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Abstract

Couplings involving large amplitude vibrations in H+(H2O)n (n = 1 - 4) are ex-

plored using several of theoretical approaches. These include harmonic treatments,

analysis of harmonically coupled anharmonic oscillator (HCAO) models of the OH

stretching vibrations, vibrational perturbation theory (VPT2) in internal coordinates,

and diffusion Monte Carlo (DMC). It is found that couplings between the shared proton

stretches and the HOH bends can lead to normal modes that are significantly mixed in

character. The couplings among the various OH stretching vibrations are much weaker,

and the OH stretches are well-described by harmonically coupled anharmonic oscilla-

tor models. Anharmonic couplings and the role of these large amplitude vibrations are

further explored using DMC and VPT2. Based on the results of these calculations, it

is found that all of the H+(H2O)n ions considered in this study display several different

types of large amplitude vibrational motions even in their ground states. In the case of

H7O
+
3 , degenerate VPT2 calculations indicate that there are large couplings between

the shared proton stretch and various lower frequency vibrations that correspond to

motions that break the ionic hydrogen bonds. This leads to vibrational eigenstates

that have contributions from several zero-order states.
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Introduction

Protons play a unique role in chemistry due their unusual properties in aqueous solution. In

contrast to other ions, which exist as distinct chemical entities, excess protons move through

the hydrogen bonded water network through a series of proton transfer events in which

water molecules gain a proton and lose another. This is achieved through the Grotthuss

mechanism,1 and results in faster diffusion of protons in aqueous solution compared to other

ions through a mechanism in which solvent fluctuations allow protons to be transferred

between water molecules in a hydrogen-bonded network.2–6

The desire to understand the nature of proton mobility in solution has led to a number

of theoretical, computational and experimental studies of the spectroscopy excess proton in

both bulk water and in clusters.7–15 These spectra have proven to be difficult to analyze

due to the sensitivity of the frequency of the OH oscillator involving the transferring proton

to the solvent environment. For example, considering only protonated water clusters with

two to four water molecules, the frequency of the shared proton stretch ranges from from

roughly 1000 cm−1 in H5O
+
2

16,17 to more than 2500 cm−1 in H9O
+
4 .15 All of these frequencies

are significantly lower than the OH stretch frequency of water, which is roughly 3700 cm−1 18

and the OH stretch frequency of an isolated hydronium ion, which is roughly 3500 cm−1.19

These observations are summarized in Table 1.

The above insights are based on a series of spectroscopic studies of protonated water clus-

ters of various sizes.10–12,15 While having the ability to measure the spectra of these clusters

has proven an important advance in our understanding of the structure and proton mobility

in these systems, attempts to analyze and assign these spectra using commonly available

computational approaches have highlighted some of the limitations of these approaches.16,20

The origin of the challenges for theoretical and computational spectroscopy is illustrated in

the results reported in Table 1. In addition to the large range of OH stretch frequencies, the

HOH bend frequency in protonated water dimer (H5O
+
2 ) is significantly larger than the HOH

bend frequencies in either water or hydronium.21 In contrast, the HOH bend frequency in
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H7O
+
3 is lower than the corresponding frequencies of water and hydronium.20 Finally studies

of solvated protons have shown that features that are associated with ionic hydrogen bonding

can span as much as 1000 cm−1.22,23 In those studies, we argued that this breadth can be

qualitatively explained by recognizing that proton transfer is often accompanied by other

structural changes.

In this work, we explore the connection between the position and breadth of features in

the spectrum of protonated water clusters assigned to the shared proton stretch and bends

based on a variety of theoretical and computational approaches. The goal is to illustrate the

insights that can be obtained through the use of such a multifaceted approach to interpret

the spectra. We also aim to obtain a better understanding of the manifestation of various

types of couplings in the spectra of protonated water clusters.

Theory

In the present study, we explore several approaches for investigating large amplitude vibra-

tions and the couplings involving these motions in protonated water clusters. These are

systems that are formed when a hydronium ion is solvated by one or more water molecules.

In the present work we focus on systems consisting of a hydronium ion in isolation and

complexed with one to three water molecules. Unlike neutral water clusters, where the in-

teractions among water molecules lead to modest shifts in the OH stretching and bending

frequencies, the stronger intermolecular interactions in the protonated water clusters results

in larger structural changes accompanied by modifications in the vibrational frequencies, as

illustrated by the results presented in Table 1.

Harmonic Treatments

As we consider molecular vibrations, the most straightforward treatment involves describing

the vibrations as 3N − 6 uncoupled harmonic oscillators, while the dipole surface is ap-
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proximated by a linear function of these coordinates. Despite the relative simplicity of this

approximation, harmonic treatments provide good zero-order descriptions of the physics for

a broad range of molecular systems. This includes systems, like the protonated water clus-

ters, which display large amplitude vibrations even in their ground states. The simplicity of

harmonic models also makes them attractive approaches for investigating couplings in these

systems.

Normal mode treatments of molecular vibrations have a long history.24 In this approach,

molecular vibrations are expressed as linear combinations of displacements of the coordinates

of the atoms from their equilibrium configurations. The coordinates of choice are usually

Cartesian coordinates as the normal mode coordinates can be defined as linear combinations

of Cartesian displacements unambiguously. In this case, the kinetic energy is a function only

of the Cartesian momenta and the masses of the atoms. Importantly, the kinetic energy does

not depend on the molecular geometry. With this choice of coordinates, when the molecule

is displaced along a normal mode, the atoms are constrained to follow Cartesian vectors.

While this choice of underlying coordinates for defining the normal modes provides a good

description of stretching vibrations, it results in a poorer description of bending motions.

This can be seen in the the normal modes in H5O
+
2 shown in Figure 1.

