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Potable water reuse is becoming more common as communities deal with increased water demands and

climate change. Understanding the risks associated with potable reuse is essential to ensuring that public

health is protected from waterborne pathogens. This paper provides a review on the studies that have

performed quantitative microbial risk assessments (QMRAs) on potable reuse. The 30 articles included here

studied direct potable reuse (DPR), indirect potable reuse (IPR), and/or de facto reuse (DFR), and a variety

of pathogens, including norovirus, adenovirus, Cryptosporidium, Giardia, Campylobacter, and Salmonella.

The QMRAs were either ‘top-down’ or regulations-focused, where log reduction targets (LRTs) were

determined based on initial (e.g., raw wastewater) pathogen concentrations and risk goals (e.g., 10−4 annual

risk benchmark), or ‘bottom-up’ or risk-estimation-focused, where risks were calculated based on known

pathogen concentrations and observed/credited log reduction values (LRVs). Some studies incorporated

process failures and pathogen decay, which were often a driving factor for risk, but several studies omitted

one or both. Many studies compared multiple treatment trains (e.g., carbon-based advanced treatment

(CBAT) vs. reverse-osmosis-based advanced treatment (RBAT)). They found that treatment-based

differences were pathogen-dependent because certain processes are better able to inactivate or remove

certain pathogens. Many factors influence the risks reported in the various studies, including the assumed

ratios of gene copies to infectious units (GC : IU), assumptions related to ingestion volume and frequency,

dynamic vs. static modeling, and Bayesian approaches. The LRTs for the top-down QMRAs varied within

and between studies, depending partially on the pathogen concentrations used and whether redundancy

was included. The key findings from this review were that while QMRAs often have different goals

warranting different assumptions, it is essential that researchers report these assumptions and their

justifications so that policymakers and regulators fully understand their implications to avoid overly

stringent or nonprotective regulations.

1. Introduction

There has been increased interest in water reuse, particularly
in the United States (U.S.), due to population growth,
urbanization, climate change, and drought. Recycled water
can be utilized for different ends, including non-potable

reuse (e.g., industrial applications, toilet flushing, irrigation1)
or potable reuse. Indirect potable reuse (IPR) involves the
planned discharge of recycled water to an environmental
buffer, such as an aquifer, river, or lake, before being treated
and used as drinking water.2 For direct potable reuse (DPR),
water is treated and added to the drinking water system
through raw water augmentation (upstream of the drinking
water treatment plant) or treated water augmentation (into
the distribution system). DPR through raw water
augmentation is sometimes conceptually similar to IPR,
specifically when an environmental buffer with a short
residence time is used. However, regulatory frameworks may
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Water impact

We conducted a comprehensive literature review on quantitative microbial risk assessments (QMRAs) for potable reuse, which will likely become more
necessary due to climate change and drought. This review provides timely and critical insights into potable reuse QMRAs to inform future research and
policy development for water reuse by identifying gaps, challenges, and best practices in conducting and reporting QMRAs.
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specify the minimum amount of time that recycled water
must spend in an environmental buffer to qualify as IPR.
Finally, de facto reuse (DFR) occurs when there is unplanned
or incidental wastewater influence on a community's
drinking water source. DFR is relatively common, with 25%
of U.S. drinking water treatment plants (DWTPs) serving
more than 10 000 people having more than 1% treated
wastewater in their drinking water source under normal
streamflow conditions—and up to 100% at certain DWTPs
during drought conditions.3

Prior to introducing potable reuse in communities, it is
essential to assess the risks associated with waterborne
diseases that could be acquired through this process.
Quantitative microbial risk assessment (QMRA) is a tool
commonly used to assess the likelihood of infection and/or
illness resulting from pathogen exposure. The four steps
include hazard identification, exposure assessment, dose–
response modeling, and risk characterization.4,5 While QMRA
has been used extensively to analyze the risk of non-potable
reuse including agricultural reuse or other purpose-driven
applications,6–11 there have been fewer studies on potable
reuse.

As potable reuse regulatory development and project
implementation occur, it is essential to understand the
microbial risks presented by these systems, including how
they can be estimated and ultimately managed. Therefore,
the goal of this study was to review the studies that have used
QMRA to assess the risks from potable reuse and highlight
the implications of various assumptions made during the
risk assessment. QMRAs are inherently a product of their
assumptions, and if those assumptions are not clear, a QMRA
can be misinterpreted. This review will also examine the
pathogens driving risks, highlight risk mitigation strategies
expected to be most effective, and compare log reduction
targets (LRTs) and log reduction value (LRV) assumptions
from different studies, as these affect the development of
regulations.

2. Materials and methods

A search was performed on the Web of Science on October
28th, 2024. The search term was “ALL = (QMRA OR
quantitative microbial risk assessment) AND ALL = (water
reuse OR potable reuse OR recycled water OR reclaimed
water)”. This resulted in a total of 254 abstracts which
were screened to exclude papers that focused on non-
potable reuse or did not perform a QMRA. After screening,
28 of these papers were selected for comparison and
analysis.

During the review of the selected papers, two additional
papers were identified that did not use the term quantitative
microbial risk assessment, likely because they were
published before QMRA was a common term; however, these
resources performed a QMRA on potable reuse.12,13 This
brought the total number to 30 studies of QMRA for potable
reuse.

3. Results and discussion
3.1 Summary of studies

Nappier et al.14 wrote a review summarizing epidemiological
studies and QMRAs for potable reuse. The epidemiological
studies found no negative health impacts associated with
potable reuse,14–16 though data were limited. Since 2018,
there have been several more studies published on QMRA for
potable reuse, and some have influenced the creation of LRTs
for potable reuse treatment trains, such as California's
recently drafted DPR regulations.17 Therefore, the goal of this
study was to provide an updated critical review on QMRA for
potable reuse.

Table S1† summarizes the studies which have performed
QMRA for potable reuse. It includes the target pathogens for
each QMRA, the type of potable reuse project (DPR, IPR, and/
or DFR), the associated treatment train(s), and the QMRA
approach (i.e., top-down or regulations-focused vs. bottom-up
or risk-estimation-focused). Top-down QMRAs aim to identify
LRTs based on initial (e.g., raw wastewater) pathogen
concentrations and assumed risk goals (e.g., 10−4 annual risk
benchmark). Bottom-up QMRAs estimate risk based on
known pathogen concentrations and LRVs achieved by or
credited to the treatment train, with the conservative practice
of LRV crediting generally resulting in greater estimated
risks. Those calculated risks are typically compared against a
risk benchmark to determine whether the system is
adequately protective of public health. These risk
benchmarks are often based either on a probability of
infection (Pinf), with a typical target of <10−4 infections per
person per year (pppy), or a metric that considers health
outcomes (e.g., disability adjusted life years (DALYs)), with a
typical target of <10−6 DALYs pppy.18

Table S1† also includes other factors that impact the risk
calculation, including the volume of water consumed and
ingestion frequency. If the pathogen concentrations used in a
QMRA are based on molecular methods (i.e., polymerase
chain reaction (PCR)), the number of gene copies (GC) often
need to be converted to infectious units (IU) for the risk
assessment, as dose–response models are often developed
based on infectious doses. A conservative GC : IU ratio of 1.0
assumes every gene copy equates to one infectious pathogen.
However, molecular methods often overestimate infectious
pathogen exposure because die-off/inactivation generally does
not result in a corresponding level of genome damage.
Therefore, GC : IU ratios can be significantly greater than 1.0
under real-world conditions.19 Some QMRAs incorporate
failures, sensitivity analyses, and/or pathogen decay linked to
retention time in the environmental buffer. Studies differ
based on the dose–response curves used for a given
pathogen, although some studies directly compare multiple
dose–response models to understand the implications of this
assumption on resulting risk estimates. The decisions
researchers made in developing their QMRAs and the
implications of those decisions are discussed in more detail
throughout this paper.
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3.2 QMRA type

QMRAs are typically performed top-down, where the pathogen
concentrations and risk benchmarks are used to identify LRTs,
or bottom-up, where the pathogens concentrations and unit
treatment process LRVs are used to estimate risk (Fig. 1). The
bottom-up approach was used in a number of studies to
determine the risk for a certain scenario or to compare risks
across multiple scenarios.12,13,20–37 The top-down approach can
be used to identify LRTs for regulatory frameworks and the unit
treatment processes that might be necessary to achieve the
overall LRT.19,38–43

Not every study performed a simple top-down or bottom-
up QMRA. Two studies focused on stormwater for potable
reuse and performed a blended top-down/bottom-up
QMRA.42,43 Since the studies used the same pathogen
concentrations and acceptable risk threshold, they both
arrived at the same LRTs. However, they then evaluated
different treatment trains, specifically by varying the level of
aquifer treatment, to determine if the corresponding LRVs
would be sufficient to mitigate risk for the different
pathogens, albeit without directly calculating risk.

