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Physics-informed machine learning enabled
virtual experimentation for 3D printed
thermoplastic†

Zhenru Chen,a Yuchao Wu,a Yunchao Xie,b Kianoosh Sattaria and Jian Lin *a

The performance of 3D printed thermoplastics largely depends on

the ink formulation, which is composed of tremendous chemical

space as an increased number of monomers, making it very difficult

to identify an optimum one with desired properties. To tackle this

challenge, we demonstrate a virtual experimentation platform that

is enabled by a physics-informed machine learning algorithm. As a

case study, the algorithm was trained based on a multilayer perceptron

(MLP) model to predict the experimental stress–strain curves of the 3D

printed thermoplastics given the ink compositions made of six mono-

mers. To solve the issue of experimental data scarcity, we first reduced

the dimensions of the curves to eight principal components (PCs),

which serve as the outputs of the model. In addition, we incorporated

the physics-informed descriptors into the input dataset. These two

strategies afford the model with a prediction accuracy of R2 of 0.97

and an RMSE value of 1.01 for fracture strength, and an R2 of 0.95 and a

RMSE of 0.40 for toughness. To perform virtual experimentation, the

well-trained model was then utilized to predict 100 000 sets of the PCs

from the randomly given 100 000 ink formulations. The PC sets were

then converted back to the corresponding stress–strain curves.

To validate the prediction results, some of the virtual experiments

were performed. The results showed a good match between the

predicted and experimental curves. This methodology offers a general

and efficient pathway to virtual experimentation for establishing the

correlation between the complex input variables and the output

performance metrics of new materials.

1. Introduction

Virtual experimentation represents a pivotal advancement
in scientific research, enabling extensive pre-experimental

screening that refines the scope of physical trials, thus saving
resources on the most promising inquiries.1 Such preliminary
simulations are especially critical in fields where experimental
setups are costly and experimentations are labor intensive.
A prime example is 3D printing, which offers rapid prototyping
and manufacturing capabilities that have become indispensa-
ble across industries—from aerospace to healthcare—due to
their ability to cost-effectively create objects with complex
geometries.2,3 Despite these advantages, the development of
new materials for 3D printing, especially thermoplastics, pre-
sents significant challenges. The mechanical properties of
thermoplastics, crucial for their functional applications,
depend heavily on ink formulations. The complex interactions
and subsequent polymerization of various monomers in the
inks profoundly impact their mechanical properties.4,5 The
traditional experimental process, which involves the explora-
tion of vast ink formulations to pinpoint the desired mechan-
ical properties of 3D printed thermoplastics, requires extensive
experimentation. This process becomes particularly laborious
and time-consuming as the combinational chemical space
dramatically increases. Virtual experimentation provides a
significant advantage over traditional methods by allowing
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New concepts
We introduce a virtual experimentation platform that uses a physics-
informed machine learning algorithm to predict the mechanical
properties of 3D printed thermoplastics. By employing a multilayer
perceptron (MLP) model, this innovative approach simulates the stress–
strain behavior of materials based on their complex ink compositions.
Our method effectively addresses the challenge of sparse experimental
data by utilizing dimensionality reduction techniques and incorporating
physics-informed descriptors into the model. This enables rapid
prototyping and optimization of new material formulations while
significantly reducing the need for extensive physical testing. The
successful application of our model to a large dataset of ink
formulations, validated against experimental results, showcases the
platform’s potential to transform material design in 3D printing.
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researchers to bypass the initial phases of testing, where intui-
tion alone may not suffice to optimize experimental conditions.

Virtual experimentation often relies on theoretical calcula-
tions or computational simulation techniques, such as density
functional theory (DFT) and molecular dynamics (MD). These
methods have been extensively applied in fields such as mate-
rials science6,7 and chemical engineering8 to predict the prop-
erties of materials at various scales. However, these approaches
often face challenges in accurately scaling predictions to
complex macroscopic phenomena. For instance, in the 3D
printing processes, while molecular simulations are adept at
modeling the intricate interactions between monomers,9 they
struggle to extend these predictions to the overall mechanical
properties of materials. This limitation suggests that alternative
approaches, such as data-driven methods that bypass detailed
microstructural modeling, may be necessary. Additionally,
deriving practical characteristic curves, such as stress–strain
(S–S) ones, poses another significant challenge because physics-
based simulation results often rely on idealized material systems
under conceptualized conditions, which may not accurately reflect
real-world behaviors.

