSH synthetic pathways was stronger than that of the other
pathways. The intracellular levels of urea cycle metabolites were
downregulated significantly in the presence of both IL-1b/TiO,
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NPs. In conclusion, ornithine was downregulated, which led to
an immediate decline in putrescine. That latter is used to
synthesize spermidine, which has anti-inflammatory proper-
ties. Thus, the reduction of this polyamine level accelerated the
inflammation in HGF cells upon exposure to a combination of
IL-1b/TiO, NPs.

Kitchin et al.**® studied the effect of four different TiO, NPs
(in addition to two CeO, NPs) on human liver HepG2 cells.
Using LC/GC MS-based metabolomics, five out of the six NPs
were found to cause a significant downregulation in GSH
concentration. The authors observed a decrease in the GSH
system in GSH precursors (glutamate and cysteine), GSH itself,
and GSH metabolites (the gamma-glutamyl condensation
products, glutamine, alanine, valine, 5-oxoproline, and
cysteine-GSH). Among the 265 metabolites detected, the
reduction in GSH was the largest deregulation. This indicates
that the NPs are acting via an oxidative stress mode, which is
a consistent biochemical effect of NPs.

Metabolomics can help to better understand the transition
from in vitro to in vivo systems of NPs toxicity given that it can be
applied in both types of experiment. For example, Cui et al.>"’
employed LC-MS-based metabolomics to investigate the effect
of four metal oxide NPs, including TiO, NPs, in vitro on human
bronchial epithelial (BEAS-2B) cell line, and in vivo on mouse
model after lung exposure. Their study showed that in vitro
metabolomic findings can effectively reveal the biochemical
effects in vivo, and that LC-MS-based metabolomics is sensitive
enough to detect the tiny metabolomic changes when conven-
tional cytotoxicity assays cannot detect any significant effect.
Fig. 13a shows the workflow of this study. BEAS-2B cells were
exposed to the four studied NPs, and then the metabolomics
experiment was performed in vitro. This was followed by vali-
dation in vitro by enzymatic assays, in vivo using a mouse model
after lung exposure to respective NPs, and finally by cellular
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Fig. 13 Untargeted metabolomic analysis was used to reveal the effect of exposure of two different doses (12.5 and 25 png mL™Y) of ZnO, SiO,,
TiO,, and CeO, NPs on the metabolism of human bronchial epithelial cells (BEAS-2B). (a) Schematic diagram of the study workflow. (b) Hier-
archical cellular stress responses based on metabolomics and functional assays. The cells were maintained in the healthy state at the tier 1 stage.
At an intermediate level of cellular stress (tier 2), the exposure to SiO,, TiO,, and CeO, NPs altered several metabolic pathways and induced
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American Chemical Society.
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function assays. The TiO, NPs significantly altered the meta-
bolic pathways of sphingosine-1-phosphate, fatty acid oxida-
tion, folate cycle, inflammation/redox, and lipid metabolism,
inducing inflammation. In addition, this effect was dose-
dependent for some metabolites. Fig. 13b shows the altered
metabolites and effect of the four studied metal oxide (MO,)
NPs and their numbers, respectively.

Metabolomics is also applied in many in vivo nanotoxicity
studies.”*®**® For instance, Chen et al. performed three recent
studies of TiO, NP toxicity in vivo using MS-based metab-
olomics, once in rats by feces metabolite analysis,*** and then
screened for urine** and serum””* biomarkers in human
workers exposed to these NPs in factories. This group also
performed another metabolomics study using rat serum after
subchronic oral exposure of TiO, NPs.*”® Han et al.*** used MS-
based metabolomics to study the influence of TiO, NPs on the
fecal metabolome in rats after oral administration for 90 days.
Aslund et al.*® used NMR-based metabolomics to assess the
effects of 5 nm-TiO, NPs on Eisenia fetida earthworms and
observed metabolic changes related to oxidative stress. Eight
years later, Zhu et al.**® used transcriptomics besides metab-
olomics to investigate the same effect of TiO, NPs on the same
earthworm and noticed that the antioxidant system and meta-
bolic profiles of the earthworms were significantly affected.
Ratnasekhar et al.**” used MS-based metabolomics to investi-
gate the effects of TiO, NPs on the soil nematode Caenorhabditis
elegans. The results indicated the disruption of the tricarboxylic
acid (TCA) cycle, arachidonic acid metabolism, and glyoxylate
dicarboxylate metabolism pathways. For more about the in vivo
metabolic effects of NPs including Ag, TiO,, and carbon-based
NPs on organisms (plants, aquatic, and terrestrial inverte-
brates), the reader is kindly referred to the chapter by Farré and
Jha.ms