MacNevin and Zornes44 performed a bottom-up QMRA but
iterated over different LRVs to determine the minimum
required LRV to consistently achieve a 10−4 annual risk of
infection, providing a similar result to following a top-down
approach. They used the concentrations of Cryptosporidium
and Giardia at 20 different water reclamation facilities and
started with a LRV of 4. They then increased the LRV by 0.5
at each facility to determine if the annual risk of infection
was less than 10−4 every year for 1000 simulations. This
resulted in a total of 40 values of minimum LRVs, ranging
from 5 to 10, for both Cryptosporidium and Giardia. MacNevin
and Zornes44 compared these results in the context of two
potential treatment trains: (1) reverse-osmosis-based
treatment (RBAT: UF-RO-UVAOP-ESB + Cl2) with LRVs of 12/
15/12 and (2) carbon-based advanced treatment (CBAT: O3-
BAF-UF-UVAOP-ESB + Cl2) with LRVs of 16/16/11 for viruses,
Giardia, and Cryptosporidium, respectively. All facilities would
be able to surpass the LRTs with either treatment train.

Soller et al.45 did much of their analysis with the bottom-
up approach to determine risks for specific scenarios, but
also did a top-down assessment for DPR to determine the

LRTs needed to consistently meet the benchmark risk levels.
They found a 14 log reduction of viruses, with norovirus as
the model pathogen, and a 11+ log reduction of
Cryptosporidium and Giardia resulted in around 95% of the
simulations having annual risk of infection less than 10−4.
They demonstrated that 12/10/10 log reductions for viruses,
Giardia, and Cryptosporidium, respectively, were insufficient
to achieve the 10−4 annual risk benchmark in any of their
simulations, which contradicts the findings of MacNevin and
Zornes44 for protozoa. This is potentially problematic
considering that the “12/10/10” framework has been adopted
for IPR in California46,47 and Nevada,48 and now for DPR in
Colorado.49 Differences in assumptions between MacNevin
and Zornes44 and Soller et al.45 included different starting
concentrations of protozoa, with MacNevin and Zornes44

having significantly lower concentrations, the use of point-
estimate LRVs associated with treatment processes44 vs.
uniform distributions,45 and different dose–response models.
A more recent top-down QMRA from Gerrity et al.39 yielded
scenarios that generally supported both Soller et al.45 and
MacNevin and Zornes,44 depending on whether the pathogen
concentrations were assumed to be maximum values or
97.4th percentile values, respectively.

Church et al.50 used QMRA to develop tentative standards
for reuse of dishwashing graywater on military bases for
potable use. They followed a top-down approach, but instead
of trying to determine LRTs, they determined the final
maximum allowable concentrations of norovirus, Salmonella,
and E. coli O157:H7 for dishwashing, showering, and
drinking, without specifying a certain type of treatment.
Church et al.50 found that the maximum allowable
concentration for potable reuse was lowest for E. coli O157:
H7 (2.7 × 10−6 colony forming units (CFU) per mL). Since E.
coli can be monitored with culture-based methods easily and
in a cost-effective manner, Church et al.50 suggested
converting E. coli O157:H7 to total culturable E. coli with a
ratio and applying a 10-fold safety factor. This resulted in a
recommended maximum final concentration of E. coli of 1.6
× 10−2 CFU mL−1 when treating recycled dishwashing water
for DPR. Overall, top-down QMRAs are useful for identifying
LRTs and creating regulations, while bottom-up QMRAs can
be used to evaluate the expected performance of an existing
treatment train or to determine the inherent safety factor.

3.3 Potable reuse approach (DFR vs. IPR vs. DPR)

Most studies performed their assessment on only
DPR19,23,29,32,38,39,44,45,50 or de facto reuse/IPR.12,13,27,28,33–37,41–43

A few studies stated they were doing IPR but neglected the
impact of the environmental buffer and pathogen decay,
making their analyses consistent with a DPR analysis,26,30

although this is consistent with LRV crediting frameworks that
generally omit environmental attenuation.

DPR can either utilize raw water augmentation or treated
water augmentation (Fig. 2). For raw water augmentation, the
treated recycled water can be added back to an environmental

Fig. 1 Schematic of top-down versus bottom-up QMRAs.
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buffer (i.e., aquifer, river, or lake) upstream of a drinking water
treatment plant or blended directly with the water prior to
treatment. This can be distinguished from IPR based on the
residence time in the environmental buffer, with some
regulatory frameworks requiring minimum storage times for an
IPR designation (e.g., a minimum of two months in
California46). Bailey et al.23 focused their risk assessment on raw
water augmentation, with a retention time of 5 days and a
mixing ratio of 20% recycled water and 80% surface water.
Treated water augmentation occurs when the recycled water is

blended directly into the distribution system. Amoueyan et al.21

studied the risks of both types of DPR. For IPR, the
environmental buffer can either be surface water or
groundwater, depending on the needs of a particular
community. DFR is similar to IPR, but the treated wastewater at
the drinking water intake is unplanned or incidental and often
lacks additional/advanced treatment.

Both Soller et al.31 and Amoueyan et al.21 compared DFR,
IPR, and DPR and found the risks of IPR and DPR to be lower
than the risk of DFR if the advanced water treatment (AWT)
facilities are operating within design specifications.
Amoueyan et al.21,22 found that the lowest risk occurred for
DPR with no conventional source water (e.g., surface water or
groundwater), and that the risk for IPR was dominated by
pathogens assumed to be present in the conventional source
water (i.e., not derived from local wastewater), leading to
lower risks with greater recycled water contributions (RWCs).
Other studies did not account for pathogen concentrations in
the traditional source water and therefore found increased
risk with higher percentages of recycled water.27 Future
assessments of risk in IPR systems should consider pathogen
concentrations in the source water, unless there are site-
specific data to support their omission, as this would allow
for a fair assessment of the relative risk impact of recycled
water vs. conventional source water. This could prevent
expensive additions to the advanced treatment train on the
recycled water side when the driver of risk is actually the
conventional source water.

IPR is already implemented in many places, including in
the U.S. in states such as California, Virginia, Texas, and
Georgia, as well as outside the U.S. in South Africa, Australia,
and the United Kingdom.51 However, IPR is not a viable
option for all communities, especially communities that lack
access to a reservoir or aquifer with an adequate residence
time or dilution ratio to sufficiently mitigate risk or meet
regulatory requirements. Constructing and maintaining
pipelines and pumping the treated water to reservoirs, where
the water will be treated again after it is withdrawn, can be
barriers for IPR implementation in some communities.
Therefore, DPR may be the most sustainable option for
certain communities, assuming DPR projects can be
permitted. However, DPR greatly reduces the time available
for detection and remediation of treatment issues (i.e., the
response retention time or RRT).19 Adding an engineered
storage buffer (ESB) to a DPR treatment train increases the
RRT, allowing for risk reduction through mitigation of off-
specification treatment.26 This potentially increases the
attractiveness of DPR from the perspective of regulators and
other stakeholders.

3.4 Hazard identification: pathogens studied

The first step in QMRA involves hazard identification, which
includes choosing the pathogen(s) of greatest relevance for
the goals of that study. Most studies analyzed multiple
pathogens, although several chose to focus on a single

Fig. 2 Differences between DFR, IPR, and DPR (raw water
augmentation and treated water augmentation).
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pathogen.13,20,22,25,41 This simplified the analyses and
allowed for more focused evaluations, such as equivalency
across reuse type (DPR, IPR, and DFR),22 the effect of
pathogen ‘spikes’ and hydraulic considerations on risk,25

comparisons of static vs. dynamic modeling and exposure
routes,20 or how Bayesian hierarchical modeling influences
parameter uncertainty with scarce data.41 Based on the
Australian Guidelines for Water Recycling, seven studies used
rotavirus or adenovirus, Cryptosporidium, and Campylobacter
as their pathogens.28,35–37,40,42,43 Across the other 23 studies,
norovirus and Cryptosporidium were the most commonly
included pathogens (included in 57% and 70% of studies,
respectively), and Giardia was also included in 43% of the
studies, though Pecson et al.29 did not include Giardia
because Cryptosporidium was assumed to be a conservative
surrogate for Giardia. Similarly, adenovirus sometimes
required lower LRTs than norovirus and enterovirus,
meaning that any LRT approach that was sufficient for
controlling norovirus and enterovirus would also be sufficient
for adenovirus.19,39 Though some studies included bacteria,
such as Salmonella and Campylobacter, many studies
included only protozoa and/or viruses. Potable reuse
regulations in the U.S. generally omit bacteria because
requirements for protozoa and viruses are assumed to be
highly protective against bacteria as well.21,32 Potable reuse
systems in the U.S. are also required to comply with the Safe
Drinking Water Act (SDWA), which includes stipulations for
bacteria.