In contrast, data-driven algorithms, such as machine learning
(ML), have recently emerged as a complementary approach,10

increasingly pervading the materials science in design,11,12

property prediction,13–15 synthesis planning,16–18 and auto-
mated data analysis.19–21 They are forming a new paradigm
for virtual experimentation.1 For instance, in predicting mate-
rial performance, the integration of vast datasets with advanced
algorithms has enabled more precise and efficient predictions
than ever before. By leveraging extensive data obtained from
DFT simulations, ML algorithms can now be applied to predict
the performance of composites22,23 and metamaterials24 with
unprecedented accuracy and efficiency. To mitigate the data
scarcity issue, physics-informed ML (PIML) by incorporating
known physical laws into the ML training has been developed.5,25,26

This hybrid approach not only enhances prediction accuracy with a
limited amount of data but also extends the capability of simula-
tions to cover unexplored material systems. For example, our group
incorporated the chemical and physical properties of metal salts
and organic linkers as physics-informed descriptors to unravel
complex synthesis parameters for accurately predicting the crystal-
lization propensity of metal–organic nanocapsules.12 In our other
work, we trained a scientific ML model that includes intermediate
reaction variables obtained by simulations for predicting the
reaction outcomes.27 Du and coworkers utilized six mechanistic
variables that represent the physics of balling defects to train a ML
model for predicting defects formed during the 3D printing
processes.28 The use of PIML in virtual experimentation holds vast
potential, particularly in refining the design and optimization
processes in 3D printing, where understanding the detailed physi-
cal and chemical interactions crossing the multiple scales is often
impractical. Despite the vast potential and recent research progress,
in most literature reports that involve ML algorithms for property
prediction, typically singular numerical features (e.g. strength
and fractural strain) rather than a total performance profile were
reported. In our recent work, we employed a multi-objective

Bayesian optimization method to identify materials for 3D printing
of thermoplastics that are both strong and tough, focusing speci-
fically on optimizing these two singular numerical values.5

In contrast, the current study utilizes physics-informed machine
learning (PIML) for predicting the whole stress–strain curves from
which the complete mechanical performance of materials can be
derived, thereby acting as a virtual experimentation platform.

Herein, to tackle the challenge, we demonstrate a PIML for
predicting full stress–strain curves of 3D printed thermo-
plastics, which serves as an efficient virtual experimentation
platform for screening ink formulations that lead to thermo-
plastics with desired mechanical properties. To realize this
goal, a total of 216 S–S curves were first collected from thermo-
plastics that were 3D printed using six monomers. Then, the
dimensions of these S–S curves were reduced by principal
component analysis (PCA) into eight principal components
(PCs). After that, the compositions of the six monomers
together with the physics-informed descriptors (including
molecular weight, lipophilicity, Hbond donor/acceptor, rotata-
ble bonds, polar surface area, heavy atoms, complexity, total
energy and several solubility scores) serve as the inputs while
the corresponding sets of PCs serve as the outputs to train a
multiple layer perceptron (MLP) model. Given 100 000 sets
of hypothesized ink compositions, the MLP can predict new
PCs, which were then converted back to the corresponding
S–S curves. Among them, six ink formulations featuring three
different types of mechanical profiles were chosen for experimental
validation. The obtained S–S curves from these experiments fell
within the ranges predicted by the virtual experiments. A quantita-
tive study shows that the model achieves prediction accuracy with a
satisfactory R2 value of 0.97 and a root mean squared error (RMSE)
of 1.01 for fracture strength, an R2 of 0.95 and an RMSE of 0.40 for
toughness. These results affirm the success of the virtual experi-
mentation for large scale screening, opening the way for designing
new thermoplastics with desired properties.

2. Results and discussion
2.1. Workflow

Fig. 1 illustrates the workflow of developing a PIML based
virtual experimentation platform for thermoplastic 3D printing.
First, 2-hydroxy-3-phenoxypropyl acrylate (HA), iso-octyl acry-
late (IA), N-vinylpyrrolidone (NVP), acrylic acid (AA), N-(2-
hydroxyethyl) acrylamide (HEAA) and isobornyl acrylate (IBOA)
were selected as the six monomers.5 This diverse selection was
strategically chosen to demonstrate the robustness and adapt-
ability of our machine learning model for a complex chemical
space, showcasing the necessity and effectiveness of the
proposed virtual experimentation workflow. Then, inks were
prepared via mixing these six monomers in different weight
ratios for printing using a liquid crystal display (LCD) printer.
After that, the S–S curves of the resulting thermoplastics were
collected using a tensile testing machine (Mark-10) according
to American Society for Testing and Materials standards. The
collected curves were preprocessed and reduced in dimensions
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by PCA detailed as follows. Following this, a multiple layer
perceptron (MLP) model was trained by using the ink composi-
tions together with the physics-informed descriptors as the
input to predict these dimension-reduced representations.
The culmination of this process employed an inverse PCA
technique to reconstruct the S–S curves from the predicted PCs.

2.2. Data collection and preprocessing

Experimental datasets were collected from 62 ink formulations,
with each formulation represented by 2–4 individual S–S
curves. 3D thermoplastics printed from the six monomers
involve enormous chemical space. Training ML models with
only the ratio of the six monomers to predict the high dimen-
sional outputs could suffer from a serious overfitting issue. To
overcome this issue, an additional thirteen physics-informed
descriptors were chosen as the input parameters, which are the
molecular weight, lipophilicity, h-bond donor, n-bond accep-
tor, rotatable bonds, polar surface area, heavy atoms,

complexity, total energy, and solubility parameters.29–32 After
normalization, these physics-informed descriptors were multi-
plied by the ratios of six monomers, leading to 78 cross-
features.25 Details on these descriptors and more information
about the methodology can be found in Supplementary Note S1
and Table S1 (ESI†).