Metabolomics reveals the global responses that cannot be
observed by conventional toxicity endpoints, leading to an
effective assessment of the effects of NPs in the environment, in
vivo, and in vitro. Metabolomics has also been used to reveal the
metabolite corona that is surrounding TiO, NPs.***** Table 4
summarizes the studies that used the metabolomics technique
to assess the effect of TiO, NPs in vitro on different cells.

5.4 SiO, NPs

The annual global production of SiO, NPs is reported to exceed
1.5 million tons, making SiO, NPs one of the most widely used
NPs in the industrial manufacturing, drug delivery, cancer
therapy, and biotechnological fields.** This widespread is due to
their biocompatibility, stability, and other unique properties
compared with their bulk.>®”

Although SiO, NPs have been shown to have different cyto-
toxic effects on cells, the molecular mechanism of this cyto-
toxicity still needs to be explored using novel analytical
techniques, such as metabolomics. Huang et al.**®* used MS-
based metabolomics to reveal the molecular information of
the effect of SiO, NPs on the human fetal lung fibroblast MRC-5
cell line. The authors observed NP dose-dependent changes in
the metabolic profiles of the cells. As the dose increased, there

Nanoscale Adv., 2023, 5, 2674-2723 | 2695
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was a downregulation in the amino acid and GSH levels
together with an upregulation in urea and phospholipid
concentrations, causing oxidative stress and energy metabolism
disturbance. Feng et al.>* used NMR-based metabolomics to
study the effects of 0.01 or 1.0 mg mL " of hydrophilic SiO, NPs
on the human cervical adenocarcinoma (HeLa) cell line. They
studied both the intracellular and extracellular metabolome
changes. In the early stage of NP exposure, no clear dose-effect
of the HeLa cell metabolome was observed, which implied that
the cellular stress-response regulated the metabolic variations
in the HeLa cells. Afterwards, the NPs induced cell membrane
modification, catabolism of carbohydrate and protein, and
a stress response. The toxicological effects induced by high-
dosage SiO, NPs could be derived from the elevated levels of
ATP and ADP, the utilization of glucose and amino acids and
the production of metabolic end-products such as glutamate,
glycine, lysine, methionine, phenylalanine, and valine. Irfan
et al.*® used conventional assays and NMR-based extracellular
metabolomics to study the effect of fumed SiO, NPs on human
lung A549 cells. The authors observed an upregulation in the
extracellular glucose, lactate, phenylalanine, histidine, and
tyrosine levels in a time- and NP dose-dependent manner. There
was also an increase in intracellular ROS and cell membrane
damage at 4 h and a loss of cell viability after 48 h observed by
conventional assays.

A few metabolomics studies compared the in vitro and in vivo
outcomes of SiO, NP treatments. For instance, Chatterjee
et al.**® used NMR-based untargeted-metabolomics to study the
effect of amorphous SiO, NPs on the human hepatoma HepG2
cell line and mice liver (Fig. 14). Firstly, this study determined
the altered metabolites in the cells and mice liver using OPLS-
DA analysis (Fig. 14a and d, respectively). Subsequently, the
selected significantly altered metabolites were determined
(Fig. 14b and e), followed by pathway analysis using the
MetaboAnalyst 3.0 software (Fig. 14c and f). In both in vitro and
in vivo systems, the perturbation of GSH metabolism and the
depletion of the GSH pool were detected after aSiO, NP treat-
ment. Moreover, the in vitro results were further supported by
the in vivo data, specifically for metabolite profiling and
pathway analysis, were there were 8 common altered metabolic
pathways in the two systems. This study revealed that the major
causes of aSiO, NP-mediated hepatotoxicity were the suppres-
sion of GSH metabolism and oxidative stress. In a similar study,
Bannuscher et al.>** studied the responses of rat lung epithelial
cells (RLE-6TN) and alveolar macrophages (NR8383) (in vitro) to
four well-selected SiO, NPs, differing in structure, size, and
surface charge, and compared the results to in vivo responses in
rat lung tissues. The authors observed a cell-specific time- and
concentration-dependent changes in vitro and identified several
biomarker candidates such as Asp, Asn, Ser, Pro, spermidine,
putrescine, and LysoPCaC16:1 in vitro, and then verified them in
vivo.