There is still hesitance about including norovirus in
QMRAs for water reuse because there are not widely used,
standardized culture methods to measure norovirus
infectivity, and there is uncertainty around how to utilize
molecular (e.g., qPCR) norovirus concentrations.26,29

Moreover, there are multiple dose–response models for
norovirus that provide different results, and there is no
consensus on which is most appropriate. As can be seen in
Fig. 3, the same dose of norovirus (100 infectious units) can
result in an order of magnitude difference in the probability
of infection. At this dose, the dose–response functions
without an aggregation parameter predict the following
probabilities of infection: the hypergeometric 1F1 model52

predicts 53%, the fractional Poisson53 predicts 72%, and
beta-Poisson54 predicts 14%. Meanwhile, the fractional
Poisson with an aggregation parameter53,55,56 predicts only
6%. The goal of an aggregation parameter is to prevent
overestimation of infection by accounting for incomplete
mixing of norovirus with a water body, which was observed
in the inoculum used in a human trial.57 The drawback of
including an aggregation parameter, however, is the
unknown extent of aggregation or disaggregation of norovirus
in environmental waters, leading some studies to consider
the aggregated models as less conservative (i.e., predict lower
probabilities of illness). Chaudhry et al.24 found that using
the fractional Poisson aggregated dose–response model for
norovirus resulted in three orders of magnitude lower
median risk than using the disaggregated model. Soller

et al.58 took an approach of modeling norovirus risk within
two “bounds”, where the lower bound was set as the
aggregated fractional Poisson and the upper bound was set
to the hypergeometric 1F1. Lim et al.27 also justified the use
of the disaggregated hypergeometric 1F1 as being more
conservative; however, in the range simulated in Fig. 3, the
fractional Poisson predicts the highest probability of
infection at lower doses, indicating that the Messner et al.53

model (not considered in the study) would be a potential
better choice for an upper bound or conservative model. A
more in-depth discussion and full comparison of norovirus
dose–response models was published in Van Abel et al.54

Many of the reviewed QMRAs19,21,22,24,29,31,32,45 included
multiple dose–response models for norovirus and
Cryptosporidium due to the differences in predicted risks.

Drawbacks for norovirus inclusion in QMRAs are not
limited to the dose–response model. Norovirus has multiple
molecular assays that capture different strains, and some
people are resistant to certain strains,39,59 complicating the
interpretation of the molecular results. Although it was
included in their sampling campaign, Bailey et al.23 chose
not to include norovirus in their risk assessment because
they did not detect any gene copies in their recycled or
surface water samples. Pecson et al.19 found that the
uncertainty in the LRTs for norovirus spanned over 10 orders
of magnitude and therefore suggested using a hybrid
approach of using enterovirus occurrence data, which are
culturable and in high concentrations in wastewater, and the
rotavirus dose–response model, which is highly infectious, as
a measure of gastrointestinal virus in reuse QMRAs.

Soller et al.45 argues that norovirus should be included in
risk assessments because it causes approximately 20 million
illnesses a year in the U.S.,60 more than half of the illnesses

Fig. 3 Impact of norovirus dose–response model on risk:
hypergeometric 1F1 (no aggregation) from Teunis et al.,52 fractional
Poisson with aggregation from Atmar et al.55,56 and Messner et al.,53

fractional Poisson with no aggregation from Messner et al.,53 and
approximate beta-Poisson (no aggregation) from Van Abel et al.54
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caused by all foodborne pathogens.61 They also argue that
newer dose–response models for norovirus can capture
uncertainty.58 Soller et al.45 also mentions that though norovirus
is not easily culturable, the GC : IU ratios for other enteric
viruses are sometimes low (i.e., molecular data ≈ culture data),
recently excreted viruses are likely mostly infectious, and that it
is better to use conservative estimates.62 These all support the
inclusion of norovirus molecular data in reuse QMRAs,
particularly when characterizing influent wastewater
concentrations. In contrast, a dynamic QMRA, where
community transmission was taken into account, found that
waterborne norovirus likely contributes no appreciable risk to
public health, because the risk for this specific organism in a
community is dominated by secondary infections and
foodborne transmission.20

Three studies have also used a surrogate enteric virus in
their QMRA.12,13,25 While Tanaka et al.13 used concentrations
from an enteric virus database with 377 samples from
unchlorinated secondary effluents, Asano et al.12 used an
enteric virus database with 424 secondary effluent samples
and 84 tertiary effluent samples. Gerrity et al.25 used SARS-
CoV-2 concentrations in wastewater with the hypergeometric
dose–response model for norovirus based on the assumption
that SARS-CoV-2 concentration dynamics were comparable to
norovirus. While their calculated relative risks do not
correspond to risk for actual pathogens, Gerrity et al.25 were
able to gain insights about how incidental dispersion or
engineered mixing could be implemented to attenuate
pathogen concentration spikes and ultimately reduce high-
end risk estimates. Though Asano et al.12 used the same
concentrations for all the enteric viruses, they modeled the
risk separately for poliovirus 1, poliovirus 3, and echovirus 12
due to different infectivities.

3.5 Pathogen concentration determination

Determining accurate pathogen concentrations for QMRAs is
vital because pathogen concentration has a large impact on risk,
but there are many uncertainties around what concentrations
should be used. There are seasonal and geographic variations
in pathogen concentrations,63 and some studies use point
estimates12,39,40 rather than distributions. Different probability
distribution functions (PDFs) could be fit to the pathogen data,
such as lognormal or triangular. While most studies24,29,31–33,45

used pathogen concentrations from raw wastewater, several
used wastewater effluent data,12,13,23,26,27,44 and a few used
point estimates of pathogens in urban stormwater.42,43 Many
QMRAs assessed the sensitivity of the risk to different
concentrations of pathogens in the water, often finding that
they were the driving factor in risk.12,13,21–23,33,45 Chaudhry
et al.24 and Soller et al.45 independently used the same meta-
analysis for pathogen concentrations (i.e., statistical
distributions of norovirus concentrations)63 and arrived at
similar risk estimates.

However, determining accurate and appropriate values
can be difficult. Molecular data measures the number of gene

copies, rather than the number of infectious pathogens, so
the number of gene copies must be converted to infectious
units (GC : IU ratios or harmonization factors). The GC : IU
ratio has a large impact on risk,19,25,64 and the numbers can
vary widely. As discussed by Gerrity et al.,25 conservative
approaches assume a GC : IU ratio of 1.0, where every gene
copy is assumed to equate to an infectious pathogen, but the
actual number of infectious units might be orders of
magnitude lower due to inactivation/degradation.19 Most
studies assumed all gene copies were infectious, but Bailey
et al.23 had percentages of infectious units for each pathogen.
They used point estimates of 38.5% infectious for adenovirus
(2.6 : 1 GC : IU), 65% for Salmonella (1.5 : 1 GC : IU), 25% for
Cryptosporidium (4 : 1 GC : IU), and 13% for Giardia (7.7 : 1
GC : IU). Gerrity et al.39 modeled the GC : IU ratios for
norovirus, enterovirus, and adenovirus as log10-uniform
distributions from 1 : 1 to 200 : 1, while Amoueyan et al.21

used a 700 : 1 point estimate GC : IU for adenovirus. Culture
methods, on the other hand, may underestimate the number
of infectious viruses present. One proposed option to address
this is to assume that only 10% of the viruses present are
culturable,65 and this 10-fold correction factor has recently
been applied to enterovirus culture data.19,39

Low concentrations of pathogens can be difficult to measure,
so using larger sample volumes, or more specifically larger
equivalent sample volumes (ESVs),66 can provide more data
with fewer non-detects. For example, Pecson et al.19 used 1 L
samples to identify Cryptosporidium and the detection rate was
98%, compared to 40% with 50 μL samples.67 This would not
be of concern for top-down QMRAs if the LRTs are determined
from the highest pathogen concentrations, but for bottom-up
QMRAs using pathogen concentration distributions, the lowest
concentrations would be censored and potentially omitted,
resulting in overestimations of risk. The pathogen
concentrations in the assessment also depend on the PDFs used
to model them. Zhiteneva et al.68 performed a review
summarizing assumptions made when selecting the PDFs for
source water, treatment steps, and the dose–response models
for potable and non-potable reuse. PDFs assume variability in
the system and provide a range of final risk estimates. Each
dataset needs to be individually fitted to a PDF, and a poorly
chosen PDF can over- or underestimate risk.