The S–S curves of the specimens with the same ink formula-
tion underwent analysis to ensure the high quality of training
data. As depicted in Fig. 2a, the three stress–strain curves of
three specimens exhibit variation even though they were
printed from the same ink formulation, indicating the unavoid-
able experimental uncertainty. If using the ink formulation and
the corresponding S–S curves as the input and output for the
model training, a ‘one-to-many’ prediction issue may arise,
where each input corresponds to multiple outputs.33,34

It underscores the importance of using a model capable of
adeptly handling such inherent data variability. To address this
uncertainty, an e_value based on a normal distribution was

Fig. 1 Workflow of the development of a PIML based virtual experimentation platform.

Fig. 2 (a) Calculation of the e_value based on normal distribution of fracture points of the S–S curves obtained from multiple samples printed with the
same ink formulation. (b) Four typical S–S curves for the printed representative thermoplastic samples.
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introduced to encapsulate the inherent experimental variation.
This e_value, analogous to the Z-score in a normal distribution,
quantifies how many standard deviations that experimental
data point deviates from the mean. Implementation of the
e_value is elaborated in the Methods section. The e_value is
combined with the ratios of the six monomers and the 78 cross-
features to form a total of 85 features in the model.

Depending on different monomer ratios of the inks from
which the samples were printed, these S–S curves represent
four distinct soft/elastic, soft/tough, strong/tough, and hard/
brittle samples, presenting the diversity of the training data,
which imposes an additional challenge for the model training
(Fig. 2b). The stress–strain curve for the soft/elastic sample
shows a typical elastomer behavior, with minimal stress at the
low strain and a constant stress level in elongation. The soft/
tough and strong/tough samples begin with a steep initial
slope, indicating stiffness, but as strain increases, the stress
shows a continuous rise without peaking, reflecting substantial
plastic deformation. Conversely, the stress in the hard/brittle
sample’s curve displays a linear increase followed by a sharp
drop, characteristic of minimal plastic deformation before
fracture. Due to significant variations in the length of data
collected, preprocessing steps such as trimming, and interpola-
tion were necessary to standardize the datasets for model
training. Details of these preprocessing methods are provided
in Methods Section 4.4.

Further observation shows that the numerical range of the
strain axis varies considerably, even though both the strain and
stress axes consist of 50 data points each in the standardized
data format. Given the limited datasets and a 100-dimension
output, a concern known as the ‘curse of dimensionality’ arises,
a phenomenon where the volume of the space increases so
fast that the available data becomes sparse.35 This sparsity is

problematic as it can severely impact the performance of
machine learning models by making it difficult to extract
meaningful patterns without overfitting. Given the limited
datasets and the high-dimensional output, dimension reduction
becomes essential to mitigate these issues. Previous studies
adopted a manual extraction strategy to identify five feature points,
i.e., linear limit, maximum yielding, strain softening end, steady
flow limit, and fracture points.24,33 In our research, however, the
S–S curves in our dataset are more diverse, making the manual
extraction of these critical points either cumbersome or incon-
sistent. To address those concerns, PCA, a powerful dimension
reduction technique, was employed.36 PCA is an unsupervised
method that does not require predefined criteria for extracting
information. It simplifies the dataset by transforming it into a new
coordinate system, where the most significant features are sum-
marized in the principal components (PCs). This process not only
makes the data more manageable for the ML model but also
preserves essential information, thereby facilitating accurate pre-
dictions. Instead of directly predicting the whole S–S curves, our
model predicts the PC values, which can be then converted back to
the S–S curves.

2.3. PCA on stress–strain curves

The impact of the number of principal components (denoted as
n) on the capacity of the ML model to encapsulate data variance
was initially investigated, with a focus on the explained var-
iance which refers to the cumulative proportion of the dataset
variance explained with the increase of n. As shown in Fig. 3a,
the cumulative explained variance (CEV) increases sharply as n
reaches 5, beyond which there is negligible change, indicating
the efficacy of PCA in capturing key information from the S–S
curves (see Supplementary Note S2 for details, ESI†). This trend
is also evident when using the PCs to reconstruct the S–S curves

Fig. 3 (a) Cumulative explained variance (CEV) with respect to different numbers of principal components (n). Change of stress RMSE (b) and strain RMSE
(c) vs. n. The reconstructed stress–strain curves as the increase of n for (d) soft/elastic, (e) soft/ductile, (f) strong/tough, and (g) soft and elastic samples.
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(Fig. 3b and c). The RMSE37 was chosen to determine the
difference between the reconstructed and original values of
both stress and strain axes (Supplementary Note S3, ESI†).
Specifically, the strain RMSE decreases to B0.02% when n
reaches 4, while the stress RMSE remains nearly unchanged
(B0.03 MPa) at n of 7. Furthermore, the impact of n on the
accuracy of the reconstructed S–S curves was also investigated
visually across the collected datasets. Fig. 3d–g show a few
examples, illustrating typical representative S–S curves as dis-
cussed in Fig. 2b. It is found that samples show good agree-
ment between the original and reconstructed curves when n
reaches 6. Based on these observations, to encapsulate more
subtle variations, the n value is set to 8 for the subsequent
analysis.