It was proven that SiO, NP exposure inevitably induces
damage to the respiratory system, however, knowledge of its
mode of action and metabolic interactions with the cells is
limited. Zhao et al.*** performed a study to reveal the molecular
information of the metabolic responses of the lung bronchial
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epithelial BEAS2B cell line after SiO, NP exposure, using MS-
based metabolomics. They revealed that even with low cyto-
toxicity, SiO, NPs still caused global metabolism disruption.
Specifically, five metabolic pathways were significantly per-
turbed; in particular, oxidative stress, as confirmed by GSH
depletion, mitochondrial dysfunction-related GSH metabolism,
and pantothenate and coenzyme A (CoA) biosynthesis. The
identified key metabolites were GSH, glycine, beta-alanine,
cysteine, cysteinyl-glycine, and pantothenic acid. Oxidative
DNA damage and cell membrane disintegration were detected
by observing elevated 8-oxo-2-deoxyguanosine (8-OdG) and
decreased phospholipids levels.

Several studies compared the effect of SiO, NPs on cells to
other NPs using metabolomics and other omics techniques. For
example, Karkossa et al.>*' used targeted metabolomics and
global proteomics to compare the effect of SiO, NPs with
different particle sizes, surface charges, and hydrophobicity to
the effect of TiO,, graphene oxide (GO), phthalocyanine blue,
phthalocyanine green, and Mn,0; NPs on RLE-6TN alveolar
epithelial cells. Alternatively, Cui et al>” used MS-based
metabolomics to reveal the significantly altered metabolites
and metabolic pathways in human bronchial epithelial cells
and a mouse model exposed to four different types of metal
oxide NPs (SiO,, ZnO, TiO,, and CeO,) at both high (25 ug mL ™)
and low (12.5 pg mL ") doses (see Fig. 13). Table 5 summarizes
the studies that used metabolomics technique to assess the
effect of SiO, NPs in vitro on different cells.

5.5 ZnO NPs

Zinc oxide NPs are gaining increasing attention due to their
unique properties, especially their optical and electronic prop-
erties. Also, they can be prepared using a variety of methods and
in a range of different morphologies.”*® This makes them the
third highest global production volume among metal-
containing NMs**” and excellent for a broad range of applica-
tions, including optoelectronic devices (light-emitting diodes
(LEDs), laser diodes, solar cells, and photodetectors), electronic
devices (transistors),>*® and active compounds in sunscreens,
drug delivery, biomedical engineering, food additives, and
cosmetics.**® It was shown that human exposure to these engi-
neered NPs can cause health problems for both consumers and
industry workers, making it important to further investigate in
their toxicity and improve their safety when they are used and
produced.””**

The respiratory tract is the primary route of exposure to
airborne NPs such as ZnO. Thus, it is common to use the
bronchial epithelial BEAS-2B cell line as an in vitro model to
study the toxicity of these NPs. For instance, Lim et al.>*” used
this cell line to perform an MS-based metabolomics study to
reveal the effect of ZnO NPs on the respiratory system. The
authors revealed ROS-mediated cell death associated with
mitochondrial dysfunction and interference in regulating
energy metabolism. This was concluded after observing
a significant decrease in the levels of amino acids (valine,
tryptophan, lysine, proline, threonine, glycine, serine, glutamic
acid, and aspartic acid) and TCA intermediate metabolites

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 14 Global metabolomics and pathway analysis in aSiO, NP-exposed HepG2 cells (a—c) and Institute for Cancer Research (ICR) mice (d-f).
OPLS-DA score plot from the NMR spectra of metabolomes from HepG2 cells treated with 100 mg L™ aSiO, NPs for 24 h (a) and from ICR mice
liver treated with 50 mg kg™ aSiO, NPs for 24 h. Selected significantly altered global metabolites level in HepG2 cells (b) and in ICR mice liver (e)
after treatment with the NPs. Pathway-based enrichment analysis performed by MetaboAnalyst 3.0 with significant altered metabolites (>1.5 fold)
in HepG2 cells (c) and ICR mice liver (f) after treatment with the NPs. This figure has been reproduced from ref. 240 with permission from Elsevier

B.V., Copyright 2018.

