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Understanding how highly symmetric, robust, monodisperse protein nano-cages self-assemble
can have major applications in various areas of bio-nanotechnology, such as drug delivery,
biomedical imaging and gene therapy. We develop a model to investigate the assembly of protein
subunits into the structures with different size and symmetry. Using Monte Carlo simulation, we
obtain the global minimum energy structures. Our results suggest that the physical properties in-
cluding the spontaneous curvature, flexibility and bending rigidity of coat proteins are sufficient to
predict the size, symmetry and shape selectivity of the assembly products. Further, on a thermo-
dynamic basis, we discuss the polymorphism of nano-cages observed in assembly experiments.

Introduction
Self-assembly of monodispersed protein cages is ubiquitous in na-
ture. Because of their biocompatibility, stability and low toxicity,
protein cages have important roles in many biological processes,
medicine and bio-nanotechnology. Examples of protein cages in-
clude platonic hydrocarbons, heat shock proteins, ferritins, car-
boxysomes, silicages, multicomponent ligand assemblies, clathrin
vesicles and virus shells, to name a few1–5. The protein shells
are necessary for both protection and delivery of various cargos
in biological systems. For instance, ferritin stores iron and exists
in almost every living organism.

Among all biological entities, viruses in particular have opti-
mized the feat of packaging of genetic materials and other anionic
cargos into a protein shell called the capsid, recognized as one of
the most efficient nano-containers for trafficking genetic material
in nature6,7. Most protein cages self-assemble from a large num-
ber of one or a few different types of protein subunits into com-
plex supramolecular structures with diameters ranging from 10 to
500 nm8. Quite remarkably under many circumstances, viruses
spontaneously assemble in vitro from protein building blocks into
highly symmetric shells9,10. Most spherical viruses adopt struc-
tures with icosahedral symmetry11–13 characterized by a struc-
tural index T number, which assume only certain integers (1, 3,
4, 7, ...)14. The number of protein subunits in icosahedral shells
is often 60 times the T -number.

Other protein cages can adopt several other symmetric struc-
tures. For example, clathrin shells form icosahedral structures in
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Fig. 1 Structures of some protein cages. (a) Lumazine synthase is
an enzyme with icosahedral symmetry (T = 1) constructed of 60 iden-
tical protein subunits. The colors are added to highlight each pentamer.
(b) Mini-coat has tetrahedral symmetry 15. The two-fold and three-fold
symmetry axes are marked with small black ovals and triangles respec-
tively. (c) Encapsulin from M. xanthus with T = 3 structure is made of
180 identical protein subunits. The position of two, three and five-fold
symmetry axes are marked in the picture. (d) Hepatitis B virus, a T = 4
structure. The darker color (red) in (c) and (d) are pentamers. All the
structures except (b) are reproduced using UCSF Chimera packages
(http://www.rbvi.ucsf.edu/chimera).
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addition to many other symmetric shells16,17 depending on the
size of their cargo. Nevertheless protein cages with icosahedral
symmetry are by far the most abundant in nature. Figure 1 il-
lustrates the structure of Lumazine synthase with T = 1 symme-
try18, a Clathrin shell with tetrahedral symmetry15, an encap-
sulin nanocompartment from M. xanthus with T = 3 structure19

and the Hepatitis B virus (HBV) capsid with T = 4 symmetry.
Despite the abundance of protein shells in nature, the role of

building blocks and the factors contributing to the stability, size
and shape selectivity of nanostructures are not well-understood.
To this end, there is a precedent need to take a bottom-up ap-
proach and to understand at the fundamental scale the impact of
building blocks on the design and formation of functional nano-
shells.

Extensive work has explored the effect of spontaneous radius
of curvature (dihedral angle) of building blocks on the equilib-
rium structure of protein cages20. For instance, using the Monte
Carlo (MC) simulations, Chen et al. studied the self-assembly of
attractive cone-shaped particles into different structures21. They
obtained a sequence of clusters and found that the symmetry and
stability of formed structures depend on the cone angle or the
preferred angle between subunits. Similar sequence of structures
was obtained with attractive spherical particles but under certain
convexity constraints, equivalent of changing the preferred dihe-
dral angle between subunits22.