2.4. Interpretability of PCA

After exploring the influence of n on the reconstructed S–S
curves, we thoroughly examined the interpretability of each PC
during the reconstruction process. By analyzing how the PC
values influence the S–S curves, we demonstrate how the PCs
reflect essential features of the S–S curves. To do it, each PC is
varied by �100%, �50%, �20%, and �5%, while keeping other
PCs the same. As shown in Fig. 4a and Fig. S1 (ESI†), an
increase in PC1 prompts a shift of the S–S curves towards larger
strains, while increase in PC2 results in a decrease in the slope
of the plastic deformation region. It is determined that PC1 has
the most pronounced effect on the variations of the S–S curves.
An increase in PC3 leads to a decrease in the slope of the post-
yield hardening region, whereas an increase in PC4 results in a
decrease in the slopes of the plastic deformation region while
an increase in the post-yield hardening region. Furthermore,
the fractural strain remains constant regardless of the changes
in PC2, PC3, and PC4. While the influence of PC5 to PC8 is less
significant to be directly interpreted for analyzing the core
material properties, these components still contribute to a
certain degree of detail in the curves, such as minor fluctua-
tions or inflection points in certain regions of the curves. For a
brittle sample (Fig. S2, ESI†), close observation reveals that an
increase in PC1 leads to a shift of the curve toward smaller
strain, while an increase in PC2 results in an increase in the

slope of the elastic deformation, fracture strength and fracture
strain. There are no obvious changes in the S–S curves with the
changes in PCs from PC3 to PC8. To further explore the hidden
information, the relationship between PCs and mechanical
properties was analyzed (Fig. S3, ESI†). Clearly, PC1 exhibits a
linear relationship with the fractural strain. PC2 is proportional
to toughness. PC3 is positively and negatively correlated with
the fracture strength and the slope in the strain-hardening
area, respectively. The observations are well aligned with the
fundamental mechanical characteristics observed in the S–S
curves (Fig. 4b).

2.5. Machine learning model

After establishing the input and output datasets, it is about to
train an MLP model. The model takes 85 distinct and cross-
features as the inputs to predict the outputs of the eight PCs.
Given the relatively small data size, a combined approach of
dropout and L1 regularization was employed to prevent over-
fitting. Dropout operates by randomly deactivating a subset of
neurons during the training process, which is beneficial for
reducing the model’s dependency on specific features.38 Mean-
while, the L1 regularization introduces a penalty to the loss
function proportional to the absolute magnitude of the feature
coefficients.39 It prioritizes more influential features by push-
ing the coefficients of less significant ones towards zero. Both
the dropout and L1 regularization work in concert to enhance
the model’s capacity to be generalized effectively. Furthermore,
the model is designed to favor the utilization of beneficial
physics-informed descriptors, while reducing reliance on those
with less impact. This selective approach ensures that the
model not only stays accurate but also remains relevant and
grounded in the practical aspects of domain science. The mean
squared error between the eight predicted and true PCs is
chosen as the loss function since it can effectively reflect the
hierarchy of significance by preserving the original difference
among the PCs.

Out of the 62 ink formulations, 50 (representing 180 S–S
curves) were chosen as the training datasets, while the remaining
12 (representing 36 S–S curves) were the testing datasets. Here, the
test set comprises a balanced combination of materials consisting

Fig. 4 (a) Changes of each PC (PC1 to PC5) vs. change of the reconstructed S–S curves of a strong/tough sample. (b) A typical S–S curve with labeled
characteristic points.
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of 7 elastic ones and 5 brittle ones. Details on the model’s
intricacies, computation specifics, and information about the
hardware and software utilized in this study are comprehensively
documented in Supplementary Note S4 (ESI†).

Based on the test set, the performance of the MLP model in
predicting the eight PCs is presented in Table 1. While the
specific PC values lack direct physical meanings, the R2 values
in comparison of the predicted PCs and respectively true PCs
reveal the model’s accuracy. The R2 values were notably high for
the first three principal components (0.97, 0.76, and 0.77 for
PC1, PC2, and PC3, respectively) and gradually declined for the
remaining five PCs. This trend is expected, i.e., the importance
of PCs slightly decreases as the number of PCs increases. This
trend also holds true for other evaluation metrics including
RMSE, MAE, and MSE, indicating that the MLP model prior-
itizes the key PCs. RMSE exhibits an opposite trend, starting at
5.40% for PC1 and 10.94% for PC2, and then gradually increas-
ing to 25.18% for PC8. It also underlines the model’s ability to
concentrate on the most impactful PCs for balancing the
accuracy by prevention of overfitting. This inherent character-
istic originates from the L1 regularization and dropout to
ensure a robust fit for the most significant features.