An alternative approach for defining the normal mode coordinates follows the description

of Wilson.24 In this case, the normal modes are constructed as linear combinations of internal

coordinates (e.g. bond length, angles, and coordinates that describe internal rotations of the

molecules). These coordinates are expected to provide an improved zero-order description

of molecular vibrations compared to the Cartesian displacements, especially when large

amplitude bending motions are involved.25–27 The challenge with using internal coordinates

to define the normal coordinates comes from the fact that unlike Cartesian coordinates the

3N − 6 internal coordinates are not uniquely defined. The size and nature of the couplings

among the vibrations is sensitive to the choice of internal coordinates. Additionally, by using

3N − 6 internal coordinates, the kinetic energy will depend on the molecular geometry as
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well as the masses of the atoms and the momenta conjugate to the chosen set of coordinates.

Independent of the choice of coordinates, the normal mode analysis is performed by first

expressing the Hamiltonian in terms of a set of coordinates (3N Cartesian coordinates or

3N − 6 internal coordinates) as24

Ĥ =
1

2

∑
i,j

[
ps,iGi,jps,j +

∂2V

∂si∂sj
(si − si,e)(sj − sj,e)

]
(1)

where (si − si,e) represents the displacement of one of the coordinates from its equilibrium

value, ps,i is the momentum conjugate to si, and Gi,j is an element of the Wilson G-matrix.

If Cartesian coordinates are used the

Gcart
i,j =

1

mi

δi,j, (2)

where mi represents the mass of the atom that is being displaced. In general, the G-

matrix elements are functions of the coordinates of the atoms. Expressions for the G-matrix

elements can be obtained from tabulations24,28 or by evaluating

Gint
i,j =

3N∑
n=1

∂ri
∂xn

(
1

mn

)
∂rj
∂xn

(3)

The normal mode analysis is performed by first defining a set of mass-weighted coordi-

nates

s′i =
∑
j

(
G−1/2

)
i,j

(sj − sj,e) (4)

The Hamiltonian, when expanded through second order in these coordinates and their con-

jugate momenta, becomes

Ĥ =
1

2

∑
i

p2s′,i +
1

2

∑
i,j

s′iFi,js
′
j (5)

where Fi,j represents an element of the Hessian, evaluated in terms of these mass-weighted

6
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coordinates. The eigenvalues of F provide the squares of the harmonic frequencies, ω2
n,

while the eigenvector matrix, T, provides the transformation between the normal modes

and s′. Finally, the transformation between initial displacement coordinates and the normal

coordinates is defined as

(sj − sj,e) =
∑
k

∑
n

(
G1/2

)
j,k
Tk,nω

−1/2
n Qn

=
∑
n

Lj,nQn (6)

while

pj =
∑
n

(
L−1,T

)
j,n
PQ,n (7)

and the corresponding Hamiltonian through quadratic terms in the coordinates and conju-

gate momenta is

Ĥ =
1

2

∑
n

[
ωn
(
p2Q,n +Q2

n

)]
(8)

In some cases it can be advantageous to consider a local mode treatment of molecular

vibrations. This is particularly true in the case of large amplitude anharmonic OH stretching

vibrations where the anharmonicity of the potential along the OH stretch coordinate has a

larger influence on the vibrational energy level pattern than the couplings among the OH

oscillators. An example of this effect can be seen in the overtones of H2O,18 where the

state that is assigned as having two quanta in the symmetric stretch (|2, 0, 0〉) is 50 cm−1

lower in energy than the combination band with one quantum in each the symmetric and

antisymmetric stretch (|1, 0, 1〉), while the combination band is 200 cm−1 lower in energy

than the |0, 0, 2〉 state. Here we use a notation in which states are described in terms of the

number of quanta in the symmetric stretch, ns, the number of quanta in the bend, nb, and the

7
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number of quanta in the asymmetric stretch, na, as |ns, nb, na〉. For states with three quanta

in the stretches, the |3, 0, 0〉 and the |2, 0, 1〉 states are split by 14 cm−1, and the |1, 0, 2〉 and

|0, 0, 3〉 states are split by 164 cm−1, while the two pairs of states are split by more than

250 cm−1.18 In a harmonic picture one would expect evenly spaced energy levels, where the

energy difference is determined by the difference between the frequencies of the symmetric

and antisymmetric stretch, which is approximately 100 cm−1 for water. The observed pattern

suggests that these oscillators are better described in a local mode representation where

the pairs of nearly degenerate states are identified as in- and out-of-phase combinations of

local mode stretches, denoted as |n1, n2〉±|nb〉 = |n1, n2, nb〉 ± |n2, n1, nb〉, where n1 and n2

indicate the number of quanta in each of the two localized OH stretch. In this notation, the

|2, 0, 0〉 and |1, 0, 1〉 normal mode states become the in- and out-of-phase combinations of

the local mode states with two quanta in a single OH oscillator |2, 0〉±|0〉, while the |0, 0, 2〉

state corresponds to a state with one quantum in each oscillator in the local mode picture,

|1, 1〉|0〉.

Lehmann, Childs, Mills and others29–31 have explored the connections between these

models and proposed a harmonically coupled anharmonic oscillator picture to describe OH

stretching vibrations (qn) in which

H =
1

2

∑
n

[
ωn
(
p2q,n + q2n

)
+
∑
j

F (j)
n qjn

]
+
∑
n>m

fn,m
(
a†nam + ana

†
m

)
(9)

where an and a†n represent harmonic raising and lowering operators. We have used this model

in several recent studies of the spectra of molecules that contain coupled XH oscillators.32–34

For the OH stretches of the hydronium core in protonated water clusters, the strong ionic

hydrogen bonds make the diagonal anharmonicity of these OH oscillators particularly large,

and an anharmonicly coupled harmonic oscillator model is expected to be more appropriate

for describing these vibrations than the harmonic description.

Following the work of Sibert,35 we have generated linear combinations of the normal

modes that correspond to the OH stretch vibrations, QR, which are constructed so that they

8
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involve the motion of a single OH oscillator.