The simple case of N spherical colloids or circular disks inter-
acting through Lennard-Jones potential constrained to move on
the surface of a sphere also shows that the equilibrium structure
of shells depends on the number of building blocks and the pre-
ferred angle between disks or Lennard-Jones particles23. As the
preferred angle between disks or colloids changes, structures with
different size and symmetries form.

More recently, Paquay et al. studied the equilibrium structures
of interacting Morse particles residing on the surface of a sphere
and found similar structures and magic numbers as observed in
the case of LJ particles24. Nevertheless, the impact on the equi-
librium structures of the mechanical properties of building blocks
including flexibility and bending rigidity have not previously been
studied. While the dynamical structures of protein shells under
non-equilibrium conditions as a function of bending rigidity and
stretching modulus of building blocks have been thoroughly in-
vestigated in Ref.25, due to irreversible steps in the shell growth,
the structures obtained in those simulations might be completely
far from equilibrium.

In this paper we investigate the equilibrium structure of nano-
shells and the important factors contributing to their stability and
symmetry. Using MC simulations combined with the bond flip-
ping method26,27 we study the structure of protein cages as a
function of the spontaneous curvature as well as stretching and
bending rigidity of building blocks, advancing our knowledge for
producing high yield nano-cages with specific size and shape.

While spontaneous curvature is an important factor in defining
the size of the shell, we find that the flexibility and bending rigid-
ity of building blocks can completely modify the size and final
symmetry of the shells. Quite interestingly the sequence of clus-
ters or magic numbers and their associated shells obtained in our

equilibrium studies, coincide not only with the structure of viruses
displaying icosahedral symmetry but with other non-icosahedral
protein cages observed in other systems such as clathrin shells.

Furthermore, we find that there are striking similarities be-
tween the minimum energy structure phase diagram and the one
obtained through irreversible growth25, as a function of the me-
chanical properties and spontaneous curvature of building blocks.
Both diagrams display the same symmetry for almost the same re-
gions of the parameter space. We emphasize that the location of
pentamers in a shell defines its symmetry. If the position of a pen-
tamer in a symmetric shell is slightly displaced, the symmetry will
be broken. The fact that despite the irreversible steps, pentamers
form in the “right” positions, preserving the symmetry during the
irreversible shell growth, is quite unexpected. The similarities be-
tween irreversible and equilibrium structures in this paper can be
explained at least in part by the recent work of Li et al.. Using con-
tinuum elasticity theory, they have shown that as an elastic shell
grows, there are regions on the spherical cap that strongly adsorb
disclinations (pentamers), i.e., there is a high affinity for the for-
mation of disclinations at certain locations as the cap grows. We
will discuss this effect more in the conclusion of the paper.

We find some differences between two phase diagrams too. A
few symmetric structures grown in irreversible simulations25 do
not constitute the minimum free energy structures. Furthermore,
we obtain additional symmetric structures in the equilibrium sim-
ulations, which were not observed in the growth simulations un-
der irreversible conditions.

We note here that in our MC simulations the assembled shells
are obtained under the condition that the thermal fluctuations
are negligible compared to the other energies in the system, and
as such the equilibrium structures coincide with the minimum
energy structures.

It is also worth mentioning that it is now widely accepted that
the preferred curvature and mechanical properties of subunits
depend on the solution conditions such as pH and salt concen-
tration28. The interplay of protein geometry, repulsive electro-
static and attractive hydrophobic interactions define the equilib-
rium properties (bending and stretching moduli and spontaneous
curvature) of subunits, nevertheless no systematic experimental
data are known for these parameters. In addition to solution
conditions, mutations can also affect the physical properties of
protein subunits29, enabling us to test several theories in this pa-
per. Understanding the role of stiffness and preferred curvature
of building blocks could lead to generation of a range of new ma-
terials and novel structures.