2.6. Evaluating stress–strain curves

The results indicate the high accuracy of the MLP model in
predicting the eight PCs. We then evaluated how well the
reconstructed S–S curves from these predicted PCs agree with
the true ones. It is impractical to evaluate the reconstruction
performance by directly calculating the difference between the
reconstructed and true values at each point of the S–S curves.
This is because the complexities of material behaviors and
testing conditions lead to huge variations of the S–S curves. To
mitigate this issue, two critical mechanical performance
matrices, i.e., fracture strength and toughness, which can be
derived from the S–S curves, were deployed for evaluation. As
shown in Table 2, the R2 values are relatively high for fracture
strength (0.97) and toughness (0.95), while RMSE and MAE of
the fracture strength are 1.01 and 0.82 MPa and for toughness
they are 0.40 and 0.31 MJ m�3. After considering their ranges,

the RMSE of the fracture strength and toughness are relatively
low, i.e., B4% for the fracture strength and B6% for the
toughness. These results indicate the model’s robust ability
to account for a significant portion of the observed data
variance.

To visually evaluate the model prediction performance, the
true and predicted S–S curves (reconstructed from the predicted
PCs by the MLP) of the four samples from the test set with
various fracture strengths and ductility are shown in Fig. 5a.
Additionally, all 36 S–S curves from the test set are provided in
Fig. S4 (ESI†). The yellow lines correspond to the original S–S
curves, while the blue lines represent the reconstructed S–S
curves with the corresponding e_values. To effectively adapt to
the variations originating from the experimental and testing
conditions, the e_values varying from �2 to 2 were incorpo-
rated to reconstruct multiple S–S curves (grey lines). The grey
range encompasses 95% of probability the cases according to
the Z-score definition in a normal distribution. It is found that
these reconstructed S–S curves all fall within the grey areas.
Their shapes and trends are matched well with the ground
truth S–S curves. These results affirm the high effectiveness of
the combination of the MLP model and PCA technique in
predicting the S–S curves.

2.7. Feature importance

Importance of the physics-informed descriptors was explored
via a comparative study training the MLP model using only the
ratios of six monomers and the e_value without PI inputs. As
shown in Table S2 (ESI†), the MLP model attained the highest
R2 value for PC1, while delivering much lower R2 values for PC3
and PC4. This indicates that the model cannot effectively
capture the underlying characteristics of the training datasets
if only using PC3 and PC4. Furthermore, the presence of
negative R2 values for PC2, PC5, PC6, PC7 and PC8 reveals that
the predictive accuracy of the MLP model is even worse than
the prediction results using the average of all sampling data.
This underscores a substantial limitation in the MLP model
without the physics-informed descriptors. This phenomenon
was also found in the predicted S–S curves (Table S3 and

Table 1 Evaluation of the MLP model based on PCs

PC values R2 RMSE MAE MSE Max Min Range RMSE/range (%)

1 0.97 78.84 44.48 6215.58 1263.16 �197.45 1460.61 5.40
2 0.76 9.79 7.58 95.82 65.84 �23.65 89.49 10.94
3 0.77 6.47 5.32 41.86 31.38 �26.13 57.51 11.25
4 0.58 4.63 3.82 21.43 16.21 �12.54 28.76 16.10
5 0.29 2.17 1.78 4.69 3.4 �6.33 9.72 22.32
6 0.21 1.21 0.97 1.47 2.84 �2.96 5.79 20.99
7 0.41 1.25 0.9 1.55 6.96 �2.71 9.67 12.93
8 0.19 0.69 0.53 0.48 1.13 �1.61 2.74 25.18

Table 2 Evaluation of the ML model based on fracture strength and toughness

Metric R2 RMSE MAE Max Min Range RMSE/range (%)

Fracture strength 0.97 1.01 0.82 39.29 11.76 27.53 4.43
Toughness 0.95 0.40 0.31 10.48 4.03 6.45 5.90
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Fig. S5, ESI†). The R2 values for both true stress (0.52) and
toughness (0.38) are lower than those of the MLP model trained
with included physics-informed descriptors. As shown in Fig.
S5 (ESI†), nearly all the predicted S–S curves exhibited huge
variations, revealing the poor prediction capability of the model
without the physics-informed descriptors. These results indi-
cate that the incorporation of physics-informed descriptors not
only increases the predictive accuracy but also aid in accurately
capturing the nuances of the S–S curves.

The significance of these physics-informed descriptors was
further quantified. An integrated gradients (IG) method was
applied to investigate the interpretability of the MLP model.40