More specifically, we begin by defining a set of dimensionless local modes for the OH

stretches, {qR}. If the normal modes are described in terms of internal coordinates,

qintR,n = 4

√
1

µnFnn
(sn − sn,e) (10)

where Fnn is the diagonal quadratic force constant for that OH oscillator, and µn represents

the corresponding reduced mass. When the normal modes are defined as linear combina-

tions of Cartesian displacements, each of the qR,n is obtained by performing a normal mode

calculation for the ion under investigation in which the masses of all of the atoms except the

two that make up the OH bond are multiplied by a factor of 10. In this case,

qcartR,n = L−1n,j (sj − sj,e) (11)

This calculation is repeated for each of the OH oscillators, and we use LLR to represent the

transformation between the displacement of the internal or cartesian coordinates and the qR

coordinates. Additionally

QR = L−1R (s− se) , (12)

where L−1R represents the rows of the L−1-matrix that correspond to the OH stretch normal

modes. We can combine the above relationships to obtain

qR = L−1LRLRQR ≡ AQR (13)

As A is not orthogonal, in the spirit of Löwdin orthogonalizaiton, Sibert and co-workers35

define O = ATA, and construct a set of localized coordinates as

q′R = L−1LRLRO−1/2L−1R (s− se) ≡ L−1LRO (s− se) (14)
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With these coordinates in place, the harmonic Hamiltonian takes the form of Eq. 9, providing

us with the opportunity to explore the nature and strength of couplings both among the OH

oscillators and between the OH oscillators and other vibrational degrees of freedom.

Beyond harmonic treatments

As we consider extensions beyond the harmonic treatments a natural next step is second

order vibrational perturbation theory (VPT2). In contrast to more general perturbation

theory approaches, in the vibrational treatment the Hamiltonian is expanded in powers of λ,

along with the energies and wave functions.26,36 This follows from the fact that the logical

corrections to the Hamiltonian that is a quadratic expansion in coordinates and momenta is

to introduce cubic and higher order terms in the expansion. Based on this, terms that are

cubic in the coordinates and momenta are introduced in H(1) while quartic terms contribute

to H(2), leading to

H = H(0) + λH(1) + λ2H(2) + · · · (15)

Since the kinetic energy is quadratic in the momentum, H(1) includes cubic terms of the form

pi [(∂Gi,k/∂Qj)Qj] pk and terms that involve third derivatives of the potential function. In

the absence of degeneracies, the energy expressions will take the form of expansions in powers

of (nm + 1/2) with linear terms contributing to E
(0)
n , and quadratic terms in (nm + 1/2) as

well as a scalar shift to the zero-point energy contribute to E
(2)
n . By symmetry, E

(1)
n = 0.

As with all calculations based on perturbation theory, small differences in the energies of

zero-order states can become problematic. Martin and co-workers37 developed an approach

for determining when near degeneracies need to be accounted for. This is achieved by

evaluating the contribution from coupling to a selected zero-order state to the energy of the

state of interest. Specifically, if the state of interest is |Ψn〉 and we are considering the role

of coupling to |Ψ(0)
m 〉, where 〈Ψ(0)

n |H(1)|Ψ0)
M〉 = W , we evaluate the contribution to the energy
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by two approaches. Following Martin, in the first, we determine the eigenvalues of a reduced

dimensional Hamiltonian matrix in the basis of these two states:

H =

 E∗n W

W E∗m

 (16)

where E∗n represents the energy of a state calculated using second order perturbation theory

when the contribution from |Ψ(0)
m 〉 is not included in the first order correction to |Ψn〉, and

E∗m is evaluated in an analogous manner. These eigenvalues are compared to the value of the

energy, evaluated through second order in perturbation theory, including the contribution

from |Ψ(0)
m 〉. Following Martin, the differences between these energies provides a measure of

the anharmonicity effect, γ, where

γ =

∣∣∣〈Ψ(0)
m |H(1)|Ψ(0)

n 〉
∣∣∣4(

E
(0)
n − E(0)

m

)3 (17)

if γ ≥ 1 cm−1 we consider the states to be strongly coupled and treat these couplings using

degenerate perturbation theory.38,39

As with the harmonic treatments, VPT2 may be implemented for a variety of definitions

of the normal modes. In the absence of resonances, the resulting energies will be independent

of this coordinate choice.27 On the other hand, when there are degeneracies, or near degen-

eracies, the results can become quite sensitive to this choice, and generally normal modes

based on linear combinations of internal coordinates will provide better convergence of the

expansion of the potential function as well as the G-matrix elements than those based on

Cartesian displacements. A description of our implementation of degenerate VPT2 can be

found elsewhere.38,39

11
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Diffusion Monte Carlo

In Diffusion Monte Carlo,40–43 the wave function is described by an ensemble of localized

functions, called walkers, which are allowed to diffuse in the 3N dimensional space that

represents possible geometries of the molecule of interest. The diffusion is based on the

action of the imaginary time, time-dependent Schrödinger equation on this ensemble,

exp {− (H − Eref) τ}
nwalkers∏
j=1

f((x− xj) ≈
nsteps∏
k=1

exp {− (V − Eref) ∆τ} exp {−T∆τ}

×
nwalkers∏
j=1

f((x− xj) (18)

Here, f((x − xj) represents one of the localized walkers, which is centered at xj, while

τ = it/h̄ and Eref is introduced to keep the amplitude of the wave function constant. In the

long-time limit, the solution to Eq. 18 becomes

lim
τ→∞

exp {− (H − Eref) τ}Ψ(x, τ) =
∑
n

cn exp {− (En − Eref) τ}φn(x)

= c0 exp {− (E0 − Eref) τ}φ0(x) (19)

where φn represents an eigenstate of H, with corresponding energy En. By rotating to imag-

inary time, the oscillatory phase factors are replaced by exponentially decaying functions,

and in the long-time limit, the contribution from the lowest-energy state will dominate the

expansion in Eq. 19. In the case where Eref = E0, the contribution from this state will be

constant. Since E0 is an unknown, the value of E0 is determined by varying Eref so that

Ψ(τ) has constant amplitude, as described in more detail in the discussion that follows.