Historically, QMRAs have relied on limited data. However,
the rise of wastewater surveillance for SARS-CoV-2 during the
COVID-19 pandemic has caused a substantial increase in
wastewater biobanks, with additional reuse-relevant pathogen
datasets based on these samples being published. This
increase in pathogen data highlights the importance of
reviews such as Zhiteneva et al.68 and Darby et al.69 These
papers focus on identifying and aggregating high-quality
pathogen data, and they provide criteria on fitting data to
distributions, guiding future pathogen data collection and
selection for QMRAs.

Dispersion/mixing of pathogens in sewer collection systems
and wastewater treatment plants (e.g., in clarifiers and aeration
basins) results in overall ‘averaging’ of pathogen concentrations
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over time, effectively attenuating high end concentrations but
also elevating low-end concentrations. This may inflate
measures of central tendency by increasing risk for most
ingestion events, but it will also reduce risks at the upper
percentiles that often drive LRT determinations.25 The
attenuation effect is particularly apparent for intermittent
spikes in influent pathogen concentration (i.e., outlier events).25

Some QMRAs use point estimates based on maximum influent
pathogen concentrations, but those data points may be spikes
(i.e., outliers) that might actually be attenuated after accounting
for dispersion. However, this benefit of dispersion is only
realized with intermittent spikes; if high concentrations last for
an extended period of time (e.g., during a community outbreak),
the effects of dispersion might be negligible. Just as there are
stipulations for chemical peak averaging,17 implementing
similar guidelines for pathogens could be beneficial,
considering the significant impact it could have on pathogen
concentrations and resulting LRTs or credited LRVs.

3.6 Environmental buffers: retention time, pathogen decay,
and recycled water contribution

Pathogens decay over time, making the inclusion of retention
time in the environmental buffer an important consideration.
However, many QMRAs and regulatory frameworks do not
explicitly consider LRVs during storage or may only account
for decay for certain pathogens. In California, for example, 1
log virus reduction is credited for each month that the water
is retained underground for groundwater replenishment.70 If
pathogen decay is not considered, any corresponding risk
estimates might be artificially inflated, particularly for IPR
and DFR scenarios. Similarly, omitting decay from LRV
crediting inevitably increases capital and operations and
maintenance costs associated with engineered treatment
trains, while potentially yielding no appreciable change in
public health protection.39

The differences in decay rates for the different pathogens
impact the needed retention times for risk reduction. For
DFR, Amoueyan et al.22 found that risk associated with
wastewater-derived Cryptosporidium exhibited a meaningful
increase with fewer than 105 days of storage in the
environmental buffer, while Amoueyan et al.20 found that a
reservoir storage time of at least 30 days could potentially
reduce risk from norovirus in a DFR system below that of
DPR, using bacteriophage MS2 decay rates as a surrogate for
norovirus.

Even 1% of wastewater effluent in the drinking water
source water can have important health risk considerations
in reuse.24,31 Soller et al.31 included Cryptosporidium, Giardia,
and norovirus in their analysis, and used residence times of
2–360 days for DFR and 30–360 days for IPR. They found that
simulations with a retention time less than 180 days
exceeded the annual risk benchmark of 10−4, even with an
RWC of 1% for DFR. With more than 10% wastewater
contribution with DFR, more than 180 days were needed to
consistently achieve a probability of annual infection of less

than 10−4. Approximately 90 days in the reservoir were
required to consistently meet the annual risk benchmark of
10−4 for IPR with surface water augmentation. For DFR, Lim
et al.27 also found a negative correlation of risk with the
residence time in the lake (between 270 and 360 days), and a
positive correlation of risk with RWC, because they assumed
the source water was pathogen free. Tanaka et al.13 and
Asano et al.12 both assumed a residence time of 6 months in
the reservoir, while Zhiteneva et al.33 modeled their residence
time between 50 and 120 days. In California, to be
considered IPR, instead of DPR with raw water augmentation,
the retention time must either be at least 180 days or the
project could apply to the State Board for approval for a
reduced theoretical retention time, though it can be no less
than 60 days.46

Page et al.28 studied the impact of aquifer treatment for
urban stormwater in a managed aquifer recharge system. They
found that the aquifer alone resulted in LRVs of 1.4, 2.6, and
>6.0 for rotavirus, Cryptosporidium, and Campylobacter,
respectively, based on diffusion chamber studies. They used
different decay rates for the pathogens in the wetlands and the
aquifer, with higher average decay rates for rotavirus and
Cryptosporidium in the wetland, and a higher decay rate for
Campylobacter in the aquifer. The importance of the aquifer as a
treatment barrier depended on the pre- and post-treatment
processes, but the estimated risk was less than 10−6 DALYs pppy
with adequate treatment and retention time.28

Pathogen decay is not always included in QMRAs, even when
studying DFR or IPR,24,30 but it can have a large impact on the
risk and can vary seasonally. Though Lim et al.27 did not include
a temperature component to their decay equations, they
highlighted it as a parameter to be incorporated in future
models. Bailey et al.23 modeled pathogen decay at different
temperatures (4 and 20 °C), but their retention time was only 5
days. Amoueyan et al.21 did include the temperature
component, using higher decay coefficients at higher
temperatures, potentially allowing for a more accurate
assessment of decay. Pathogen decay rates depend on a variety
of factors including temperature, sunlight, and salinity, and the
experimental decay rates for the same viral types can vary by
over an order of magnitude.71–73 However, the exact impact of
these factors on decay rates of different pathogens and how they
impact each other is still unknown, thus more data are needed.
Collecting these data is essential because it can elucidate what
LRVs could be credited for different pathogens at various
retention times to help reduce reliance on engineered treatment
processes by leveraging natural management barriers.

3.7 Treatment processes

Treatment processes have different LRVs for different
pathogens (Fig. 4), and the pathogen that drives risk in the
final estimates depends on the treatment train in
question.24,32 Soller et al.32 and Chaudhry et al.24 found
norovirus or Cryptosporidium as the driving factor of risk of
infection depending on the treatment processes considered.
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For example, RBAT (WWTP-MF-RO-UV-ESB + Cl2) led to
norovirus having the highest risk, while CBAT (WWTP-O3-
BAF-UF-UV-ESB + Cl2) resulted in the risk being dominated
by Cryptosporidium, in part because of differing observed or
credited LRVs for various treatment process/pathogen
combinations (Fig. 4).32,45 In their study, Soller et al.32 used
data describing conventional filtration of wastewater to
derive LRVs for biologically active filtration (BAF), although
LRVs are not currently credited for BAF under some
regulatory frameworks (e.g., in California).45 Kimbell et al.34

compared two RBAT trains (TT1: BNR-MBR-RO-UV AOP-Cl2-
O3 and TT2: BNR-MF/UF-CF-RO-UV AOP-Cl2-O3) and found
that TT1 (14.5/14/12) achieved higher virus LRVs than TT2
(14/15.5/13.5) but lower removal of Giardia and
Cryptosporidium. Amoueyan et al.21 also found that whether

the annual disease burden was higher for Cryptosporidium or
norovirus depended on the treatment train.

As noted earlier, observed LRVs, which are measured
experimentally and represent the actual inactivation or
removal of microorganisms from the water, are often not the
same as the credited or regulatory LRVs. For example,
Amoueyan et al.21 incorporated mean observed LRVs for
microfiltration (MF) of 4.60, 2.40, and 3.65 for
Cryptosporidium, norovirus, and adenovirus, respectively, but
noted that the corresponding credited LRVs would likely be
4, 0, and 0 in an actual system. Amoueyan et al.20 estimated
risk for norovirus using both LRV approaches and found the
risk was orders of magnitude higher using regulatory LRVs—
sometimes yielding 95th percentiles exceeding 10−4 pppy.
When lower credited LRVs result in overestimated risk to

Fig. 4 Conceptual diagram of the credited effectiveness of different treatment processes on protozoa and viruses. LRVs from Soller et al.45 Note
that observed treatment efficacy may be substantially different from credited treatment efficacy, resulting in an LRV ‘gap’.
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consumers, the outcome may be overdesigned and potentially
cost-prohibitive projects.

