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The Marcus theory of electron transfer views fluctuating orientations of permanent dipoles as the
nuclear mode bringing the donor and acceptor into the tunneling resonance. Electronic polariza-
tion of the solvent is excluded as the fast mode adiabatically following the electronic density. This
view, valid for solids, does not apply to molecular liquids where molecular translations (density
fluctuations) modulate the induction interaction of the donor-acceptor complex with the solvent.
This mechanism of promoting radiationless electronic transitions is considered here in the frame-
work of the perturbation liquid-state theory. The reorganization energy of electron transfer in
nonpolar solvents is nonzero and reaches the values of 0.1–0.3 eV for typical molecular sizes and
solvents used in applications. The reorganization energy scales quadratically with the molecular
polarizability of the solvent and decays as the inverse fifth power with the size of the donor and ac-
ceptor. The combination of the entropic character of the density fluctuations, driven by re-packing
of molecular cores, with the short range of induction solute-solvent interactions leads to the vi-
olation of the fluctuation-dissipation theorem for the variance of the donor-acceptor energy gap.
An explicit, approximately hyperbolic, dependence of the reorganization energy on temperature
is predicted. It leads to a non-Arrhenius kinetic law for the rate constant of electron transfer in
nonpolar liquid solvents.

1 Introduction
The theory of electron transfer between electronic states local-
ized on the donor and acceptor particles immersed in a polar
medium was developed by Marcus. [1] In this model, activation
of radiationless tunneling of the localized electron is driven by
thermal agitation of the medium. A rare collective fluctuation of
a large number of dipoles creates an electrostatic configuration
in which the donor and acceptor electronic states come into reso-
nance. This is the nuclear configuration in which tunneling of the
electron becomes possible with the probability determined by the
rules of quantum mechanics.

The fluctuating polar medium plays the role of the thermal
bath modulating the difference of energies between the accep-
tor and donor electronic states, the donor-acceptor energy gap
∆E defined more precisely below. The energy gap becomes the
collective reaction coordinate monitoring the progress of the re-
action. [2–4] The reaction rate is proportional to the probability
of achieving the tunneling configuration ∆E = 0. Given a large
number of medium’s dipoles participating in the nonequilibrium
fluctuation, the probability of this event is a Gaussian function
specified by two parameters: the average energy gap 〈∆E〉 and
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the energy-gap variance σ2. The probability of achieving ∆E = 0
is then [5,6]

P(∆E = 0) ∝ exp
[
−〈∆E〉2

2σ2

]
. (1)

The next step of the theory is to express the energy-gap vari-
ance as the product of the thermal energy kBT and the energy pa-
rameter λ known as the reorganization energy of electron transfer

σ
2 = 〈(δ∆E)2〉= 2kBT λ , δ∆E = ∆E−〈∆E〉. (2)

This form for the variance of ∆E is the static limit of the macro-
scopic fluctuation-dissipation theorem (FDT), [7,8] also known as
the Johnson-Nyquist noise. [9] The FDT converts the probability
P(∆E = 0) into the Boltzmann distribution, with the rate constant
of the reaction given by the Arrhenius kinetic law

kET ∝ P(∆E = 0) ∝ e−∆F†/(kBT ), (3)

where
∆F† = 〈∆E〉2/(4λ ) (4)

is the activation free energy.

The FDT is formulated for an extensive, macroscopic variable
A, which, when coupled to an intensive external conjugate force
F , makes the perturbation −A×F to the extensive system Hamil-
tonian. [7] The prediction of the FDT then concerns the tempera-
ture scaling of the variance 〈(δA)2〉∝ T , which also scales linearly
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with the number of particles in the system (an extensive param-
eter). On the contrary, variances of microscopic variables, which
do not scale linearly with the number of particles, do not neces-
sarily follow FDT’s linear scaling σ2 ∝ T , thus leading to a number
of violations of the FDT reported in the literature. [10–12]

Given that the donor-acceptor energy gap is a microscopic vari-
able, deviations from the anticipated linear scaling with temper-
ature [13] lead to experimentally detectable [14] deviations from
the Arrhenius law. In contrast, the Marcus formulation for σ2 ap-
plies the macroscopic FDT. It relies, in addition to the FDT, on
the macroscopic dielectric susceptibility of a polarizable medium
to calculate the reorganization energy λ . The Marcus theory is,
therefore, a consistent macroscopic description of both the statis-
tics of ∆E and the solvation thermodynamics. The question is
to what extent the limitations of this picture, related to both the
microscopic structure of the solute-solvent interface and to the
microscopic character of the energy-gap collective variable, are
reflected by the observables.