More specifically, the DMC simulations are performed by propagating Ψ over a series of

small time steps with ∆τ = 1 to 10 a.u. During each time step, each of the coordinates of

each of the walkers is displaced by a random amount based on a Gaussian distribution with
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σ2
i = ∆τ/mi,

40 where mi is the mass associated with the ith Cartesian coordinate. After

the coordinates of a walker have been displaced, the potential energy is evaluated at the new

geometry, and the value of

Pj(τ) = exp {− (V (xj(τ))− Eref) ∆τ} (20)

is used to determine the number of walkers that are localized at xj at the start of the next

time step. Specifically, the integer value of Pj provides the number of walkers at these

coordinates, and [Pj − Int(Pj)] is compared to a random number taken from a uniform

distribution between 0 and 1 to determine if an additional walker will be introduced at these

coordinates. At the end of the time step, Eref is evaluated using41

Eref = V (τ)− α
[
N(τ)−N(τ = 0)

N(τ = 0)

]
(21)

where N(τ) provides the number of walkers at time τ and α is a simulation parameter. In

the current work we we use44

α =
1

2∆τ
(22)

We equate E0 to the average value of Eref over a large number of ∆τ , after the simulation has

equilibrated. The density of walkers can be used to obtain the corresponding wave function,

Ψ0(x).

To obtain other properties, for example 〈x〉, or projections of Ψ2
0 onto a specific coordi-

nate, we need an independent approach for evaluating the value of Ψ0 at the coordinates of

the walkers as for the multiplicative operator, A,

〈A〉 =

∫
Ψ2

0(x)A(x)dx =
∑
j

Ψ0(xj)A(xj) (23)

by Monte Carlo integration.42 To find the value of Ψ(xj), we exploit the fact that each of
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our localized functions can be expanded as a linear superposition of the eigenstates of the

Hamiltonian for the system of interest as45

fi(x− xj(τ0)) =
∑
n

ci,n(τ0)φn(x) (24)

where ci,n(τ0) = φn(xi(τ0)). Based on the above discussion, after propagating an ensemble

of these functions forward in time only the contribution from φ0 survives, and we can equate

the number of walkers in the ensemble at some time later that can be traced back to the

ith walker at τ0, di, to the value of φ0(xi(τ0)). These di’s are often referred to as the

descendent weights of the ith walker. Replacing Ψ0(xj) with dj in Eq 23, we are able to

evaluate expectation values of any multiplicative operator. This also allows us to project the

probability amplitude onto any coordinate of interest.

Numerical Details

In the present DMC simulations, we have used the potential surfaces for protonated water

clusters developed by Bowman and co-workers.20,46 We propagated roughly 20 000 walkers

for 40 000 time steps of 10 a.u. each. Starting at 5000 time steps, the wave functions are col-

lected after every 1000 time steps. Probability amplitudes are evaluated based on collecting

desendants from each of these wave functions for an additional 20 time steps. The descendent

weighting calculations were repeated 35 times and the results are averaged to improve the

accuracy. For the harmonic calculations, we use single point calculations and harmonic force

fields obtained from electronic structure calculations performed at the MP2/aug-cc-pVTZ

level of theory using the Gaussian 1647 program package for the exploration of couplings

among the OH stretches and at the MP2/aug-cc-pVDZ level of theory using Gaussian 0948

for the study of stretch bend couplings. Finally, for the remainder of the discussion we take

h̄ = 1.

14
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Results and Discussion

Vibrationally Averaged Structures

We begin by focusing on the structures of the protonated water clusters. In particular we

investigate the extent to which these ions explore higher symmetry configurations when they

are in their vibrational ground states. Based on previous studies of hydronium49,50 and

H5O
+
2

51,52 the ground state wave functions for both of these ions have significant amplitude

near configurations that correspond to transition states for large amplitude torsion and

umbrella motions, shown in the lower panel of Figure 2. For comparison, the equilibrium

structures are provided in the upper panel of this figure. In H3O
+ the higher symmetry

structure corresponds to the transition state in the umbrella inversion vibration. Likewise,

the vibrationally averaged structure of H5O
+
2 has D2d symmetry with the two flanking water

molecules lying in planes perpendicular to the OO axis and in planes perpendicular to each

other. For the larger systems, the transition states correspond to the hydronium core as well

as the oxygen atoms in the flanking water molecules lying in a plane, with the flanking water

molecules oriented perpendicular to this plane.

These results are illustrated by the plots of the projections of the probability amplitude,

calculated using DMC, shown in Figure 3(a). To evaluate these projections, for each of the

walkers we determined the value of the out-of-plane bending coordinate, θoop. This angle is

evaluated by first defining a plane that contains the termini of unit vectors that lie along the

three OH or OO bonds originating from one of the oxygen atoms. A vector normal to this

plane is constructed. θoop is the angle between this normal vector and any one in the unit

vectors along the OH or OO bonds. It should be noted that the above definition ensures

that all three possible definitions of θoop result in identical values. This definition of θoop is

illustrated for H3O
+ in Figure 4. While for H3O

+ the choice of the vectors used to define

θoop is unambiguous, for the larger clusters, we use the OO bonds connected to the central

oxygen atom along with any free OH bonds. For example in H5O
+
2 , θoop is defined in terms

15

Page 15 of 42 Faraday Discussions



of the two OH bonds in a flanking water molecule along with the OO bond.

As is seen in Figure 3(a), θoop = 90◦ in the transition state geometries, and has maxima

at θoop ≈ 75◦ and 135◦. These most probable values of θoop are close to the equilibrium values

of θoop for these ions, which are found to range from 72.6◦ to 76.7◦ when the geometries are

optimized at the MP2/aug-cc-pVTZ level of theory.

As these projections indicate, the probability amplitude near the transition state is sig-

nificant. It is roughly half the maximum amplitude in H3O
+ (green line in Figure 3(a))

for which the barrier along this coordinate is roughly 700 cm−1.49 This large probability

amplitude at the transition state is also consistent with the reported ground state tunneling

splitting in H3O
+ of 55 cm−1.