Chaudhry et al.24 conducted a literature review to incorporate
observed LRVs and found membrane processes were the most
effective at reducing overall risk, despite UV generally being the
most robust from a crediting perspective. Many potable reuse
systems will employ UV doses well in excess of 200–300 mJ cm−2

in order to target photolysis of N-nitrosodimethylamine (NDMA)
and/or oxidation of recalcitrant compounds such as 1,4-dioxane
(i.e., UV AOP), yielding LRV credits of up to 6 for all pathogen
groups. In contrast, the mean LRV for UV in Chaudhry et al.24

was 2.2 for Cryptosporidium and 5.0 for norovirus. The
Cryptosporidium LRV74 was based on a UV dose of 1.8 mJ cm−2,
and the norovirus LRV75 was based on a UV dose of 127 mJ
cm−2 (with MS2 as a surrogate). Since the LRV credits were
limited by the lower assumed UV doses, Chaudhry et al.24 found
that RO—and not UV—resulted in the largest risk reduction
when it was employed. When RO was not used, MF and NF
reduced risk most in their treatment train. Other studies also
describe the significance of UV design dose on the resulting
pathogen risk. For example, Soller et al.32,45 found that reducing
the UV dose from 800 mJ cm−2 (i.e., UV AOP) to 12 mJ cm−2 (i.e.,
closer to traditional wastewater treatment) increased the risk of
infection by four orders of magnitude, making the low dose UV
treatment trains unable to meet the benchmark risk levels.

Annual risks of infection were sometimes lower for CBAT
(O3-BAF-UF-ESB + Cl2) vs. RBAT (MF-RO-UV-ESB + Cl2),

45 which
was consistent with Amoueyan et al.20,21 who also compared
CBAT (UF-O3-BAC-UV-ESB + Cl2) vs. RBAT (MF-RO-UV-ESB +
Cl2). Although risk may have been lower with CBAT because risk
incorporates both pathogen load and treatment, RBAT was
sometimes superior from a treatment perspective (i.e., higher
overall LRVs), particularly for Cryptosporidium.32,45 Ozone is a
robust barrier in terms of bulk organic matter transformation,
trace organic compound oxidation, and microbial
inactivation,76 yet protozoan pathogens (namely
Cryptosporidium) still demonstrate resistance.77 On the other
hand, membrane-based treatment can be a challenge in terms
of regulatory virus LRV crediting but is generally accepted as a
robust barrier for protozoan pathogens from both a regulatory
and observed LRV perspective (Fig. 4). Remy et al.30 evaluated a
unique treatment train consisting of filtration, reverse
electrodialysis, micro-grain activated carbon (μGAC), and UV as
advanced tertiary treatment before reservoir augmentation. They
found that train consistently yielded higher risks than a more
conventional potable reuse train with UF and RO with a 5%
bypass. However, both treatment trains were able to meet the
10−6 DALY benchmark for viruses, bacteria, Giardia, and
Cryptosporidium.

3.8 Exposure assessment: ingestion volume and frequency

When doing QMRA for drinking water, both the daily ingestion
volume and frequency can impact the final risks.26,29 With
respect to volume, most studies assumed 2 or 2.5 L per day, but
Kobayashi et al.35 assumed 0.75 L d−1, while Church et al.50

assumed 3 L d−1. More frequent ingestion events are more likely
to capture rare/short-term but high consequence scenarios.
However, calculated risk is somewhat attenuated when the
overall daily ingestion volume is spread out over multiple
ingestion events (Fig. 5). When California created their draft
DPR regulations, they used a daily risk benchmark and 96
ingestion events per day. The modeled failure (assumed to be
15 minutes) would only impact one off-specification ingestion
event and would be averaged out by 95 other nominal ingestion
events during that day. Similarly with 96 ingestion events, a
peak pathogen concentration can also be averaged out. This
effectively creates a 2 log buffer (∼1% of the ingestion events
are impacted by failure or a pathogen spike), which would not
be the case for QMRAs assuming one ingestion event per day.39

This is also the basis for California requiring only 4 log
treatment redundancy to account for a 6 log treatment process
failure lasting 15 minutes.39

This phenomenon is similar to the dispersion effect
discussed in Gerrity et al.25 To further explore the risks with
different consumption patterns, Jones et al.26 modeled 1, 8,
or 96 ingestion events per day, which captured different
pathogen concentrations and different log reductions for
each treatment process, based on different possible failure
analyses. Only consuming water once per day results in a risk
profile that has a larger range than when water is consumed
multiple times per day. However, Jones et al.26 also found
higher median risks for multiple consumptions a day, again
because ‘averaging’ has a disproportionate effect on the
lower percentiles of risk.

3.9 Risk characterization

There are different ways to measure risk. Risk endpoints
include probabilities of infection and illness, which can be
translated into DALYs. Commonly used risk thresholds for
probability of infection (Pinf) from drinking water include 10−4

infections per person per year (pppy) or a daily risk of 2.7 × 10−7

(i.e., 10−4 annual risk divided equally across 365 days). The daily
risk threshold is potentially more conservative, and potentially
more protective of highly susceptible populations, because it

Fig. 5 Impact of number of consumption events on risk.
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does not allow higher risk days to be averaged out, as is the case
for the historically common annual risk calculation. Risk of
illness requires an additional adjustment to account for the
proportion of infections that result in a symptomatic illness.
DALYs, on the other hand, are a better representation of the
overall health burden of pathogens, as they measure the life
years lost or lived with a disability due to pathogen exposure
and subsequent infection and illness. The typical guideline is
<10−6 DALYs pppy.18 Some studies, instead of directly using a
dose–response function, used the dose equivalent to 10−6 DALYs
for each pathogen.40,42,43

Using one risk endpoint versus another can sometimes lead
to opposing conclusions. For example, Lim et al.27 performed a
risk assessment for norovirus and Cryptosporidium for DFR and
found a higher risk of infection for norovirus (4.4 × 10−2 to 6.4 ×
10−1 pppy) than Cryptosporidium (1.2 × 10−4 to 8.8 × 10−3 pppy),
but a greater disease burden for Cryptosporidium (7.1 × 10−8 to
5.3 × 10−6 DALYs pppy) than norovirus (6.2 × 10−11 to 3.0 × 10−8

DALYs pppy). This difference is caused by the assumption that
Cryptosporidium will have a greater negative health impact (i.e.,
more severe) than a norovirus infection. When deciding on the
preferred risk endpoint, the intended audience is an important
consideration. DALYs are potentially more appropriate for
communicating and comparing risks outside the U.S., as they
are recommended by WHO and used globally (e.g., in
Australia).35 However, regulatory development for potable reuse
in the U.S. has primarily focused on probability of infection.39

Remy et al.30 and Zhiteneva et al.33 focused on the DALY
framework and found risk was driven by Cryptosporidium.
Although Remy et al.30 found that Cryptosporidium led to
higher DALY estimates than rotavirus, Page et al.28 estimated
higher DALYs for rotavirus than Campylobacter and
Cryptosporidium. This highlights how disease burden may
need to be reevaluated over time, at least in certain regions.
The rotavirus vaccine RV5 was introduced in the U.S. in 2006,
and the RV1 vaccine was introduced in 2008. Both vaccines
are effective in reducing risk and disease burden.78 As new
vaccines are developed and dose–response models are
created, the pathogens targeted by regulations may need to
change to be properly representative. For example, Bailey
et al.23 published a QMRA in 2020 and found that adenovirus
actually yielded the highest risk when compared to
Salmonella, Cryptosporidium, and Giardia. This was due to
adenovirus' higher concentrations in recycled water and
surface water, presumably due to inadequate disinfection
during wastewater treatment that incorporated
chloramination and UV. Kimbell et al.34 found that
adenovirus also had the highest risk when failures were
modeled, compared to a generic enteric virus,
Cryptosporidium, and Giardia, though without failures, the
generic enteric virus had higher average risks. In either case,
viruses dominated the risk calculation because of their
higher concentrations.

One study developed a unique alternative to the common
risk benchmarks. Church et al.50 chose a target of one illness
per 50 000 exposures (daily probability of illness of 2 × 10−5

per person), meaning that if a city had 50 000 people
drinking once per day, one person per day would get ill on
average. This benchmark was chosen because it was two
orders of magnitude less than the number of food and water-
related illnesses in a military field setting, allowing reuse to
contribute up to 1% of the health burden. For reference, this
would be much higher (less conservative) than the
aforementioned 2.7 × 10−7 daily probability of infection.