The Marcus reorganization energy λ ∝ c0 is proportional to the
Pekar factor [15,16] c0 = ε−1

∞ − ε−1
s , which originally appeared in

theories of polarons in polar crystals. [15,17,18] It is defined in
terms of the high-frequency, ε∞, and static, εs, dielectric con-
stants of a polarizable medium. This dielectric parameter arises
from the difference of the longitudinal dielectric susceptibili-
ties [19] χL = (4π)−1(1− ε−1

s ) for the overall dielectric response
and χL

∞ = (4π)−1(1− ε−1
∞ ) for the electronic (high-frequency)

component only: c0 = 4π
[
χL−χL

∞

]
. This form of the dielec-

tric susceptibility appears in dielectric theories when an external
source of charge with the spherically-symmetric electric field po-
larizes a spherically-symmetric cavity carved from the dielectric
(Born theory of ion solvation [20]). This configuration, and the
corresponding field symmetry, are not applicable to the major-
ity of electron-transfer reactions in solutions. Extensions to more
complex molecular shapes in the framework of dielectric theories
produce more complex dielectric response functions combining
both the longitudinal and transverse susceptibilities. [21] Never-
theless, if subtraction of the electronic response from the total
is applied to construct the response of the nuclear polarization,
all these functions carry the same mathematical form of a differ-
ence between overall and high-frequency susceptibilities. An al-
ternative framework requires direct integration of the vector field
of the electronic polarization in the free-energy functional [22–24]

(eqn (9) below). This more precise approach yields non-additive
forms of the response function, in which the electronic and over-
all susceptibilities are not separable anymore.

In a non-dipolar solvent, such as benzene or a hydrocarbon sol-
vent, one gets εs ≈ ε∞ and c0→ 0. From Marcus theory, one antic-
ipates λ → 0, which is an unphysical result (no thermal noise pro-
duced by the medium) contradicting the empirical evidence. Ex-
periment suggests a substantial reorganization energy [25,26] λ '
0.1− 0.3 eV in non-dipolar materials, also measured through the
Stokes shift of optical dyes. [27] To address the difficulty, the the-
ory has to be re-formulated by departing from the realm of macro-
scopic dielectric polarization to microscopic liquid-state theories
explicitly considering interactions of the donor-acceptor complex
with molecular charges of the solvent. Describing non-dipolar

solvents requires incorporating either multipolar moments higher
than the dipole (mostly quadrupole) [27–33] and/or molecular po-
larizability. [34–36]

The potential significance of molecular quadrupoles is easy to
appreciate already within the conceptual framework of the Mar-
cus theory. Nuclear motions, mostly rotations, of the molecu-
lar quadrupoles produce fluctuations of the electrostatic poten-
tial, [31] which are ultimately recorded by the donor-acceptor
complex as changes in the donor-acceptor electronic energy
gap. [27–30] Explicit relations for the reorganization energy fol-
lowing from this perspective are provided below.

On the other hand, significance of molecular polarizability, and
of the corresponding electronic polarization, for electron transfer
is harder to appreciate since it is exactly this polarization mode
that is excluded from the solvent reorganization energy by the
Marcus construction [1] leading to the Pekar factor. The reason
for this exclusion is that electronic polarization is fast and follows
the transferred electron adiabatically. This argument suggests
that electronic polarization cannot be out of equilibrium with a
given charge distribution of the solute. It, therefore, needs to
be subtracted from the total medium polarization to arrive at the
nuclear polarization of the medium, which is capable of deviating
from equilibrium due to thermal agitation. This logic leads to the
Pekar factor when applied to the longitudinal polarization of the
medium.