(citrate) (Fig. 15a). These results indicate that ZnO NPs can be

seriously harmful to human health if they were inhaled.

Although Zn is a key micronutrient for plants, a high dose of
this metal is toxic to plants either in the nano or other forms.

© 2023 The Author(s). Published by the Royal Society of Chemistry

Salehi et al*** used UHPLC-QTOF metabolomics to study the

effect of ZnO NPs and bu
vulgaris L). The results in

Ik ZnSO, on bean plants (Phaseolus
dicated the unique NP-related toxic

effects of ZnO in beans compared to the ionic forms of Zn. Two

Na
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similar studies of the effect of ZnO NPs have been done on
tomato and cucumber.*"*> Wan et al** performed a metab-
olomics analysis to reveal the effect of ZnO NPs on salt tolerance
in the Sophora alopecuroides plant. Moreover, He et al.>** eluci-
dated toxicodynamic differences at the molecular scale between
ZnO NPs and ZnCl, in Enchytraeus crypticus, a model species in
soil ecotoxicology, using non-targeted metabolomics. They found
that the number of altered metabolites after Zn>" exposure was
larger than the number of altered metabolites after ZnO NP
exposure, indicating the higher toxicity of the Zn ionic form
(Fig. 15b and c). For more information about nanotechnology in
agriculture and the effect of metallic-, metal oxide-, and carbon-
based-NPs on plants, the reader is advised to read the review by
Paramo et al.*®® and review by Majumdar et al.>*

The toxic effects of a NP may be reduced by applying co-
exposure with another NP. For instance, Wu et al.**” studied
the combined effects of graphene oxide (GO) and ZnO NPs on
human A549 cells using NMR-based metabolomics. PLS-DA
analysis showed that the control and GO-alone exposure
groups overlapped, indicating a low effect of 10 mg L' GO on
the metabolome profiles. In contrast, ZnO NP-alone exposure
significantly altered the metabolome profiles in A549 cells. A
total of 14 altered metabolites was shared in the ZnO NP-alone
and the co-exposure with GO groups. However, the levels of fold
changes of the 14 shared metabolites were lower in the co-
exposure group than that in the ZnO NP-alone group. This
tendency indicates that GO alleviated the toxicity induced by
ZnO NPs in the cellular metabolism by reducing or blocking
their internalization in the cells (Fig. 15d-f). Table 6 summa-
rizes the studies that used metabolomics technique to assess
the effect of ZnO NPs in vitro on different cells.

5.6 Other metal- and metal oxide-NPs

5.6.1 Cobalt ferrite (CoFe,04) NPs. Cobalt ferrite (CoFe,0,)
NPs have interesting properties, such as mechanical hardness,
excellent chemical stability, high anisotropy, super-
paramagnetism, and coercivity.*®® Oliveira et al.>**® studied the
cytotoxic effect, cellular uptake, and metabolomic effect of
CoFe,0, NPs on the HeLa and HacCaT cell lines. This study
revealed, using NMR-based metabolomics, that although the
uptake of NPs at 2 mg mL ™" caused low cytotoxicity, it signifi-
cantly impacted the cell metabolism. Both cell lines shared
stress-related metabolic changes such as upregulation in
alanine and creatine. A downregulation in fumarate level was
present in HeLa cells treated with the NPs. Given that this
metabolite is associated with cell proliferation and tumor
growth, it was concluded that CoFe,O, NPs can inhibit
tumorigenesis.