When a second water molecule is introduced, there are now two types of large amplitude

bending motions. The first is the tunneling motion described above. The torsion motion

involving the two flanking water molecules provides a second large amplitude motion. This

is illustrated in Figure 3(b). Here the torsion angle, φ, is defined as the angle between the

projections of the bisectors of the HOH angles of the two flanking water molecules that are

perpendicular to the OO axis. In the case of the umbrella tunneling coordinate in H5O
+
2 ,

the relevant transition state is 164 cm−1 above the potential minimum.49 This lower barrier

is consistent with roughly equal probability amplitude at θoop = 90◦ and at the potential

minimum, shown with the green curve in Figure 3(a). In the case of the projection of the

probability amplitude onto φ shown in Figure 3(b), the distribution has finite amplitude at

all values of this coordinate, and the largest amplitude is found near 90◦. This is consistent

with the barrier for planarity of one of the flanking water molecules of 158 cm−1 while the

barrier for 180◦ rotation of one of the water molecules is 213 cm−1.49

Introducing additional water molecules leads to analogous behavior. For H7O
+
3 , the

probability amplitude at θoop at 90◦ is intermediate between the values found for H5O
+
2 and

H3O
+ while the value for H9O

+
4 is similar to that for H3O

+. To further explore the amplitude

of these out-of-plane motions, we plot the projections of the probability amplitude onto the
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coordinates that correspond to the signed distance of the hydrogen atoms from the plane

that contains three of the oxygen atoms, defined as z. While for H7O
+
3 there are only three

oxygen atoms, for H9O
+
4 we define the OOO plane using the three oxygen atoms that are

contained in the flanking water molecules. In this case, z is defined so the central oxygen

atom has z ≥ 0. To simplify the plots, we have averaged the probability distributions for

equivalent hydrogen atoms.

For H7O
+
3 there are three unique types of hydrogen atoms, while there are only two in

H9O
+
4 . In both molecules the probability distributions for the bonded hydrogens, shown

with blue curves in Figure 3(c) and (d), is narrow. In H7O
+
3 this distribution is peaked at

the origin, while it is peaked at z = 0.2 Å in H9O
+
4 . The shift of the position of this peak in

the larger ion reflects the fact that the oxygen atom in hydronium is defined to have z ≥ 0.

With nearly collinear O-H· · ·O hydrogen bonds, the hydrogen atoms involved in hydrogen

bonding will also lie slightly above the plane that contains the remaining three oxygen atoms.

In H7O
+
3 there is also a free OH bond to the hydronium core. The probability distribution

for displacements of this atom from the plane containing three oxygen atoms plotted with

the red curve in Figure 3(c) shows similar structure to the tunneling in Figure 3(a) as is

expected because it represents the same motion. The probability distributions plotted with

green lines provide the displacements of the hydrogen atoms in the flanking water molecules.

These distributions are bimodal, reflecting the large amplitude rotational motions of the

flanking water molecules. This is entirely analogous to the large amplitude motions along φ

seen for H5O
+
2 , plotted in Figure 3(b). By analogy to H3O

+ and H5O
+
2 , these distributions

indicate that the vibrationally averaged structures for these larger clusters resemble those

shown in the lower panels of Figure 2.

Harmonic Stretch/Bend Couplings

With the vibrationally averaged structures in hand, we now explore the harmonic contribu-

tions to mode mixing. For this analysis, it is convenient to focus on the higher symmetry
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transition state structures as they simplify the description of the couplings. Using these

structures also makes the definitions of the intramolecular coordinates transferrable among

the different sized ions. Specifically, the internal coordinates are defined as linear combi-

nations of the various OH and OO distances, linear combinations of the HOH angles for

the hydronium core and the OOO angles as well as linear combinations of the OOH angles

involving the hydrogen atoms in the flanking water molecules. While the HOH bends for

the flanking water molecules are not included in this list of internal coordinates, this motion

is fully described by the appropriate linear combination of the OOH angles.

A harmonic representation of the Hamiltonian is constructed in terms of symmetry

adapted linear combinations of these coordinates as

H =
1

2

∑
i,j

[
pt,iG

sym
ij pt,j + tiF

sym
ij tj

]
(25)

where {ti} represent the symmetry adapted linear combinations of displacements of inter-

nal coordinates, while {pt,i} are the momenta conjugate to these coordinates. The kinetic

couplings are captured in the off-diagonal elements of the Wilson G-matrix, Gsym
ij , while

the F sym
ij provide the potential couplings. To simplify the discussion that follows, we use

dimensionless coordinates and momenta, where the linear combinations of the displacement

coordinates have been scaled by σi = 4
√
F sym
ii /Gsym

ii while the momenta area scaled by 1/σi.

The results of this analysis are provided in Table 2.

As is seen in these results, for H2O, the kinetic and potential couplings are both large,

and they have opposite signs. This leads to a partial cancelation of their contributions. It

should be noted that while the signs of the coupling terms depend on how the t−coordinates

are constructed, the relative signs of the kinetic and potential couplings are meaningful. The

large frequency difference between the local in-phase (symmetric) OH stretch and the bend

leads to a modest shift in the frequency when these couplings are introduced. This can be

seen by the fact that the coupled and uncoupled frequencies reported in Table 2 differ by less

than 20 cm−1. For water and all the other systems, uncoupled frequencies are equivalent to
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the values of Fii and Gii, which are equal in these dimensionless coordinates. The coupled

frequencies are those obtained through a reduced-dimensional FG-analysis,24 which is based

on the shared proton stretch, the free OH stretches as well as the HOH bends. The reported

coupling terms are the values of F sym
i,j and Gsym

i,j in Eq. 25. For comparison the frequencies

from a full-dimensional normal mode calculation are provided in Tables S1-S3.

In H3O
+, the potential coupling is smaller than in H2O, while the kinetic coupling has

increased. This reflects the larger HOH angle in the saddle point structure of H3O
+ (120◦)

compared to the HOH angle in water (104.1◦). As with H2O, the shifts in the harmonic

frequencies with the introduction of stretch/bend coupling is small.