Method
To study the equilibrium structures, we consider stretchable equi-
lateral triangular subunits, representing building blocks of pro-
tein cages, as illustrated in Fig. 1a and d. Triangular subunits are
suitable to describe the structure of protein cages as they form
hexagonal sheets in flat space and are able to build a spherical
mesh with at least 12 five coordinated lattice points (pentagons).
The total energy of a triangular shell is the sum of the stretching
and bending energies30,31. The stretching energy of triangular
network can simply be defined by a harmonic potential summed
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over all triangles,

Es = ∑
i

3

∑
a=1

ks

2
(ba

i −b0)
2 (1)

with i the triangular subunit index, b0 the equilibrium length of
the edges, and ba

i the length of the ath edge in the ith subunit.
While the stretching energy is related to the deformation of sub-
units from their equilateral shapes, the bending energy corre-
sponds to the deviation of the dihedral angle between adjacent
subunits from the preferred one. The bending energy is obtained
by summing over all pairs of triangular subunits that share an
edge and can be written as,

Eb = ∑
<i j>

kb(1− cos(θi j−θ0)) (2)

with < i j > the index pairs of neighboring subunits, kb the
torsional spring constant, and θ0 the preferred dihedral an-
gle between two subunits. The preferred dihedral angle and
spontaneous radius of curvature are related through sin(θ0/2) =
(12R2

0/b2
0 − 3)−1/2 with R0 the spontaneous radius of curvature.

The angle θi j, where cosθi j = n̂i · n̂ j, is between the unit normal
vectors n̂i and n̂ j of the two adjacent subunits i and j sharing an
edge.

Equations 1 and 2 reveal the presence of two important dimen-
sionless parameters, the spontaneous radius of curvature R0/b0

and the Foppl von Karman (FvK) number

γ = ksb2
0/kb, (3)

which indicates the relative difficulty of deforming an equilateral
triangular subunit compared to changing the dihedral angle be-
tween two adjacent subunits away from the preferred one. We
note that both dimensionless parameters are normalized with re-
spect to the size of the subunits b0.

To obtain the lowest-energy configurations we employ a series
of simulated annealing MC simulations32. We start from a trian-
gulated spherical mesh with a random distribution of Nv vertices.
Each MC step consists of Nv attempted bond movings, which in-
volves removing and reattaching the edge connecting two ver-
tices of two neighboring triangles such that the two vertices which
were not connected before, they will be linked by an edge after
the flip, as is shown in Fig. 2. Detachment and reconnection of
the bonds are such that the total number of vertices Nv, subunits
ns and edges in the shell remain constant. Since our goal is to ob-
tain the global minimum energy structure each edge swapping is
followed by the shell relaxation during which vertices will move
to the positions that minimize the total elastic energy. We employ
the BFGS method to relax and minimize the energy of the shell33.
The probability that the new relaxed structure with the new po-
sition of vertices be accepted is min(1,e(Eold−Enew)/kBT ). Eold and
Enew are the energies of the structures before and after the trial
edge swapping, respectively. We generate a Markov chain with
Boltzmann probabilities by iterating the edge swapping until the
energy converges. The edge swapping process is reversible to en-
sure detailed balance.

We repeat the above simulations with different initial configu-

a) b) c)

Fig. 2 Bond moving method: (a) The thick black edge between two
neighboring triangles is randomly chosen. (b) The black line is removed
from its previous position and the two vertices that were not sharing a
bond before the swap, are now connected. The darker (red) shades in-
dicate the positions of pentamers and the white ones correspond to hex-
amers. By moving the bond from (a) to (b), the position of pentamers and
hexamers are changed. (c) The system is energetically relaxed now after
the swap.

rations many times. To avoid local minimum free energy traps,
we employ simulated annealing with both linear and non-linear
schedules21. The results show no dependence on the cooling path
as long as the cooling rate is very slow. We note again that since
the thermal fluctuations are negligible compared to the other en-
ergies in the system, the structures we obtain correspond to the
global minimum energy structures.

The above algorithm allows us to successfully change the posi-
tion of pentamers and hexamers. In other words, during the sim-
ulations the location of disclinations is not fixed; they can move,
and thus change the structure and symmetry of the shell. We per-
form MC simulations for all the structures ranging from Nv = 12
to 42 corresponding to the shells made of ns = 20 to 80 number
of subunits. In nature larger shells need some external help like
scaffolding proteins or inner core to form symmetric shells34, the
focus of this paper is, however, on the smaller shells that are able
to spontaneously assemble without any core.