These arguments, going back to the theory of polarons in
solid materials, [15,17,18] are obviously correct. However, they
are focused on orientational fluctuations of dipoles in a solid-
type medium and miss the importance of molecular translations
in producing nuclear fluctuations in molecular liquids. [37,38] We
first briefly discuss the conceptual steps of the theory incorporat-
ing these nuclear modes, [34,35] followed by the full formalism.

One starts with solving the eigenvalue problem for a molecule
in the gas phase by standard quantum mechanical algorithms.
This step provides eigenenergies Egi and multielectron eigenstates
φi, i = 1,2. In the next step, the molecule is placed in the medium
and the molecule-medium interaction is added to the gas-phase
Hamiltonian Hg

H = Hg−
∫

drÊ0 ·P. (5)

Here, Ê0 is the operator of the electric field of the donor-acceptor
complex and P is the polarization density of the medium. In the
first order of the perturbation theory, the energy Ei = 〈φi|H|φi〉 is
shifted from Egi by the interaction

−
∫

drE0i ·P (6)

of the electric field E0i = 〈φi|Ê0|φi〉 in the state φi with the polar-
ization field

P = Pn +Pe. (7)

The latter includes both the nuclear component Pn from reori-
entations of molecular multipoles and the electronic component
Pe from induced (electronic) molecular dipoles. Note that Pn =

Pd − 1
3 ∇ ·Q+ . . . formally includes [39] the vector field of dipo-

lar density Pd , as well as densities of higher multipoles, such as
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the most important for non-dipolar solvents [28–32,40] quadrupo-
lar density Q (a second-rank tensor field).

The first-order quantum-mechanical perturbation theory yields
instantaneous energies of the donor and acceptor Hi[Pe,Pn] fluc-
tuating due to thermal fluctuations of two vector fields, Pe and
Pn

Hi[Pe,Pn] = Egi−
∫

drE0i ·P (8)

For the rest of our study, we will drop the nuclear polarization
and focus only on the electronic polarization Pe. Therefore, we
put Pn = 0 in eqn (7) and (8).

The next step of the theory is to adiabatically exclude the
fast electronic polarization of the medium. [41] This is achieved
by taking the trace of the density matrix ρ̂i = exp(−βHi[Pe]),
β = 1/(kBT ) over the fast quantum field Pe

e−βEi = Tre [ρ̂i] . (9)

Depending on the form of the functional Hi[Pe,Pn] and the details
of interactions between the induced and permanent dipoles, eqn
(9) leads, in the continuum limit, to either the Pekar factor for the
nuclear susceptibility or to alternative relations accounting for the
effect of the electronic polarization in a nonadditive fashion. [24]

Electronic tunneling occurs between the energy levels Ei adi-
abatically dressed by the electronic polarization of the medium.
They are brought into resonance ∆E = 0 by thermal modulation
of the energy gap defined by the equation

∆E = E2−E1 (10)

with Ei from eqn (9). The goal of this study is to develop a quan-
titative model for the free energy barrier required to achieve the
resonance state. We focus on arriving at closed-form expressions
applicable to interpreting experiment.

In addition to the fundamental framework of describing acti-
vated electronic transitions in low-polarity media, there is a prac-
tical dimension to the present theoretical development. Current
interest in electron-transfer reactions in nonpolar media [25,42–45]

is driven by applications of photoinduced electron transfer to so-
lar energy conversion. [25] Charge separation in a low-polarity
medium can serve as a generic model for charge separation in
organic photovoltaic cells. Low-polarity solvents produce a lower
solvation free energy for the charge-separated state, thus requir-
ing a lower driving force to achieve the near-activationless elec-
tronic transition with 〈∆E〉 ≈ 0 in eqn (1). The driving force is the
negative of the reaction free energy, −∆F0, which, in the Marcus
theory, [1] combines with the reorganization energy λ to make the
average vertical energy gap

〈∆E〉i = ∆F0±λ . (11)