The IG method works by examining how change in the gradi-
ents of each feature influences the output. Specifically, for each
PI descriptor, we calculated its interaction feature importance
with each of the six monomers. To synthesize this information
and provide a clearer understanding of the overall impact of
each PI, we averaged the importance scores across these six
monomers for every individual PI. The feature importance
scores for 13 physics-informed descriptors, the ratio of six
monomers, and e_values were shown in Fig. 5b and c. Detailed
methodologies regarding this process are elaborated in the
Methods section. As shown in Fig. 5b, the total energy is the
primary dominant descriptor among these physics-informed
descriptors, which well agrees with expertise and domain
knowledge. It is reported that total energy plays a crucial role
in determining the structural cohesion, arrangement, and

consequent mechanical properties of polymeric materials.41

Other physics-informed descriptors such as solubility, molecu-
lar weight, polar surface area, and the number of heavy atoms
exhibit relatively lower importance. This suggests that the
model effectively leverages these classical features to capture
complementary information related to chain entanglement,
intermolecular forces, and steric effects, which are known to
influence polymer performance.42,43 The remaining descrip-
tors, including complexity, lipophilicity, Hbond donor, Hbond
acceptor, and rotatable bonds, exhibit comparatively lower
feature importance scores. These descriptors primarily pertain
to molecular size, hydrophobicity, and conformational flexibil-
ity. The direct impact of these descriptors on intermolecular
interactions and electronic structures, which play pivotal roles
in determining the mechanical properties of polymers, may be
relatively limited.

As shown in Fig. 5c, the e_value, used to account for the
experimental uncertainty, was notably discernible. This high-
lights the model’s capability to establish a predictive range
based on e_value rather than a simple one-to-one prediction.
The feature importance scores for the six monomers follow the
order of AA 4 HEAA 4 IA 4 IBOA 4 NVP 4 HA. Monomers
like AA and HEAA are noteworthy for their propensity to form
hydrogen bonds, significantly impacting the intermolecular
interactions of the 3D-printed thermoplastics.44 The presence
of IA can be attributed to its function as a softer segment than
HA, contributing significantly to the flexibility and toughness

Fig. 5 (a) The comparison between the ground-truth curve (yellow) and predicted (blue) stress–strain curves of four representative samples.
Considering the uncertainty, the e_values varying from �2 to 2 were used to predict the S–S curves with 95% probability (grey lines). (b) Importance
ranking of the 13 physics-informed features. dd: solubility influenced by the molecule’s dipole moment, dp: solubility parameter, dh: the hydrogen-
bonding component of solubility, d: solubility expressed in terms of energy density (MJ m�3). (c) Importance ranking of ratios of the six monomers and
e_values.
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of 3D printed thermoplastics, despite the potential of HA to
form hydrogen bonds.5 These feature importance scores well
agree with the empirical understanding of the experiments,
thus reinforcing the significance and practical applicability of
these descriptors in the MLP model. This method underscores
the effectiveness of combining data-driven machine learning
with domain-specific expertise, paving the way to more sophis-
ticated and accurate predictive models in materials science.

2.8. Virtual experimentation for screening new ink
formulation candidates

We expect that the developed MLP can be used as a surrogate
model to virtually explore the combination space to accelerate
the ink formulation to make the thermoplastics that show
desired S–S curves. First of all, 100 000 virtual ink formulations
were randomly generated using the Dirichlet distribution
method since it ensures a uniform distribution of each
monomer.45 This approach guarantees an equitable represen-
tation of all possible monomer ratios, providing a balanced and
comprehensive exploration of the design space. Details on
generating virtual ink formulations are provided in Method.
After that, a pre-trained random forest model that we previously
demonstrated was employed to predict the printability of these
ink formulations.5 Only the printable ink formulations were fed
into the MLP model to predict the corresponding eight PCs.
It is noteworthy that the prediction of these ink formulations
took only 1 minute, highlighting the exceptional speed and
efficiency of the virtual screening. Then, the S–S curves were
reconstructed from the predicted PCs. Then, the fracture
strength, maximum strain and toughness were extracted from
these reconstructed S–S curves and plotted in Fig. 6a. It was
observed that most datapoints were clustered in the region
associated with lower toughness, possibly because out of six
monomers, four of them are harder monomers including
NVP, HA, HEAA and IBOA. If they are dominant in the ratio
combinations, they considerably favor the formation of brittle
thermoplastics with low toughness.

Following the virtual screening guided by the MLP model,
new experiments were conducted to validate the prediction

results. We chose these experiments with an aim of identifying
the ink formulations leading to three types of thermoplastics
(strong/tough, strong/brittle, and soft/elastic). For each type,
two ink formulations were randomly selected to print three
specimens. Fig. 6b–g show the profiles and trends of the
predicted S–S curves by the MLP model.