Results
We carry out Monte Carlo simulations as described in the previ-
ous section for different numbers of subunits ns. We start with a
fixed preferred spontaneous radius of curvature R0/b0 = 1.28 but
different values of γ. The results of the simulations are illustrated
in Fig. 3 in the form of a plot of the minimized elastic energy per
triangles εn (in units of kBT ) versus the number of subunits, ns.
The solid light line (green) corresponds to γ = 0.5, the dashed line
to γ = 1, the dark solid line to γ = 3 and the dotted line to γ = 8.
We emphasize that since γ is proportional to the ratio of stretch-
ing to bending modulus, for larger γs it is difficult to deform the
subunits from their equilibrium equilateral shape but rather easy
to bend them away from their preferred dihedral angle. For small
γs, in contrast, the subunits can be easily deformed but it costs
significantly more energy to modify the dihedral angle between
the adjacent subunits from the preferred one.

Figure 3 illustrates that there are many local minima but no dis-
tinguished global minimum energy for γ = 0.5. The energy land-
scape indeed becomes flatter as γ → 0. When γ becomes smaller,
the subunits becomes more flexible, and thus the size of the shell
changes with R0/b0. However, as γ becomes larger, the subunits
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Fig. 3 Energy per subunit versus number of subunits are displayed for
γ = 0.5, 1, 3 and 8. The spontaneous radius of curvature is fixed at
R0/b0 = 1.28. While the minimum energy for γ = 0.5 is at ns = 40, for
γ = 1, 3 and 8 the equilibrium structure is a T = 3 icosahedral structure.

become more rigid and avoid configurations leading to the defor-
mation of equilateral triangles, and as such only the structures
with icosahedral symmetry remain the global minimum energy
structure. For γ < 1, other structures with different ns compete or
have lower energies than a T = 3 structure.

We next investigate the impact of the spontaneous radius of
curvature on the global energy minima of Fig. 3 for various γs.
Figure 4 illustrates the plot of energy per subunit versus R0/b0

for the global minimum energy structures (Fig. 3) at different
γ-values. The curves in Fig. 4 can be divided into different seg-
ments, each representing different structure. The capital letter at
the beginning of each segment reveals the symmetry and struc-
ture of that segment. Note that letter A pertains to the beginning
of all curves. For instance, the letter A at the beginning of the
thick dotted line shows that for γ = 8 the global minimum energy
structure is a T = 1 icosahedral shell when 1 < R0/b0 < 1.3. All
the structures corresponding to the capital letters are illustrated
in Fig. 5a.

The thick dotted line in Fig. 4 shows that even though the en-
ergy per subunit increases as R0/b0 increases, T = 1 remains the
global minimum energy structure till R0/b0 = 1.3 when the icosa-
hedral T = 3 becomes the global minimum energy structure. This
effect is also apparent in Fig. S3 †, which is a plot of the number
of subunits ns versus R0/b0. There is a big jump in the number of
subunits from ns = 20 (T = 1) to ns = 60 (T = 3) at R0/b0 = 1.3.

All the above effects can be seen more clearly in Fig. 5b in the
form of a “shape” phase diagram of spontaneous radius of curva-
ture R0/b0 and γ. Each shaded region in the diagram corresponds
to a different shell whose structure and symmetry are illustrated
in Fig. 5a. Figure 5b shows that the structures become more sen-
sitive to the spontaneous radius of curvature as γ decreases. For
instance, for γ = 0.2 as the spontaneous radius of curvature varies,
we obtain nine different symmetric shells between R0/b0 = 1 and
1.7, see also Fig. S4 †. However, there are only two different
structures at γ = 8 over a wide range of spontaneous curvature,
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Fig. 4 Plot of energy per subunit versus R0/b0 for γ = 0.5, 1, 3 and 8.
Each curve can be divided into different segments. The capital letter at
the beginning of each segment (from left to right) indicates the symmetry
of the segment. The letter A pertains to the beginning of all curves.

The corresponding structures are illustrated in Fig. 5a.