3.10 Impact of failures on risk

A single day with a peak pathogen concentration, either due to
a pathogen spike or treatment process failure(s), can drive
annual risk, so it is important to have reliable online
monitoring.32 Failure can be the primary driver of high risk, so
it is important to stress test the failure assumptions
incorporated into a QMRA.26,33 Amoueyan et al.20–22 included a
probability of failure for each treatment process in the train.
Amoueyan et al.21 found that while DPR with treated water
augmentation typically satisfied public health benchmarks,
compound treatment process failures, where multiple processes
fail interdependently/simultaneously, resulted in risks as high
as 10−2. They also performed a sensitivity analysis on treatment
process failures to determine how large of an impact a failure
would have on the risk from each pathogen. However,
Amoueyan et al.21 noted they may have overestimated the
frequency and/or severity of failures (i.e., LRV = 0). They also
highlighted that potable reuse systems would likely have failsafe
protocols, such as continuous monitoring with diversions when
failures occur, and this was not incorporated into their QMRA.
Similar to Amoueyan et al.,21 Zhiteneva et al.33 explored the
failure of each treatment step by setting each LRV to 0, and they
also created a model where the performance of one LRV was
correlated with another by 0.5, which could be used to explore
process dependency. Kimbell et al.34 included three possible
failure scenarios: a 3 log reduction in treatment for 24 h on 9%
of simulated days, a 6 log reduction in treatment for 24 h on 1%
of simulated days, and a compound 9 log reduction in
treatment for 24 h occurring on 0.09% of simulated days.
Without failure, one of their treatment trains had a mean Pinf
for adenovirus of 6.65 × 10−9 pppy, but the Pinf reached a
maximum of 7.34 × 10−2 with failures. Compound failures
resulted in larger 95th or 99th percentile DALY values, depending
on their frequency, demonstrating the importance of
considering any correlations in process failures.

Jones et al.26 compared no failure, real failure values from
the literature, and total failure. Total failure of UV-AOP
(which was simulated to last 15 minutes due to online
monitoring and subsequent diversion to an ESB) was the
largest driver for increased risk, due to its 6 log credit during
normal operation. Jones et al.26 found that the hypothetical
failure increased the risk for higher percentile annual
infection probabilities by up to six orders of magnitude, but
the ESB ensured the annual risk of infection still complied
with the WHO annual risk limit. Pecson et al.29 assumed a
maximum of one critical failure per year per process, where

Environmental Science: Water Research & Technology Tutorial review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

2.
07

.2
02

5 
07

:1
0:

52
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ew00661e


552 | Environ. Sci.: Water Res. Technol., 2025, 11, 542–559 This journal is © The Royal Society of Chemistry 2025

the LRV for that process became 0, which was likely a
conservative estimate. They reported median, 95th, and 99th

percentile annual risks of infection with and without failures
for Cryptosporidium and enterovirus. The median risks of
infection without failures were 4.9 × 10−11 and 1.5 × 10−14 for
Cryptosporidium and enterovirus, respectively. With failures,
the median risks of infection increased to 1.4 × 10−7 for both
Cryptosporidium and enterovirus, and the 99th percentiles
increased to 1.1 × 10−5 and 2.1 × 10−5 for Cryptosporidium and
enterovirus, respectively. Since Jones et al.26 and Pecson
et al.29 were not modeling the impact of compound failures,
the risks during failure events were lower than those found
by Amoueyan et al.21 This highlights the importance of
preventing failures and ensuring any treatment train is
robust and reliable.

Bailey et al.23 measured pathogen concentrations in recycled
water after conventional wastewater treatment and assumed a
worst-case scenario for the LRV at the drinking water treatment
plant using real-world data from Hijnen and Medema.79 They
compared risks from these worst-case scenarios to baseline
scenarios, specifically U.S. EPA's LRVs (4/3/2 for virus/Giardia/
Crypto) and the WHO's DALY-based LRVs (4/3/3 for virus/
Giardia/Crypto) for conventional drinking water treatment. They
found that the mean and 95th percentile annual risk for
Salmonella, Cryptosporidium, and Giardia for the worst-case
scenarios were always within an order of magnitude of the
baseline conditions. For adenovirus, the mean and 95th

percentile annual risk of infection was between 1 and 2 logs
higher for the worst-case scenarios. Because Bailey et al.23 used
observed data, these worst-case scenarios had less of an impact
than some of the modeled failures elsewhere in the literature
(e.g., Pecson et al.29).

Pecson et al.19 suggested incorporating 4 log treatment
redundancy to protect against undetected failures, for final
LRTs of 17/14/14 for viruses/Giardia/Cryptosporidium. Gerrity
et al.39 assessed the NWRI Expert Panel recommendations for
DPR, which included a recommended 5 log redundancy.80

Following the Expert Panel's approach, the top-down QMRA
suggested that a 5 log redundancy was sufficient to achieve a
2.7 × 10−7 daily risk benchmark at the 99th percentile, except
for Giardia with a slightly higher daily risk.39 Rather than
incorporating redundancy, Gerrity et al.39 proposed an
alternative approach that quantifies a system's LRV tolerance
to off-specification conditions. They found that for baseline
LRVs of 15/11/11 in a DPR system, off-specification operation
with an LRV of 12 for viruses or 8 for Giardia and
Cryptosporidium would still satisfy the annual risk benchmark
assuming the reduced LRV occurred fewer than 12 days per
year for viruses or 3 days per year for the protozoa. This
suggests a built-in redundancy of 3 logs for short-term off-
specification conditions or failures.

Despite the potentially significant impact of failures, potable
reuse treatment trains have been found to be robust and
reliable. Pecson et al.81 assessed the mechanical reliability of a
DPR treatment train using operator logs of all mechanical
issues over a year and found no critical failures, demonstrating

the potential reliability of advanced treatment for DPR.
Amoueyan et al.22 found that some failures can be
inconsequential because of the overall robustness and
redundancy of advanced treatment in DPR or the resiliency
afforded by the environmental buffer in IPR.

3.11 Computational methods

Most QMRAs are performed with Monte Carlo simulations to
account for uncertainty and variability in the input
parameters. In Monte Carlo simulations, some or all of the
input variables, such as pathogen concentrations, are
represented by PDFs. These statistical distributions are
randomly sampled for each variable, and the outcome, such
as the probability of infection, is calculated. This is repeated
many times, creating a distribution of outcomes, to analyze
the behavior of the system while accounting for inherent
variability and uncertainty.

Simpler QMRAs can also be performed, such as by using
conservative point estimates instead of distributions for
pathogen concentrations. For example, Page et al.40 used the
95th percentile pathogen concentrations to determine the
LRTs for Cryptosporidium, Campylobacter, and viruses for
urban stormwater reuse, and Gerrity et al.39 used both the
maximum point value and the 97.4th percentile point value
from pathogen distributions. Percentile is linked to sample
size, so the 97.4th percentile was chosen since this percentile
within a 10 000 point dataset is statistically equivalent to the
maximum value of a 24 point dataset, as can be shown from
Blom's equation.82 This might be the required minimum
sample size for pathogen monitoring campaigns aimed at
developing LRTs. In other words, the maximum value from a
10 000 point distribution might be considered overly
conservative when compared against the maximum from a
dataset with only 24 values. Asano et al.12 used four point
estimates for pathogen concentrations: the maximum and
90th percentile concentrations of the secondary effluent at
the WWTP (assuming an additional LRV of 5 for tertiary
treatment), the maximum value detected in the tertiary
effluent, and the limit of detection for a tertiary treated
wastewater effluent sample. Point estimates with conservative
values are useful for creating point estimate regulatory LRTs,
while using distributions of concentrations allow the risk
distributions and central tendencies to be quantified and
more fully characterized.19

QMRAs can also be performed dynamically or statically. In
static QMRAs, the probability of infection is modeled from a
single exposure event without time dependence or system
feedback through community spread (Fig. 6). For waterborne
diseases, static QMRAs could underestimate overall risk by
not including time-dependent secondary transmission, or
overestimate the risk by not including the possibility of
someone entering an immune state after exposure to the
waterborne pathogens.20 While most QMRAs are static,
dynamic QMRAs offer time-dependent pathogen loads and
the ability to explore the relative contribution of waterborne
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pathogens to the total number of illnesses. Amoueyan et al.20

used a dynamic QMRA to determine the relative importance
of norovirus transmission pathways: foodborne, person-to-
person, and person-to-sewage-to-person. They modeled
different epidemiological states, such as susceptible, exposed,
diseased, carrier, and post-infection (or recovered) using
ordinary differential equations, similar to Eisenberg et al.83

Eisenberg et al.83 created a dynamic process model for a
Cryptosporidium outbreak that included a 10-state
compartmental model of the population, where people could
move between susceptible, infected, diseased, or immune
states. The number of current infections influenced the
infection rate both through person-to-person transmission
and through person-to-sewage-to-person transmission.
Overall, Amoueyan et al.20 found that waterborne norovirus
did not appreciably contribute to the public health risk in
their model, because secondary and foodborne transmission
dominated the overall risk calculation. Barker et al.38 also
included a secondary attack rate, quantifying the percentage
of people who would become sick after contact with the
infected person. They found that small communities might
need additional treatment due to this secondary transmission
and the increased contact between members in a small
community relative to a large city.