Here, for the energy gap defined by eqn (10), + and − corre-
spond to the forward, i = 1 in the average 〈. . .〉i, and backward,
i = 2, reactions, respectively. The condition −∆F0 = λ specifies
zero activation barrier for the forward reaction, when the rate is
maximized. Lower λ implies lower driving force −∆F0 required
to maximize the rate. For charge (hole and electron) conductivity

in organic semiconductors, [46] a lower solvation energy implies a
lower level of disorder and a lower trapping energy for the charge
carrier. [25]

The model presented here looks for a formulation involving a
minimal number of well defined parameters to calculate 〈∆E〉i
and λ arising from induction interactions between the solute and
a polarizable non-dipolar solvent. The liquid solvent is reduced
here to an effective medium of polarizable molecules fluctuating
as determined by the density structure factor. The latter can be
measured by neutron and x-ray scattering and calculated from
liquid-state theories and numerical simulations. [8,47,48] Even
though this input can be used in a detailed formalism presented
below, this information is hard to gain for most molecular solvents
and further reduction of the model is required. It is achieved by
introducing a simplified approximation for the reciprocal-space
integral of the solute-solvent interaction with the density struc-
ture factor. The final minimalist model, which is tested against
computer simulations, arrives at the solution for the induction
reorganization energy in terms of liquid’s high-frequency dielec-
tric constant (squared refractive index), its density, and molecular
sizes of the solvent and solute molecules.

2 Induction interactions
Integration over the Gaussian vector field Pe in eqn (9) adds the
free energy of electronic solvation to the gas-phase energy Egi

Fei =− 1
2

∫
drE0i · 〈Pe〉i. (12)

The electronic polarization 〈Pe〉i in this equation represents in-
duced electronic dipoles at the molecules of the medium in equi-
librium (specified through 〈. . .〉i) with the vacuum electric field
E0i. This free energy is usually viewed to represent the equilib-
rium nuclear configuration of the liquid, but it does not need to.
Since this is a partial free energy allowing the nuclear coordinates
to change (in other words, a potential of mean force), positions
of the induced molecular dipoles can fluctuate due to thermal ag-
itation (density fluctuations [13,38]). As a result, the partial free
energy Fei will fluctuate as well.

This point becomes particularly clear when the electronic free
energy Fei is re-written in terms of separate molecular induced
dipoles specified by the isotropic molecular polarizability α

Fei =−(α/2)∑
j

E2
0i( j). (13)

Here, E0i( j) is the electric field of the donor-acceptor complex
at the position of molecule j and the sum runs over the solvent
molecules. It is clear from this expression that collective fluctua-
tions of the positions of the molecules will produce corresponding
fluctuations of the partial free energies Fei and of the instanta-
neous energies Ei = Egi +Fei between which the electron tunnels.

One next proceeds to define the energy-gap reaction coordi-
nate [3,49,50]

X = E2−E1 = ∆Eg +∆Fe (14)

monitoring the progress of the reaction to the point of the tun-
neling configuration (transitions state) at X = 0. Here, ∆Eg =
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Eg2 −Eg1 is the gas-phase vertical energy gap at the molecular
geometry of the donor-acceptor complex in the initial state from
which electron transfer occurs. Further, ∆Fe is the solvent-induced
shift of the vertical energy gap due to the solute-solvent induction
interaction.

The average solvent-induced shift can be found from the first-
order perturbation theory [8,51,52] as

〈∆Fe〉i = 〈∆Fe〉−β 〈δXδFei〉. (15)

Here, the average 〈. . .〉i includes the solute-solvent interaction Fei

in the system Hamiltonian, while the statistical average 〈. . .〉 does
not include this term. Therefore, 〈. . .〉 is the statistical average
over the configurations of the solvent and the solute specified by
all interactions in the solvent and the solute-solvent interactions
excluding the induction solute-solvent component.