T = 1 and T = 3. This is basically due to the fact that at larger γs
the protein building blocks are stiffer and it is energetically more
costly to deform them from their native shape. Since for icosahe-
dral structures most proteins are sitting in equivalent positions,
at high γ-values icosahedral structures are the minimum energy
structures for the range of the spontaneous curvature studied, as
illustrated in Fig. 5b.

The largest shell obtained in Fig. 5b contains ns = 80 triangles
corresponding to a T = 4 structure for smaller γ-values. Note that
at intermediate γs, another equilibrium structure with the same
number of subunits as a T = 4 shell (ns = 80) but different symme-
try exists, which we label it as H∗ in Figs. 5a and 5b. While T = 1
and T = 3 occupy large regions in the equilibrium phase diagram,
only a small region belongs to T = 4. This is consistent with sev-
eral previous studies. First of all, a review of literature shows that
there are fewer T = 4 structures in nature35,36. Furthermore, in
Refs.22,24 only the D5h structure mentioned above was observed
and no T = 4 icosahedral structures appeared in their simulations.

It is now interesting to compare the equilibrium “shape” phase
diagram with the diagram obtained through irreversible assem-
bly25.

Equilibrium versus non-equilibrium
The non-equilibrium or irreversible structures are obtained based
on the algorithm used in Ref.25, and are illustrated in the form of
a phase diagram of the dimensionless ratio of bending to stretch-
ing modulus γ and the spontaneous radius of curvature R0/b0 in
Fig. 6. As in the case of the equilibrium phase diagram, each
color refers to a different symmetric structure. For completeness,
the details of obtaining non-equilibrium or irreversible structures
are given in the SI †. Briefly, these structures grow following the
local minimum energy pathway. Nevertheless, during the assem-
bly process once a pentamer or hexamer forms, its position is
permanently fixed. Due to these irreversible steps, the structures
of assembled shells could be completely far from equilibrium. It
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Fig. 5 (a)The equilibrium structures obtained in the simulations cor-
responding to the labeled regions of the phase diagram illustrated in
Figure b. The shells from left to right and top to bottom have ns =

20, 28, 36, 40, 44, 50, 60, 76, 80 and 80 subunits and symmetries are
icosahedral (T = 1), tetrahedral, D2(tennis ball), D2, D2, D3, icosahe-
dral (T = 3), tetrahedral, icosahedral (T = 4) and D5h, respectively. (b)
Phase diagram of the equilibrium structures presenting various shells
assembled for different values of γ and R0/b. Each shaded region cor-
responds to a single equilibrium shell type . Region A corresponds
to a shell with ns = 20. The regions D−K correspond to shells with
ns = 28,36,50,60,80,40,44 and 76 subunits. Both H and H∗ structures
have the same number of subunits ns = 80.

appears that this “irreversible” algorithm has been successful in
explaining many viral structures30,31,37,38.

We find it quite striking that the shell assembly along the lo-
cal minimum energy path with the restrictive conditions of irre-
versible growth leads to the formation of shells almost identical
to those obtained in equilibrium studies. These results are quite
unexpected considering that the principles of detailed balance is
violated in the irreversible growth and as such one would expect
a big difference between the two phase diagrams.

Despite the similarities, there are some differences between
the two phase diagrams, see Figs. 5b and 6. The shells that
only appear in the irreversible phase diagram are illustrated in
Fig. 7. Two small regions (structures B and C) in the irreversible
phase diagram (Fig. 6) corresponding to ns = 24 and 26 do not
constitute the minimum free energy structures. In the equilib-
rium phase diagram, they are both replaced by the structure D,
a clathrin shell, which has ns = 28 and is called mini-coat. The

𝛾
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Fig. 6 Phase diagram of the irreversible growth: the dark shaded contigu-
ous regions labeled by letters A through H correspond to regions where
only a single type of symmetric shell is assembled. In the hashed re-
gion some irregular shells grow in addition to H∗ and K structures. The
majority of K structures form at the phase boundary between H∗ and
the adjacent white region. The white areas show the regions in which
different types of shells without any specific symmetry are formed.

other clathrin shells, hexagonal barrel (structure E) obtained in
the irreversible growth has ns = 36 with D6h dihedral symmetry.
The equilibrium structure of the shell with the same ns = 36 has
tennis ball symmetry, the structure E∗ in Figs. 5b and 6.