5.6.2 Copper oxide (CuO) NPs. Copper oxide (CuO) NPs
have been used in heat transfer fluids, semiconductors, and
intrauterine contraceptive devices.*** Human exposure to CuO
NPs is rapidly increasing, and thus reliable toxicity test systems
are urgently needed. It was shown that CuO NPs are more toxic
than their microparticles (MPs). To reveal the mechanism of
this toxicity, Murgia et al.*** used MS-based metabolomics to the
study the effect of CuO micro- and nano-particles against

Nanoscale Adv., 2023, 5, 2674-2723 | 2699
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Fig. 15 [(a) Comparison of ZnO NPs with PS NPs].?#” (a) Summary comparing the relevant metabolic responses of BEAS-2B cells to ZnO and
PS_LD NP exposure. Arrow in orange or blue represents a significant increase or decrease in the ZnO or PS_LD NP exposure, respectively,
compared with the non-treated groups. This figure is adapted with permission from ref. 247 Copyright 2019, Taylor & Francis. [(b and c)
Comparison of ZnO NPs with Zn2*].2%* (b) Proportion of significantly changed metabolites in different categories after 2 (2 d) and 7 (7 d) days
exposure to ZnO NPs and ZnCl,. (c) Edwards—Venn diagram of the total number of significantly changed metabolites. The total numbers of
significantly changed metabolites in ZnO_2 d (d = days), ZnO_7 d, ZnCl,_2 d, and ZnCl,_7 d groups were 99, 121, 128, and 183, respectively. The
altered metabolites were obtained by conducting PLS-DA analyses for each Zn-exposed group vs. the matched control group (VIP > 1 and p <
0.05). Note: the metabolites identified from the positive ion mode and negative ion mode were merged together. (b and c) Are reprinted with
permission from ref. 254 Copyright 2020, the American Chemical Society. [(d—f) Comparison of ZnO NPs solo exposure to their co-exposure
with GOJ.?7 (d) Schematic illustration of A549 cells ZnO NPs solo exposure vs. co-exposure with GO. The GO sheets reduce the cytotoxicity of
ZnO NPs by blocking their internalization into the A549 cells. (e) Influence of GO on the bioavailability of ZnO NPs. The Zn concentrations were
normalized by the protein concentrations. All data expressed as the mean + SD. All differences were identified by one-way ANOVA followed by
Tukey post hoc test. * Indicates p-value. (f) Interaction network of metabolites in ZnO NPs solo and co-exposure groups. (d—f) Are reproduced
from ref. 257 with permission from The Royal Society of Chemistry, Copyright 2019.
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Table 6 Summary of ZnO NP-induced perturbation of metabolic pathways and their biological impact on different cells

Size Dose/exposure Analytical Perturbed metabolic
NP [nm] Coating Cell time platform pathway Biological effect Ref.
ZnO 60 N/A BEAS-2B 10 pg mL ™' HPLC-MS/MS Amino acid | Mitochondrial 247
dysfunction
24 h GC-MS/MS TCA | Cell death
ROS
ZnO 22.6 N/A BEAS-2B 12.5,25 pg mL™' LC-MS Amino acid | Inflammation 217
6 h Nucleotides | Oxidative stress
Lipid | DNA damage
Toxic metabolites 1  High cytotoxicity
ZnO- ZnO- NJ/A A549 ZnO - 20 ug 'H NMR TCA | Membrane damage 257
GO 50 mL™"
GO -10 pg mL " GSH | Oxidative stress
24 h Choline Energy metabolism
disruption
Amino acid GO reduced the
Carbohydrate impact of nano-ZnO
ZnO 42 None A549 10, 15 pg mL ™" DIMS GSH | Oxidative stress 199
34 Triethoxycaprylsilane 1,6,24h Amino acid Apoptosis
ZnO 71 N/A E. coli 0.025-0.2 pg GC-TOF-MS Amino acid; glycine  Oxidative stress 233
mL?! 1
3h
ZnO <70 N/A Yeast S. 10 pg mL " 'H NMR Amino acid DNA and protein 258
cerevisiae damage
BY4741 3h TCA | Oxidative stress
GSH | Antioxidation
Glycolysis | Energy metabolism
Fatty acid | disruption
Purine and