The first one showing the strong/tough S–S curve has a
fracture strength in the range of 15–20 MPa and a toughness
in the range of 15–20 MJ m�3. As a result, a total of 143 ink
formulations were screened, from which two ink formulations
with HA : IA : NVP : AA : HEAA : IBOA weight ratios 0.16 : 0.39 :
0.25 : 0.13 : 0.02 : 0.05 (Fig. 6b) and 0.34 : 0.32 : 0.21 : 0.09 :
0.02 : 0.02 (Fig. 6c) were randomly selected for experiments.
As depicted in Fig. 6b and c the resulting S–S curves from these
two selections conform to the trend predicted by the MLP
model, in which both cases exhibited an instance of premature
fracture. Moreover, to further support our mechanical testing
data and elucidate the failure mechanisms, we conducted
microstructural analysis of the fractured surfaces of the sample
shown in Fig. 6b. For this ductile sample, a digital microscope
reveals a ductile fracture surface (Fig. S6a, ESI†), which
indicates a great degree of plastic deformation before fracture.
The second type is the strong/brittle one with a fracture
strength exceeding 35 MPa and a fracture strain of 2–5%,
resulting in 410 000 ink formulations. This is because lots of
formulations in the virtual experiments show hard and brittle
behaviors due to dominant compositions of NVP, HA HEAA or
IBOA in the formula. The experimental S–S curves of the six
specimens from the selected two ink formulations with HA :
IA : NVP : AA : HEAA : IBOA weight ratios 0.16 : 0.18 : 0.05 :
0.42 : 0.18 : 0.01 and 0.26 : 0.29 : 0.05 : 0.29 : 0.03 : 0.08 are within
the predicted range (Fig. 6d and e). For a brittle sample
represented in Fig. 6d, the fracture surface is notably smoother
(Fig. S6b, ESI†), indicating a different brittle fracture mecha-
nism. These microstructural observations further validate our
experimental results and provide deeper insights into the
different fracture behaviors. The third type is the soft/elastic
one. The ink formulations with a predicted fractural strain of
4250% and a fracture strength in the range of 10–15 MPa were

Fig. 6 (a) Plot of fracture strength, fracture stain, and toughness extracted from the predicted S–S curves. Red stars (i), (ii), and (iii) indicate the chosen ink
formulations shown in Panel (b), (c), (d), (e) and (f), (g), respectively. The S–S curves for the three samples (red, green, and blue) printed with the ink
formulations that are predicted to result in the (b) and (c) strong/tough, (d) and (e) hard/brittle, and (f) and (g) soft/elastic type of thermoplastics. The grey
areas represent the uncertainty range of the predicted S–S curves.
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screened, resulting in 148 formulations. The selected two ink
formulations with HA : IA : NVP : AA : HEAA : IBOA weight ratios
of 0.4 : 0.28 : 0.01 : 0.0 : 0.09 : 0.22 and 0.35 : 0.38 : 0.02 : 0.18 :
0.07 : 0.0 led to the soft/elastic thermoplastics. Their S–S curves
are shown in Fig. 6f and g. We can see that the predicted S–S
profiles agree well with the experimental ones despite the little
discrepancy in their fractural strains. They are out of the range
of the predicted uncertainty range. These experimental valida-
tion results show that the developed MLP for virtual experi-
ments is reliable and rapid because the prediction of 100 000
ink formulations is within one minute. This rapid and efficient
virtual experimentation process can significantly facilitate the
exploration of design space for identification of ink formula-
tions that lead to materials with desired properties, thus
accelerating the development of new materials.

3. Conclusions

In this study, a PIML model was developed for virtual experi-
mentation to accelerate the discovery of 3D printed thermo-
plastics. The collected 216 S–S curves from 62 ink formulations
were dimensionally reduced into eight PCs. Meanwhile,
13 physics-informed descriptors were included using domain
knowledge to increase the robustness and generalization of the
model. The developed physics informed MLP model achieved
superior R2 and RMSE values when predicting the values of the
eight PCs. The reconstructed S–S curves from the predicted PCs
matched well with the true ones. Feature importance analysis
confirmed the importance of physics-informed descriptors,
showing that the total energy is the most important one. After
mapping the mechanical properties of 100 000 ink formula-
tions by the MLP model, six representative ink formulations
that are expected to lead to three different types of thermo-
plastics were chosen. Validation experiments demonstrated a
strong agreement between the predicted and experimental S–S
curves. The methodologies and workflow can be readily
extended to other materials for predicting other performance
curves such as Raman and electrochemistry curves. This under-
scores the versatility and potential of this approach in a range
of materials science and chemical research scenarios, offering a
robust framework for expedited and accurate material and
chemical analyses.

4. Materials and methods
4.1. Materials

2-Hydroxy-3-phenoxypropyl acrylate (HA), isooctyl acrylate (IA,
490%), and acrylic acid (AA, 98%) were purchased from Sigma
Aldrich (St. Louis, MO, US). Diphenyl(2,4,6-trimethylbenzoyl)
phosphine oxide (TPO, 497%), isobornyl acrylate (IBOA, 490%),
N-vinylpyrrolidone (NVP, 499%), and N-(2-hydroxyethyl) acryla-
mide (HEAA, 498%) were purchased from Fisher Scientific (Pitts-
burgh, PA, US).

4.2. 3D printing and mechanical testing

In this study, the LCD 3D printing process was executed using a
resin mixture comprising six monomers: HA, IA, AA, IBOA,
NVP, and HEAA with carefully measured weight ratios. Each
monomer’s ratio in the mixture can vary continuously from 0 to
1. For the sake of experimental precision, the ratios have two
decimal places. The total sum of the ratios for all monomers
equals 1. To make the mixture, a photoinitiator, diphenyl(2,4,6-
trimethylbenzoyl) phosphine oxide (TPO), was added at a
concentration of 2 wt%. The mixture was then subjected to
magnetic stirring for one minute to ensure thorough and
uniform mixing. The resulting homogenized resin was used
in an Anycubic Photon Mono 4K printer, operating at a 405 nm
irradiation wavelength. The printing parameters included a
power density of about 5 mW cm�2, a layer thickness of
50 mm, and an exposure time of 15 seconds per layer. Following
the printing process, the samples were further cured under 405-
nm UV light for 60 seconds. For the mechanical assessment
of the 3D-printed samples, tensile testing was carried out
using a Mark-10 universal testing machine at a loading rate
of 50 mm min�1. To ensure a comprehensive statistical analy-
sis, a minimum of 5 samples were printed and tested for each
monomer ratio.