The white area in the irreversible phase diagram for γ < 2 and
between 1.21 < R0/b < 1.3 (ns = 38− 48) corresponds to the re-
gion where many different types of shells without any specific
symmetry are assembled. In contrast, there is no irregular struc-
ture in the equilibrium phase diagram, and we find the structures
I (ns = 40) and J (ns = 44) with D2 symmetry in that region.

Moreover, the regions corresponding to G and F structures
cover a larger parameter space in the equilibrium phase diagram
compared to the irreversible one, revealing the presence of energy
barriers as the symmetric shells grow. The energy barrier is be-
tween a local minimum energy that the growing shell is trapped
into it because of the irreversible assembly path and the global
minimum energy.

Furthermore, the irregular shells formed between the G and F
structures at lower γ-values in the irreversible phase diagram dis-
appear and are replaced with the F one. The structure K with
ns = 76 and tetrahedral symmetry which forms between G and H
(or H∗) in the equilibrium phase diagram, appears rarely in the ir-
reversible one. In fact it only assembles at the boundary between
the hashed and the white regions (Fig. 6), despite the fact that
the K structure is smaller than H or H∗. Last but not least, the
structures with icosahedral symmetry cover a wider region in the
equilibrium phase diagram.

The largest symmetric shell in Figs. 5b and 6 is ns = 80. Note
that in the absence of a cargo which could be a genome, an inner
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B                   C                  E                                   

Fig. 7 The symmetric shells growing under irreversible assembly condi-
tions, which do not appear in the equilibrium phase diagram. The shells
from left to right have ns = 24, 26 and 36 subunits. The symmetries are
D6, D3 and D6h respectively. In the irreversible phase diagram (Fig. 6)
they are labeled as B, C and E. The E structure has the same number of
subunits as the E∗ structure but with different symmetry.

shell or scaffolding proteins, at low γ, when we increase the spon-
taneous radius of curvature only irregular shapes form. However,
at large γ-values for (R0/b0 � 1), we obtain flat sheets or other
structures with zero Gaussian curvature30,31,37,39. In this paper,
we only focus on the assembly of small symmetric shells, as illus-
trated in Figs. 5b.

Discussion and Conclusion
Despite the wide range of amino acid sequences and folding struc-
tures of coat proteins, many protein cages spontaneously self-
assemble to form icosahedral or other symmetric structures. This
reveals a “universal” behavior among most protein cages in na-
ture. In this paper, using the MC simulation and edge swap-
ping method, we investigated the equilibrium structure of protein
cages built from identical subunits. We, in particular, choose tri-
angular subunits as they are a generic choice that applies to the
majority of protein nano-cages. Since triangles form a hexagonal
lattice in flat space and also assemble to create 12 disclinations
for making closed polyhedrons, their behavior is similar to the
building blocks of protein cages. While in this paper and many
others equilateral triangular subunits have been able to capture
the universal behavior of viruses and other proteins cages30,37–41,
we do not expect that the equilateral triangular mesh explains the
behavior of systems in which anisotropy of subunits plays an im-
portant role in the final structure of protein cages.

Using triangular subunits, we studied the impact of the me-
chanical properties of building blocks on the symmetry and struc-
ture of small protein cages and constructed a phase diagram as a
function of the spontaneous curvature of subunits and FvK num-
ber (the ratio of stretching to bending modulus), as shown in
Fig. 5b. The phase diagram is significantly occupied with icosa-
hedral shells, T = 1 and 3, which are common among viruses and
many other protein cages. As illustrated in the figure, at low
γ, where subunits can deform easily from the equilateral trian-
gle, various structures form as a function of spontaneous curva-
ture. However, by increasing γ, subunits become more rigid and
structures with lower symmetries disappear. For instance for low
γ = 0.2, the equilibrium structures are sensitive to the sponta-
neous radius of curvature and there is a smooth transition from
one shell to the next one as illustrated in Fig. S4 †. Increasing to
γ = 8, the equilibrium structures become less sensitive to R0/b0

and only icosahedral structures with T = 1 and 3 survive, indicat-
ing the robustness of these two structures.