human bone marrow mesenchymal stem cells (hBMMSCs). It
was found that the MPs increased the levels of serine, glyceric
acid, and succinic acid, while glutamine was the only discrim-
inant metabolite for the class of samples treated with NPs. This
proves that ROS formation is the active mode of action in NP
treatment, providing the first step toward the understanding of
the mechanism of toxicity of CuO NP-treated cells. Wang et al.”*
compared the effect of CuO NPs, MPs, and Cu ions on microalga
Chlorella vulgaris after 5 days exposure using global metab-
olomics. A total of 75 differentiated metabolites was identified.
Most metabolic pathways perturbed after CuO NP exposure
were shared by that after CuO MP and Cu ion exposure. Only
one difference between metabolic responses to particles and
that to ions was observed, which is the accumulation of fatty
acid oxidation products, ie., particles caused higher fold
changes at 1 mg L' and lower fold changes at 10 mg L™*
compared with ions. This indicates the significant role of dis-
solved Cu ions on the toxicity of CuO NPs and MPs. Kruszka
et al*** compared the effect of Cu and CuO NPs on the
secondary metabolism of Hypericum perforatum L. cell suspen-
sion cultures and found that metal NPs induce higher meta-
bolic changes than their counterpart metal oxide NPs. Table 7
summarizes the studies that used the metabolomics technique
to assess the effect of other metal/metal oxide NPs in vitro on
different cells.

© 2023 The Author(s). Published by the Royal Society of Chemistry

pyrimidine |

5.7 Carbon-based NPs

5.7.1 Graphene. Graphene has attracted significant atten-
tion due to its unique and novel properties, which has prom-
ising applications in different fields, including biomedical
engineering, tissue engineering, and biosensors. However,
graphene-based drug delivery systems and other biomedical
applications are associated with challenges related to the safety
of carbon NMs for clinical use. Many groups have investigated
the cytotoxicity of graphene. In this case, although the
conventional in vitro toxicity assays of graphene yielded
contradictory results, Jiao et al?*® used the metabolomics
approach to investigate the metabolic responses on graphene-
treated HepG2 and detected twelve metabolites as potential
biomarkers. The authors also determined three KEGG pathways
including arginine and proline metabolism, purine metabo-
lism, and glycophospholipid metabolism.

Adamson et al.*®” studied the metabolic change caused in
macrophages by graphene nanoplatelets. The number of
compounds changed following exposure to graphene was
determined to be both concentration and time dependent. The
identified metabolites are related to several metabolism path-
ways, such as GSH metabolism, pantothenate and CoA biosyn-
thesis, sphingolipid metabolism, purine metabolism,
arachidonic acid metabolism and others. Graphene oxide (GO)
also has some biomedical applications but a greater

Nanoscale Adv., 2023, 5, 2674-2723 | 2701
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understanding of its cytotoxicity and efficiency as a drug carrier
is needed. Raja et al.”®® used NMR-based metabolomics to assess
the metabolic effect of GO nanosheets on MCF-7 breast cancer
cells. The treatment affected arginine metabolism, proline
metabolism, and aminoacyl-tRNA biosynthesis, including
anabolism and catabolism. Moreover, GO increased the
number of metabolic disturbances in cancer steroids in a dose-
dependent manner.

5.7.2 Carbon black NPs (CBNPs). Carbon black NPs
(CBNPs) are the core component of fine particulate matter in
the atmosphere, which make its exposure to the respiratory
system easy. It was reported that CBNPs can induce inflam-
mation, oxidative stress, and changes in cell signalling and gene
expression in mammalian cells and organs. Hou et al.*® used
MS-based metabolomics to reveal this mechanism in A549 cells.
Their study identified a total of 32 differential metabolites
between the CBNP exposure and control groups. The pathway
analysis showed that the metabolic changes were involved in
tricarboxylic acid (TCA) cycle, alanine, aspartate, glutamate, and
histidine metabolism. This suggests that CBNPs act by affecting
the normal process of energy metabolism and disturbing
several vital signalling pathways in the cells, finally leading to
cell apoptosis. Other studies performed in vivo experiments and
assessed the effect of carbon-based NMs on the ecosystem by
studying some models such as earthworms. For instance, Xu
et al** studied the impacts of three carbon NMs, i.e., carbon
black (CB), reduced graphene oxide (RGO), and single-wall
carbon nanotubes (SWCNTs), on Eisenia fetida, an early
warning soil invertebrate for pollution events. They concluded
that the soil environmental risk of C-NMs was related to their
particle morphology, contributing to a comprehensive under-
standing of nano-agriculture. Table 8 summarizes the studies
that used the metabolomics technique to assess the effect of
other C-based NPs in vitro on different cells.