Zhiteneva et al.33 proposed using Bayesian networks as a
solution to limited local data availability, where local pathogen
data could be combined with pathogen datasets from literature
reviews. Bayesian modeling uses Bayes' theorem to update the
probabilities of an outcome as more information becomes
available.84 Bayesian networks are graphical models that
represent a large amount of data using nodes to represent
random variables that are connected to each other by their
probabilistic dependencies. While Monte Carlo simulations are
better suited for prediction because of their continuous
distributions, Bayesian networks can be used for forward and
backward inference, which could be used to determine how
processes perform under certain risk scenarios.33 Bayesian
hierarchical modeling (BHM), which is better able to account
for variability within and between groups of data, reduces local
parameter uncertainty compared to separate modeling, where

larger datasets are not taken into account, while still letting
local data dominate.41 Seis et al.41 used both local and external
pathogen concentrations and compared BHM to separate
modeling, where each treatment plant is different and results
from one do not influence results from another; complete
pooling, where every treatment plant has the same mean and
standard deviation; and no pooling, where the treatment plants
have different means but a common standard deviation. They
included a classical Bayesian hierarchical framework, where a
unique mean is estimated for every treatment plant, with the
assumption that the local means comes from a common,
normal distribution. Seis et al.41 also used extended hierarchical
modeling, by letting the individual within-treatment plant
variances differ by plant, which added additional
hyperparameters in the model. In both cases, the parameters
are all estimated on a total data and individual treatment plant
level simultaneously, and the information is shared across
simulations.41 They found BHM reduced parameter uncertainty,
particularly when local data were sparse, while letting local data
dominate. Seis et al.41 recommended including external
information, such as from meta-analyses of pathogen
concentrations, even when local data are available. Widespread
use of Bayesian modeling for QMRA could provide more robust
analyses, particularly in data-scarce scenarios, by allowing local
pathogen concentrations to be supplemented by larger datasets.
Bayesian modeling also enables the creation of prediction
intervals, quantifying the uncertainty around the predictions.
While these could be useful for a greater understanding of risks,
the communication of these prediction intervals would be
important to prevent unnecessary alarm or unwarranted
complacency.

3.12 Regulatory considerations

Top-down QMRAs are the basis for regulations that
determine the minimum LRVs for the selected pathogens. In
the U.S., viruses, Giardia, and Cryptosporidium are regulated,
with these values seen as inclusive for adequate bacterial
removal. Table 1 shows the recommended LRTs for the top-
down QMRAs on potable reuse. The LRTs varied greatly, both
between and within studies. In Barker et al.,38 for example,
they compared an outbreak scenario for a small community
to a municipal sewage scenario and found the LRT for
viruses was 5.2 logs higher for an outbreak condition. The
three studies with the lowest LRTs all used estimates of
stormwater pathogen data.40,42,43 MacNevin and Zornes44

used protozoa concentrations at 20 different WWTPs and
found that the LRT for Cryptosporidium differed by as much
as 10 depending on the treatment plant in question. Using
maximum pathogen concentrations, Gerrity et al.39 found
similar LRVs (15/11/11) as Soller et al.45 did when 100% of
their simulations had an annual risk less than 10−4, though
Soller et al.45 required either 1 more virus LRV (16/11/11) or 2
more LRVs for Cryptosporidium and Giardia (15/13/13). These
differences could be due in part to rounding, where Soller
et al.45 assessed the percentage of simulations that had Pinf <

Fig. 6 Differences between dynamic and static QMRAs. Cww is the
pathogen concentration in wastewater. Cdw is the pathogen
concentration in drinking water. Pinf is the probability of infection.
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10−4, while Gerrity et al.39 calculated the required LRVs and
then rounded to the nearest whole number, even if that
meant rounding down. For LRVs of 15/11/11, Soller et al.45

found that 99.7% of simulations met the probability of
infection benchmark of 10−4.

Gerrity et al.39 summarized the regulations for IPR and DPR
in the United States, in addition to performing bottom-up and
top-down DPR QMRAs. For IPR, California requires LRVs of 12/
10/10 for viruses, Giardia, and Cryptosporidium, respectively,
although additional stipulations are required for surface water
augmentation vs. groundwater replenishment. Colorado also
implemented the 12/10/10 framework but for DPR,49 and in
Texas, where the LRV calculation begins in the treated
wastewater effluent, minimum LRTs of 8/6/5.5 are required for
DPR.39,46,85 LRTs for DPR in Texas may be higher if warranted
by the pathogen monitoring campaign required for each case-
by-case DPR permit. For DPR, California targeted a 2.7 × 10−7

daily risk of infection benchmark, rather than an annual risk of
10−4. While this does not impact point estimate QMRAs, it does
impact the results for more complicated, Monte Carlo QMRAs
by eliminating the aforementioned averaging effect in the
annual risk calculation. California found baseline LRVs of 16/
10/11 to be adequately protective of public health, and this
determination assumed prior point estimate concentrations for
Giardia and Cryptosporidium, a peak norovirus concentration

reported in the literature,63 and a daily ingestion volume of 2 L
spread equally over 96 ingestion events per day.39 However,
California set its final LRTs at 20/14/15 to account for a 6 log
treatment failure necessitating a 4 log treatment redundancy.17

Regulations are often developed using point estimates
based on maximum concentrations, assumed GC : IU ratios
of 1 when using molecular data (e.g., norovirus), and in
conjunction with conservative dose–response models. Care
should be taken when using maxima, as these peak
concentrations are often not comparable across studies. An
alternative approach involves using percentiles based on
Blom's equation,82 for example, from which 95th or 97.4th

percentile concentrations can be determined from individual
studies (e.g., a site-specific sampling campaign) or across
multiple studies.69 Choosing a single measured point also
makes the final risk estimates more susceptible to potentially
non-representative site-specific conditions,86 or even error
from laboratory analysis. An expert panel from the National
Water Research Institute found that California's DPR
regulations resulted in inherent conservatism of 9–11 logs,
which could result in overdesigned and unsustainable
potable water reuse systems.39,80 In other words, overly
conservative LRTs can increase capital and operations and
maintenance costs, while potentially yielding no appreciable
improvement in public health protection. These scenarios–

Table 1 LRTs for top-down QMRAs

Study Type Virus Giardia Crypto Bacteria Notes

Barker et al. (2013)38 DPR 6.9 8 7.4 LRTs for municipal sewage scenario
DPR 12.1 10.4 12.3 LRTs for outbreak conditions

Gerrity et al. (2023)39 DPR 13 10 10 Used 97.4th percentile pathogen concentrations and included
a 10-fold safety factor for viable but nonculturable enterovirus;
described tolerance to off-specification conditions rather
than redundancy

DPR 15 11 11 Used maximum pathogen concentrations; described tolerance
to off-specification conditions rather than redundancy

MacNevin and Zornes
(2020)44

DPR 5 5 Minimum LRTs for any WWTP
DPR 9.5 10 Maximum LRTs for any WWTP

Page et al. (2015)40 General reuse 5.8 4.8 4.8 5.3 LRTs based on stormwater
Page et al.
(2015, 2016)42,43

IPR 5.5 4.9 4.9 5.5 LRTs based on stormwater

Pecson et al. (2023)19 DPR 17 14 14 Included 4 log redundancy to protect against failures
Seis et al. (2020)41 IPR <12 Compared different modeling approaches for concentration

data: separate point estimate
IPR >16 Compared different modeling approaches for concentration

data: separate modeling
Soller et al. (2018)45 DPR 14 12 12 95% of simulations have cumulative annual risks less

than 10−4

DPR 15 13 13 100% of simulations have cumulative annual risks less
than 10−4

DPR 16 11 11 100% of simulations have cumulative annual risks less
than 10−4

California
Regulations17,46

DPR 20 14 15 Included 4 log redundancy to account for a 6 log undetected
failure and used updated maximum point estimates

IPR 12 10 10 Used maximum point estimates
Colorado
Regulations49

DPR 12 10 10 Could be as low as 8/6/5.5 (virus/Giardia/Crypto) if justified
by pathogen monitoring

Nevada Regulations48 IPR 12 10 10
Texas Regulations85 DPR 8 6 5.5 Minimum LRTs, with actual LRTs potentially higher based

on monitoring data; LRV calculation begins after WWTP
Florida Regulations34 IPR 14 12 12
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and their long-term implications–can be mitigated when
using either distributions or percentile point estimates in a
QMRA, rather than maximum values.