Quite unexpectedly, we found that the equilibrium phase dia-
gram, Fig. 5b, was very similar to the phase diagram obtained un-
der irreversible conditions, see Fig. 6. As explained in the previ-
ous section, the irreversible simulations of Ref.25 were performed
following the local minimum energy path but under the condi-
tion that once a pentamer or hexamer formed, it could no longer
dissociate or move. Since the principles of detailed balance were
violated in the irreversible growth simulations, we did not expect
to observe such a high degree of similarity between the two phase
diagrams, see Figs. 5b and 6.

These results could be explained to some extent with the recent
work of Li et al. who employed the continuum elasticity theory
and studied the assembly pathway of icosahedral shells. They
found that as an elastic shell grows, there is a deep potential well
attracting pentamers exactly at the locations that will become the
vertices of an icosahedron when the shell is complete38.

Due to the small size and discreteness of the system, the contin-
uum elasticity theory cannot explain the symmetry of the shells
observed in Figs. 5a and 7. However, the extensive similarities
between equilibrium and irreversible phase diagrams in Figs. 5b
and 6 indicate that for the symmetric shells other than icosahe-
dral ones, there are also high-affinity regions for the formation
of disclinations at specific locations during the growth process,
which leads to the assembly of different types of symmetric shells,
depending on the mechanical properties of protein subunits.

It is important to note that we often found one single global
minimum energy structure in the phase diagrams presented in
Figs. 5a and 7 for a given γ and R0/b0. However, in many biolog-
ical systems, sometimes a few different types of protein cages co-
exist in the same solution42,43. For instance self-assembly studies
of dimeric Hepatitis B Virus capsid protein mutant Cp1492 shows
that empty T = 3 and T = 4 structures form in a ratio of about
95:5 at medium to high salt concentration and close to neutral
pH44,45. While the focus of our work is to find the optimal struc-
ture of protein cages as a function of mechanical properties of
its building blocks, the polymorphism observed in several self-
assembly studies can be explained through a careful examination
of plots of energy per subunit versus number of subunits in Fig. 3.
If the difference between the free energy per subunits in two dif-
ferent structures is small compared to the thermal energy kBT ,
one expects to observe both structures, with relative populations
given by the corresponding Boltzmann factor exp(∆ε/kBT ), with
∆ε the difference between the free energy per subunit in the two
shells.

Lastly we emphasize that even though in this work we did not
explicitly study the impact of salt and pH on the structure of pro-
tein shells, the solution environment such as salt and pH can mod-
ify the number of charges on the protein subunits, which in turn
can change the stiffness and the spontaneous dihedral angle of
building blocks. While the results obtained in this paper can ex-
plain why various protein shells with different symmetry appear
in nature, at this point there is not enough experimental data to
allow us to connect our variables R0/b0 and γ (the ratio of stretch-
ing to bending modulus) to the experimental conditions such as
pH and salt.

To examine several concepts presented in this article, it would
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be interesting to carry out a set of systematic experiments as a
function of pH and salt concentration with various mutated pro-
teins, which in consequence have different mechanical properties.
One then can construct an experimental phase diagram similar to
the one shown in Fig. 5b. A quantitative comparison between ex-
periments and theory will result in a better understanding of the
protein-protein interaction and the parameters that contribute to
the formation of various protein cages with extensive potential
application in various area of material science, gene delivery and
medicine.
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h𝑖𝑔ℎ	
  𝛾	
  (𝑟𝑖𝑔𝑖𝑑 	
  𝑠𝑢𝑏𝑢𝑛𝑖𝑡𝑠 ):

𝑆𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 	
  𝑟𝑎𝑑𝑖𝑢𝑠	
  (𝑅7/𝑏7)1.0 1.7

1.0 1.7𝑆𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 	
  𝑟𝑎𝑑𝑖𝑢𝑠 (𝑅7/𝑏7)

l𝑜𝑤 	
  𝛾	
  (𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 	
  𝑠𝑢𝑏𝑢𝑛𝑖𝑡𝑠 ):
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