The situation changes for H5O
+
2 , where the potential coupling is twice as large as in H2O,

and nearly a factor of 20 larger than in H3O
+. In this molecule, the kinetic couplings are

small. Further, the uncoupled bend frequency is comparable to those in H2O and H3O
+.

In fact the frequency of the uncoupled HOH bend ranges rom 1616 to 1655 cm−1 across

all the systems considered here. In contrast, the harmonic frequency of the shared proton

stretch, which corresponds to the motion of the shared proton parallel to the OO axis, is

significantly red shifted and is now 600 cm−1 below the bend frequency rather than nearly

2000 cm−1 above the bend frequency, as was found for the two previous systems. With these

observations in hand when the stretches and bends are allowed to mix the larger differences

between the uncoupled and coupled frequencies are found. Likewise, as reported in Table

S1, the intensity of this bend fundamental is increased from 119 to 1600 km mol−1, reflecting

the highly mixed nature other shared proton stretch and out-of-phase HOH bends when the

normal modes are constructed. This results addresses one of the observations noted above

regarding the surprisingly high bend frequency and intensity seen in the spectrum of H5O
+
2 .

Deuteration reduces the size of the effective couplings due to the use of dimensionless

coordinates. As a result, deuterating either of the outer water molecules or the shared proton

will decrease the size of the coupling by roughly a factor of 4
√

2, while deuteration of both the

shared proton and the outer water molecules decreases the stretch/bend coupling by a factor
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of
√

2. This leads to smaller stretch/bend coupling in D5O
+
2 compared to H5O

+
2 . When only

the outer water molecules are deuterated, the energy difference between the local shared

proton stretch and bend is reduced to 70 cm−1. This splitting is 880 cm−1 when the shared

proton is deuterated, while there are hydrogen atoms in the outer water molecule. This

leads to a significant frequency shift and increase in the intensity of the of the DOD bends

when H+ is shared between two DOD molecules, while the mixing is not as pronounced when

D+ is shared by two HOH molecules. It also leads to the bend fundamental having greater

intensity at the harmonic level compared to the shared proton stretch in H+(D2O)2. The

above results are summarized in Tables 3 and S1. The conclusions are consistent with those

reported previously and with the measured spectra of these ions.21,52

As we move to H7O
+
3 , there are now two types of HOH bends that are coupled to the

shared proton stretch. These involve the HOH bends of the hydronium core and the HOH

bends of the water molecule. Taken together, there are four bending and two stretching

vibrations. When symmetry is introduced, two sets of three vibrations remain coupled.

The kinetic coupling between the shared proton stretch and the bends of the flanking water

molecules is rigorously zero as the two motions do not involve any common atoms. The

kinetic couplings between the shared proton stretch and the bends in the hydronium core

are comparable in magnitude to the couplings in water and 75% the size of the stretch/bend

kinetic couplings in hydronium. In both cases, though, the kinetic coupling is smaller than

the corresponding potential coupling. In comparison to H5O
+
2 , the stretch bend couplings are

weaker, and the energy difference between the uncoupled harmonic frequencies for the stretch

and the bend are larger. In addition, the shared proton OH stretch is higher in frequency

than the bend. The coupling of these vibrations leads to red shifts in frequency of the bend

fundamental, the magnitude of which is smaller than in H5O
+
2 , but larger than in water

or hydronium. In contrast to H5O
+
2 where the stretch bend couplings lead to substantial

increases in the intensity of the bend fundamentals, the intensity of the bend fundamentals

in H7O
+
3 are surpressed by a factor of two when it is coupled to the shared proton stretch.
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This is seen in the results reported in Table S2. This decrease in the intensities of the bend

fundamentals in strongly hydrogen bonded systems has been attributed to a cancelation of

mechanical (motion of hydrogen atoms that have positive partial charges) and electrical (the

decrease of these partial charges when the hydrogen bonds are weakened through the HOH

bending motions), and when coupled to the shared proton stretch the contributions to the

transition moments from the local stretch and bend vibrations partially cancel for the normal

modes that have primarily bending character.53 Some of this intensity is recovered when

higher order terms are included in the Hamiltonian. These terms will lead to a redshift of

the frequency of the shared proton stretch, making it closer to that of the bend fundamental.

The higher order terms provide additional couplings between the shared proton stretch and

the bend.

These trends continue for H9O
+
4 , where the shared proton stretch has shifted to even

higher frequency leading to smaller shifts in the frequencies of the uncoupled vibrational

frequencies upon coupling. Once again, the intensity of the bend is decreased with coupling

to the shared proton stretch.

Since it is difficult to sort out contributions from kinetic and potential coupling terms in

the Hamiltonian, we have repeated the analysis, setting the kinetic coupling to zero. The

results are also reported in Tables 2 and 3. In all cases the frequency shifts with and without

consideration of kinetic couplings are comparable to each other and to the results obtained

from a full normal mode treatment (reported in Tables S1-S3). This allows us to attribute

the leading contribution to the large mixing of the shared proton stretch and the HOH bends,

particularly in H5O
+
2 , to the potential surface rather than to couplings in the kinetic energy

terms in the Hamiltonian.

Couplings among the OH stretches

We next turn our attention to the coupling among the OH stretches, which is notably

weaker than the stretch/bend couplings discussed above. Here we focus on the results from
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the localized treatments described above. Although these couplings are also encoded in the

normal mode description used to explore the stretch/bend couplings, the collective nature

of the vibrations in that treatment makes the trends more difficult to sort out.

In Table 4, we report the values of the couplings among the local OH stretches for systems

ranging from an isolated water molecule up through H9O
+
4 . Consistent with the splittings

between the symmetric and antisymmetric stretches in water the calculated coupling, eval-

uated at the MP2/aug-cc-pVTZ level of theory/basis set, is found to be 63 cm−1. This

coupling is reduced to 36.5 cm−1 in hydronium. The smaller coupling in hydronium reflects

the fact that each of the OH oscillators in hydronium is coupled to two other OH vibrations,

while there are only two OH oscillators in water. As such, extending one of the OH bonds

in hydronium has a smaller effect on the force experienced by each of the other oscillators in

hydronium compared to water. When a water molecule is hydrogen-bonded to hydronium,

the stretch-stretch coupling drops to a value that is intermediate to the corresponding values

for hydronium and water. Interestingly there is little variation in the value of this parameter

for the three protonated hydronium clusters studied here.