3.13 Other considerations

The results of QMRAs can be community-specific because
different communities also have different reuse needs. For
example, the QMRA by Church et al.50 focused on reusing
dishwashing water and proposed a risk benchmark that was
specific to their military scenario. Kimbell et al.34 performed a
QMRA for water reuse at Zoo Miami, comparing different
treatment trains. Although their exposure assessment was for
humans ingesting 2.5 L d−1, the recycled water will be used in
the animal exhibits and is not intended for human
consumption. They discussed how an interspecies QMRA would
need to be done to evaluate the impact of recycled water on the
most vulnerable species, which vary in size, habitat, physiology,
water consumption, and metabolic rates.

Barker et al.38 studied reuse in a small, remote community
in Antarctica and compared municipal sewage pathogen loads
with estimated loads during a gastroenteritis outbreak. They
found that higher LRVs were needed in small communities to
meet the benchmark of 10−6 DALYs due to the greater degree of
contact between community members in a small population. If
regulations are created from the pathogen levels in larger
communities and applied to smaller communities with high
contact, they might not be protective; conversely, LRTs
developed for small communities may be overly stringent for
large communities. Therefore, it is important to consider the
local context before guidelines from one location are applied to
another, highlighting the benefits of allowing tailored LRTs for
different communities.

Commonly used risk benchmarks include 10−4 annual
probability of infection pppy, as well as 10−6 annual DALYs pppy.
However, it is possible to meet one of these benchmarks and
not the other, depending on the severity of the disease. Lim
et al.27 found that risk from Cryptosporidium and norovirus were
both mostly within the acceptable range of the WHO benchmark
of 10−6 DALYs but consistently exceeded the 10−4 risk of
infection benchmark. This highlights the need to determine
what benchmarks are most relevant in a given context to protect
public health without being unnecessarily stringent.

The focus of this review is the risk from microbial hazards,
but depending on the level of treatment, there are also chemicals
that could accumulate in potable reuse systems that could be
harmful to public health, including heavy metals, disinfection
byproducts, pharmaceuticals, and per- and polyfluoroalkyl
substances (PFAS).87,88 Keller et al.89 conducted a review on
technological, economic, and environmental considerations of
DPR and included a partial list of chemicals of concern after
advanced treatment. There could also be problems with public
acceptance of potable reuse due to the so-called ‘yuck factor’.90

Remy et al.30 performed a life cycle assessment and a
chemical risk assessment alongside their QMRA, which is
important for understanding the cumulative health impact of

recycled water. They found that while the proposed treatment
would meet the 10−6 DALYs pppy target for pathogens, there
would be an increase in constituents of emerging concern
(CECs) in the IPR reservoir. Germany has health-based
precautionary values for iopromide, iomeprol, gabapentin,
and EDTA that Remy et al.30 found could be exceeded in the
reservoir. The concentrations of glyphosate and AMPA, a
degradation product, would exceed the EU guidelines for
pesticides (1 μg L−1 91), if they were applied to these
chemicals.30 Though this may be comparable to current
wastewater treatment plants discharging to rivers without
tertiary treatment, it highlights the importance of considering
both chemical and microbial hazards. Their life cycle
assessment found that IPR is competitive in terms of energy
consumption and emissions with water importation and
seasonal storage and is superior to seawater desalination.
Kobayashi et al.35 also performed a life cycle assessment, and
highlighted how the local and global impacts of IPR differ.
Reducing the local impact from pathogens resulted in a
higher global ‘cost’ due to emissions leading to climate
change. Page et al.36 included other hazards to humans and
the environment in their assessment, including nutrients and
chemicals. They found that while the risks from organic
chemicals were low, elevated iron levels exceeded potable
water guidelines, if post recovery aeration was not employed.
Dow et al.92 found that while DPR could significantly reduce
energy costs due to reduced pumping requirements from Lake
Mead into the Las Vegas Valley, the net present value of DPR
ranged from $1.0–4.0 billion, compared to $0.6 billion for the
status quo IPR approach. The pairing of a life cycle
assessment and chemical risk assessments to potable reuse
QMRA would be a beneficial addition to future QMRAs.

4. Conclusions

This review included 30 publications that performed QMRA for
potable reuse, encompassing case studies from Australia,
France, Germany, Spain, the U.S., and Antarctica. The studies
demonstrated that there are many factors that impact the risks
estimated by potable reuse QMRAs, including the assumed ratio
of gene copies to infectious units, the assumed volume and
frequency of water ingestion, whether the simulation was
dynamic or static, and if Bayesian modeling was used. Some
decisions are often made for simplicity's sake (such as creating
static, non-Bayesian models or assuming one ingestion event
per day), but it is important for researchers to understand the
basis and implications of these assumptions. Each QMRA is
unique and will have different results because each audience/
community has its own distinct context and needs. However,
QMRAs should consider the impacts that critical assumptions
such as ingestion frequency, pathogen concentrations, unit
treatment processes, and treatment failures have on risk. The
risk benchmarks (probability of infection or DALYs) are also
location dependent and should be taken into consideration.
This will allow the results to be better understood and
contextualized.

Environmental Science: Water Research & Technology Tutorial review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

2.
07

.2
02

5 
07

:1
0:

52
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ew00661e


556 | Environ. Sci.: Water Res. Technol., 2025, 11, 542–559 This journal is © The Royal Society of Chemistry 2025

As regulations are established and potable reuse becomes
more widespread, it is crucial to protect human health without
imposing excessively stringent requirements that are
prohibitively expensive and do not necessarily enhance public
health protection. One possible path forward is for regulations
to become more flexible, such as was done in Colorado, where
LRTs could be reduced if regular sampling provided sufficient
evidence that human health would still be protected. By
incorporating QMRA for potable reuse, LRTs could be
developed for specific contexts, ensuring that health risks are
accurately assessed and managed. Continuous monitoring and
adaptive management strategies could be implemented to
ensure ongoing compliance and safety, providing a dynamic
response to emerging data and technological advancements.
Due to the rise in wastewater surveillance for public health
purposes, more robust and extensive pathogen datasets are
expected to be published. Pathogen concentration variability
and driving factors will be better characterized, which could
reduce potentially unnecessary redundancies which have been
built into QMRAs due to uncertainty. Implementing flexible
regulations could promote the sustainable and safe expansion
of potable reuse systems. Finally, recent publications
demonstrate the value and importance of simultaneously
evaluating microbial and chemical risks in the context of
sustainability and life cycle assessment.
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DALY Disability adjusted life year
NoV Norovirus
AdV Adenovirus
EnV Enterovirus
Crypto Cryptosporidium
Campy Campylobacter
QMRA Quantitative microbial risk assessment
DPR Direct potable reuse
PCR Polymerase chain reaction
RWC Recycled water contribution
DFR De facto reuse
IPR Indirect potable reuse
SW Surface water
GW Groundwater
LRT Log reduction target
Pinf Probability of infection
LRV Log reduction value
FAT Full advanced treatment
DWTP Drinking water treatment plant
CF Cartridge filter
UV Ultraviolet
MF Microfiltration
UF Ultrafiltration
NF Nanofiltration
ESB Engineered storage buffer
DW Drinking water
pppy Per person per year
TT Treatment train

CBAT Carbon-based advanced treatment
BNR Biological nutrient removal
RO Reverse osmosis
AOP Advanced oxidation process
BAF Biologically active filtration
WWTP Wastewater treatment plant
WW Wastewater
Cl2 Chlorination
GC Gene copies
IU Infectious units
RBAT Reverse-osmosis-based advanced treatment
MBR Membrane bioreactor
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