5.8 Polymeric NPs

Polymeric NPs such as polystyrene (PS) are gaining considerable
attention because of their growing accumulation in the envi-
ronment and the high probability of human and animal expo-
sure. Therefore, more research must be done to increase our
understanding of their potential effects. Kim et al.** studied the
metabolic effects of PS NPs on human epithelial colorectal cells
(Caco-2). The authors designed two methods to investigate the
exposure of Caco-2 cells to NPs, where the first is by exposing
cells to a high concentration of 50 nm PS NPs for 24 h (acute),
and the second is by exposing them to a relatively lower
concentration for over 1.5 months (chronic). The biological
assays were performed using specific NP concentrations, which
were 10 and 80 pg mL™" for the acute model and 0.1 ug mL ™" for
the chronic exposure model. After acute exposure, untargeted
metabolic profiling was performed and the change in lipid
metabolic pathways determined, including steroid and arach-
idonic acid metabolism. Alternatively, chronic exposure
induced relatively minor changes. However, there was still
a potential effect on fatty acid biosynthesis, indicating that
acute and chronic exposure to PS NPs may disturb lipid
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homeostasis. They also confirmed the changes in the expres-
sion levels of lipid transcriptional regulatory factor coding
genes, namely, sterol regulatory element-binding transcription
factors 1 and 2. The total fatty acid composition was further
studied to verify metabolic disturbance by chronic exposure. Su
et al*** investigated the effect of poly(i-lactic acid) (PLLA)
nanofibers on PC12 cell differentiation at the metabolic level.
Many differential metabolites were identified and two pathways
and three metabolites critical to PC12 cell differentiation were
influenced by the nanofibers. Table 9 summarizes the studies
that used the metabolomics technique to assess the effect of
other polymeric NPs in vitro on different cells.

6. Conclusions

Currently, it is obvious for many researchers that nanotech-
nology provides countless benefits, and consequently its
demand is increasing daily. It is very important to assess the
safety of every NP that is being produced and to test its bene-
ficial and disadvantageous effects. Understanding the interac-
tions between NPs with cells and how NPs are internalized in
cells are the first step to assess their toxicity. Here, not only the
type of the NP matters, but also its physicochemical properties
such as size, shape, and surface properties. It was proven that
NPs with different properties have different effect on cells. Some
sizes of NPs are not toxic, but others are severely harmful to
cells. In general, conventional assays are the most used strategy
to assess the effect of NPs on cells. However, these assays were
found to interfere with NPs, giving false results in some cases,
and they are unable to reveal the molecular information of the
toxicity or effect of NPs. Thus, an increasing number of
researchers are heading towards the use of other analytical
techniques. Metabolomics is a powerful technique that
provides a full picture of the toxicity of NPs by analyzing the
functionality of an existing living system by measuring the
metabolic change induced by NPs. Unlike conventional assays,
this tool does not interfere with NPs and provides information
at the molecular level about the toxicity of NPs. Furthermore, it
forms an additional bridge that connects the in vitro with the in
vivo models, as proven by several references. It was shown in
this review that NPs can harm the cell through different ways,
including cell viability and proliferation perturbation, inflam-
matory response, oxidative stress, ROS generation, and cell
death via apoptosis or necrosis. Moreover, using metabolomics,
NPs were shown to perturb the metabolic pathways of cells,
including the TCA cycle, DNA and protein synthesis, glycolysis,
glutathione, and amino acid pathways. Thus far, metabolomics
has been used in many studies to assess the effects of different
NPs on living organisms. However, more research needs to be
done to identify and validate specific biomarkers of the effects
of NPs on cells. Reaching this point will introduce a huge step in
determining the toxicity of NPs and how to avoid or multiply
this toxicity. This will help in designing better NPs for
biomedical applications and producing safer NPs for industrial
applications. Nevertheless, long-term targeted studies should
also be performed to fill many gaps in this field. Also, the
combination of metabolomics with other techniques is
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required in some cases to provide a bigger picture on the events
occurring in the cell.
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