4.3. S–S curve collection

326 S–S curves were collected from 62 distinct formulations,
each of which was subjected to 5–7 independent mechanical
tensile tests. To ensure reliability and quality, the S–S curves
with significant errors such as measurement inconsistencies,
premature breakage, or excessive mechanical testing noise were
excluded. Consequently, a refined dataset comprising 216 S–S
curves was obtained, with each thermoplastic represented by
2–4 individual curves. To demonstrate the diversity and balance
of the dataset, when considering a maximum strain of 10% as
the threshold, the data showed a distribution where approxi-
mately half of the materials displayed brittle properties
(106 samples), while the other half exhibited higher ductility
(80 samples).

4.4. Data processing of S–S curves

The preliminary cleaning of the raw data from the tensile
testing machine involves trimming the initial segments of each
S–S curve to eliminate any measurements taken before the
machine commenced operation by standardizing the starting
points to a baseline of zero stress and zero strain (0,0). Then, a
critical aspect of the preprocessing involves identifying the
point of failure within each sample’s S–S curve. By pinpointing
and marking the exact location of sample failure on each curve,
the final data point represents the moment of fracture by
capturing the complete mechanical profile of each specimen.
The last step in the data preprocessing routine is to apply an
interpolation technique to standardize the data representation.
Each S–S curve is interpolated to consist of 50 data points
uniformly distributed in the x-axis (strain).
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4.5. Experimental uncertainty

In this study, the e_value is calculated based on normal
distribution to capture the inherent uncertainties in the S–S
data at the fracture point. This refinement involves analyzing
the final strain values at fracture for each dataset as illustrated
in Fig. 2a. By aggregating these values, a comprehensive picture
of the strain behavior at fracture across various samples was
obtained. To encapsulate the variability in the fracture strains
of the materials, first, their means are calculated, providing a
reference for the average material behavior under stress. Then
the standard deviation is computed to quantify the dispersion
among these values, a crucial step in highlighting the hetero-
geneity in material responses. This approach normalizes each
fracture strain relative to this mean, adjusting for variance. This
process results in the e_values, the standard deviations indicat-
ing the deviation of each sample’s fracture point from the
average, Mathematically, this normalization is expressed as:

m ¼

Pn
i¼1

xi

n

Where, m is the mean of the fracture strain for all samples, n is
the number of samples (S–S curves) and xi is the fracture strain
value for each sample.

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

xi � mð Þ2

n

vuuut

where, s is the standard deviation, (xi � m) represents the
deviation of each sample’s fracture strain value.

e value ¼ x� m
s

4.6. Uncovering features’ importance

Due to the inherent complexity and ‘black box’ characteristic of
the MLP model, we utilized the integrated gradients (IG)
method for the interpretability study.40 This approach is parti-
cularly adept at illuminating the contribution of each input
feature to the model’s output. It works by calculating the
gradient of the model’s prediction with respect to each input
feature. It then integrates these gradients along a path from a
baseline input (a zero vector) to the actual input. This process
effectively captures the importance of each feature in the
model’s prediction, highlighting both linear and non-linear
relationships within the model. To do that, the analysis was
expanded to include the entire dataset (both training and
testing datasets) to ensure a comprehensive assessment of
the feature importance. The IG method, applied to each data
point, calculated the significance of every feature in relation to
the model’s predictions, thereby providing a quantitative mea-
sure of each feature’s contribution. This process involved
aggregating importance scores across all samples to derive an
average importance for each feature. Additionally, focused
analysis was conducted on cross-features: where Physics-Informed

descriptors interact with monomer ratios. For each PI descriptor,
the average importance across all its interactions was calculated,
allowing for an assessment of the overall influence of each PI
descriptor on the model’s predictions.

4.7. Virtual experiment ratio generation details

In the generation of random experiment formulations within
our study, we employed the Dirichlet distribution. This dis-
tribution is commonly utilized for generating random propor-
tions under specific constraints, like that the sum of the
monomer ratios equals 1, making it particularly suitable for
simulating a diverse range of monomer mixtures.45 Addition-
ally, an important characteristic of the Dirichlet distribution is
its uniformity and symmetry, when the parameters of the
distribution, known as ‘alpha’, are all set equal to 1. This equal
setting means that each component of the distribution has an
equal chance of being sampled, leading to an evenly spread of
probabilities across all ratios. For each generated combination,
the first five ratios were rounded to two decimal places. The
sixth ratio in each combination was then determined by sub-
tracting the sum of these first five rounded ratios from one.
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