In contrast, the coupling between the hydrogen bonded OH stretch in H5O
+
2 and the OH

stretches in the flanking water is nearly 100 cm−1. This large coupling reflects the fact that

as the central proton is displaced the system moves to resemble a hydronium ion solvated

by a single water molecule. As the OH bond lengths in hydronium are larger than those in

water (see Table 1), this motion is accompanied by the elongation of the OH bonds on one

of the flanking water molecules and a contraction of the OH bond lengths on the other.

The effects of this coupling are also seen in H7O
+
3 , although the strength of the coupling

is diminished. In addition, the coupling between the two hydrogen bonded OH stretches in

the hydronium core is roughly twice the size of the coupling between one of these vibratoins

and the free OH stretch. The latter coupling being comparable in size to that in hydronium.

This reflects the fact that as one of the hydrogen-bonded OH bonds is elongated, the system

moves from the symmetric trimer structure shown in Figure 2 to a structure that more closely
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resembles that of H5O
+
2 solvated by a water molecule. This would lead to an elongation of

the OH bond length for the shared proton in the nascent H5O
+
2 and a shortening of the bond

length of the other shared proton OH bond.

Similar trends are also seen in H9O
+
4 although the magnitudes of the couplings are gen-

erally smaller than in H7O
+
3 . Most notably, the coupling between the OH stretches in the

hydronium core are roughly half those in bare hydronium. As discussed previously,23 the

supression of these couplings reflects the fact that in this configuration the OH bonds are

lower frequency and more anharmonic than in an isolated hydronium ion. As a result, a

smaller force is required to relax the other OH bond lengths as one of the OH bonds in the

hydronium core is elongated, and the system is driven toward a hydronium ion solvated by

(H2O)3.

In Table S4, we report the harmonic and anharmonic frequencies and intensities for the

OH stretches, evaluated at the MP2/aug-cc-pVTZ level of theory and basis using VPT2 as

implemented in Gaussian 16.47,54 These are compared to the anharmonic frequencies and

intensities of the corresponding transitions, evaluated by applying second order degenerate

perturbation theory to the harmonically coupled anharmonic oscillator model. In general the

anharmonic frequencies evaluated by the two approaches are in good agreement, differing by

several tens of cm−1. These differences reflect the neglect of couplings to other vibrational

degrees of freedom. These couplings are particularly notable for the shared proton stretches

in H7O
+
3 , which will be explored further in the following section. The intensities calculated

using the HCAO model more closely resemble the harmonic intensities from the electronic

structure calculation. Some of the differences between the VPT2 intensities and those from

the HCAO model reflect the fact there is a problem with symmetry breaking in the VPT2

calculations. In the case of the shared proton stretch the higher intensity from the HCAO

model calculations also reflects the absence of coupling between these states and overtones

and combination bands involvong lower frequency vibrations.
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Higher order couplings in H7O
+
3

Having explored how couplings are encoded in the harmonic analysis of protonated water

clusters, we turn our attention to the results of VPT2 applied to H7O
+
3 . We choose this

system because VPT2 brakes down catastrophically for H5O
+
2 due to the very flat potential

along the shared proton stretch coordinate as well as the large couplings between the shared

proton stretch and other vibrational degrees of freedom.16 In contrast, VPT2 appears to

work reasonably well for H9O
+
4 .15 In Figure 5 we plot the VPT2 spectra evaluated in an

internal coordinate representation, described above, when resonance interactions are included

and when they have not been considered. These spectra are compared to the spectrum of

this ion obtained by argon detachment.55 When resonances are included, we use degenerate

VPT2 to develop a reduced dimensional Hamiltonian that includes only those states that are

strongly coupled to the shared proton stretches. The resulting 17× 17 matrix is diagonalized.

This degenerate perturbation theory approach removes problems often associated with small

denominators.

As can be seen in the plots in Figure 5 and in the numerical information provided in

Tables S5 - S7, when near degeneracies are not accounted for both the shared proton stretch

and the bend at 1500 cm−1 have unphysically large intensities relative to other transitions.

By removing the terms by the Hamiltonian that couple nearly degenerate states from the

perturbation theory analysis the breadth of the feature that spans 1700 to 2700 cm−1 in the

measured spectrum is captured, although the details of this feature are not fully reproduced.

Likewise, the peaks near 1500 to 1600 cm−1 contain substantially less intensity than is

observed. By employing degenerate perturbation theory, we are now able to analyze the

contributions to these states. We find that the zero-order bright states in this spectral region,

the in- and out-of-phase shared protons stretches, each contribute to a number of eigenstates.

The extent of the mixing of zero-order states is quantified by the results reported in Table

S7. Looking at the zero-order states that contribute to the transitions that have significant

intensity, we find that most involve overtones and combination bands that correspond to
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internal rotation and tunneling of the hydronium core, as illustrated in the inset in Figure

5(b). These are the types of motions that would break the strong hydrogen bonds between

the hydronium core and the flanking water molecules. As the OH bond lengths in the

hydronium core in H7O
+
3 are 1.04 Å, while they are 0.979 Å in isolated hydronium (see

Table 1), motions that break the hydrogen bonding network are anticipated to be strongly

coupled to the shared proton stretch. In addition, earlier studies of ion-water complexes

showed that overtones of vibrations that break the hydrogen bond can have surprisingly

large intensity in the absence of coupling to other zero-order bright states.56 At the harmonic

level, these vibrations have frequencies ranging from 1150 to 1275 cm−1, which is roughly

half the frequency of the shared proton stretch. The above factors set up the system for

strong 2:1 Fermi resonance interactions.

In addition, combination bands involving the shared proton stretch and the OO stretch

are expected to have substantial intensities through mechanisms previously explored for

Ar·HCOH57 and hydronium solvated in a crown ether cage.23 In this case, the mechanism

by which these transitions gain intensity requires the consideration of an adiabatic picture

in which the minimum in an effective potential along the OO stretch coordinate shifts to

shorter distances as the OH bond is excited. This can be attributed to an increase in the

hydrogen bond strength and a decrease in the OH vibrational frequency as the OO distance

is decreased. By analogy to the Franck-Condon picture used to interpret electronic spectra,

this shift in the minimum of the adiabatic potential along the OH bond coordinate leads to a

progression in the OO stretch vibration built off of the shared proton stretch fundamental.23

In all, despite being a highly anharmonic system, VPT2 can provide insights into the nature

and consequences of couplings in H7O
+
3 .
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Summary and Conclusions

In this study, we have explored several of the mechanisms for coupling in protonated water

clusters, focusing on systems with four or fewer water molecules. We find that even at

the harmonic level, couplings between the shared proton stretch and the HOH bends have a

notable effect on the spectra for H5O
+
2 and H7O

+
3 . While this analysis was based on harmonic

treatments, the validity of the approach required much more sophisticated treatments of the

molecular vibrations. In particular, evaluation of the ground state probability amplitude

using Diffusion Monte Carlo allowed us to recognize that for all of these systems there is

significant amplitude at the transition states shown in Figure 2. This insight allowed us

to focus our analysis of these couplings on the transition state structures, where symmetry

simplified the picture considerably. We also explored the nature of anharmonic couplings in

H7O
+
3 using a degenerate variant of VPT2, performed in terms of normal modes that are

linear combinations of internal, rather than Cartesian, coordinates. This analysis allowed

us to obtain a better understanding of the types of states that are coupled to the zero-

order bright shared proton stretches. While the above discussion focused on the protonated

water systems, it serves to illustrate ways in which one can couple various theoretical and

computational approaches to obtain a deeper understanding of the nature of couplings in

highly anharmonic systems more generally.
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Table 2: Calculated kinetic and potential stretch/bend coupling in the proto-
nated water clusters.

uncoupleda couplingb coupledc

HOH HOH
system OH (water) (hydronium) Pot Kin OH HOHd

HOH 3810 1641 -380 144 3803 1622
H3O

+ 3785 1629 47 -214 3886 1623
3785 1629 0 -214 3889 1622

H5O
+
2 1017 1616 748 63 747 1778

1017 1616 748 0 762 1744
H7O

+
3 - asyme 2451 1636 -201 -160 2505 1552

1641 -291 0 1656
2451 1636 -201 0 2478 1570

1641 -291 0 1651
H7O

+
3 - syme 2617 1638 -141 -83 2635 1597

1645 -231 0 1644
2617 1638 -141 0 2630 1603

1645 -231 0 1646
H9O

+
4 - asyme 2966 1655 110 172 2985 1601

1640 -216 0 1657
2966 1655 110 0 1607

1640 -216 0 1662
H9O

+
4 - syme 3022 1645 162 0 3025 1628

a Frequencies evaluated based on symmetry adapted linear combinations of
equivalent OH bond lengths/HOO angles.
b Harmonic couplings between uncoupled vibrations.
c Frequencies evaluated based on a FG analysis of the uncoupled states including
only OH stretches and HOH bends.
d In H7O

+
3 and H9O

+
4 the bends are highly mixed in character and are reported in

order of increasing frequency.
e In H7O

+
3 and H9O

+
4 the stretch/bend couplings is divided into symmetry blocks.
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Table 3: Calculated kinetic and potential stretch/bend coupling in the deuter-
ated variants of H5O

+
2 .

uncoupleda couplingb coupledc

system OH HOH Pot Kin OH HOHd

H+(H2O)2 1017 1616 748 63 747 1778
1017 1616 748 0 762 1744

H+(D2O)2 1017 1188 641 74 678 1432
1017 1188 641 0 702 1391

D+(H2O)2 730 1616 634 75 558 1705
730 1616 634 570 1673

D+(D2O)2 730 1188 -544 -87 528 1317
730 1188 -544 0 549 1276

a Frequencies evaluated based on symmetry adapted
linear combinations of equivalent OH bond lengths/
HOO angles.
b Harmonic couplings between uncoupled vibrations.
c Frequencies evaluated based on a FG analysis of
the uncoupled states including only OH stretches and
HOH bends.
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Table 4: Calculated coupling matrix elements among the OH stretches in the
protonated water clusters).

system HOHa H3O
b HOH/H3O

c

H2O 62.9
H3O

+ 36.5
H5O

+
2 53 98

H7O
+
3 54 78.5d 25.5

35e

H9O
+
4 54 30 17

a Coupling between two OH stretches
in water.
b Coupling between two OH stretches
in the hydronium core.
c Coupling between the IHB OH
stretch and an OH stretch in water.
d Coupling between the two IHB OH
stretches.
e Coupling between an IHB OH
stretch and the unbound OH stretch.

37

Page 37 of 42 Faraday Discussions



Figure 1: Two normal modes in H5O
+
2 , defined as linear combinations of Cartesian displace-

ments. These are the normal modes that correspond to the out-of-phase HOH bends of the
flanking water molecules (upper) and the shared proton stretch (lower).
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Figure 2: The equilibrium (upper) and transition state (lower) structures of protonated
water clusters, H+·(H2O)n with n = 1 to 4.
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Figure 3: Projections of the ground state probability amplitude of for the the protonated
water clusters onto (a) the umbrella coordinate, θoop shown in Figure 4, (b) the torsion of the
two terminal water molecules in H5O

+
2 and (c) and (d) the displacements of the hydrogen

atoms off of the plane defined by three of the oxygen atoms in H7O
+
3 and H9O

+
4 , as described

in the text.
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Figure 4: Definition of θoop for H3O
+.
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Figure 5: Observed55 and calculated spectrum for H7O
+
3 . In (a) VPT2 is used to calculate

the spectrum without consideration of near-degeneracies, while degenerate VPT2 is used to
obtain the spectrum in (b).
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