From eqn (15), one obtains for the difference between equilib-
rium energy gap values (the Stokes shift [27])

〈X〉1−〈X〉2 = β 〈(δX)2〉= 2λ , (16)

where the reorganization energy λ is defined by eqn (2). One
also finds from eqn (11) and (15)

∆F0 =
1
2 (〈X〉1 + 〈X〉2) . (17)

If FDT (σ2 ∝ T ) is applied to the variance σ2 = 〈(δX)2〉 in eqn
(16), the reorganization energy λ does not carry any explicit de-
pendence on temperature (it depends on temperature through
other parameters, such as the liquid density ρ). However, σ2

does not have to follow the macroscopic FDT and, indeed, its
temperature dependence is more complex even in the case of po-
lar liquids when the macroscopic theory of medium polarization
is replaced with a microscopic description. [13] When molecular
translations are allowed for the solvent dipoles (density fluctua-
tions), [37] the corresponding density component of the reorgani-
zation energy gains ∝ T−1 temperature scaling. [13,14,38] This is
an observable consequence of the short-ranged character of the
density fluctuations mostly driven by rearrangement of molecu-
lar repulsive cores (an entropic packing effect). The overall de-
pendence of the energy-gap variance on temperature is linear (at
constant ρ), σ2 = a+bT , with a non-zero T = 0 intercept caused
by the density fluctuations. [13]

Given that the interaction of the charge with the induced dipole
is more short-ranged, ∝ r−4, than the interaction of the charge
with the permanent dipole, ∝ r−2, the strict linear temperature
law for the variance should not be anticipated (fewer particles
participate in creating the reactive fluctuation). Indeed we show
below that σ2 remains constant when the macroscopic density of
the liquid is kept unchanged. This result projects into the reor-
ganization energy inversely proportional to temperature, ∝ T−1,
unlike the nearly constant reorganization energy λ ∝ c0 in dielec-
tric theories describing dipolar orientational fluctuations. Since
induction forces are universal for all solvents, the induction re-
organization energy adds to the density fluctuations of the per-
manent dipoles in the overall linear temperature scaling of the
energy-gap variance, σ2 = a′+bT , with a′ accounting for the den-

sity fluctuations translating both permanent and induced dipoles.

Equations (16) and (17) indicate that the problem at hand is
the standard Marcus picture of two shifted parabolas with their
minima separated by 2λ and the curvatures given as (2λ )−1. The
average energy gap 〈∆E〉i entering the Gaussian probability in
eqn (1) contains the reaction free energy ∆F0 according to eqn
(11). As mentioned above, solvent multipoles are neglected al-
together here and the focus is solely on molecular polarizability.
This approach applies to either non-dipolar solvents with small
quadrupole moments or to solvents where quadrupole is zero by
symmetry (such as CCl4). Since polarizability is a universal prop-
erty shared by all molecules, the present model provides the lower
bound to the reorganization energy in non-dipolar solvents.

3 Formalism

Following the arguments presented above, the solvent-induced
shift of the vertical energy gap is given as follows [34–36]

∆Fe = ∑
j

v( j) =−(α/2)∑
j

[
E02( j)2−E01( j)2

]
. (18)

The solute-solvent interaction can be written as the integral over
the microscopic fluctuating density ρ(r)

∆Fe =
∫

drv(r)ρ(r), ρ(r) = ∑
j

δ
(
r− r j

)
. (19)

Therefore, the second moment of δX = δ∆Fe is given as

〈(δX)2〉=
∫

dr1dr2v(r1)v(r2)〈δρ(r1)δρ(r2)〉. (20)

In this equation, the density-density correlation function
〈δρ(r1)δρ(r2)〉 can be written [8] in terms of single-particle den-
sity profiles around the solutes ρ(1)(r) = 〈ρ(r)〉 and of the two-
particle (pair) density ρ(2)(r1,r2)

〈δρ(r1)δρ(r2)〉=ρ
(1)(r1)δ (r1− r2)+ρ

(2)(r1,r2)−ρ
(1)(r1)ρ

(1)(r2)

=ρ
(1)(r1)δ (r1− r2)+ρ

(1)(r1)ρ
(1)(r2)h(r1,r2),

(21)

where h(r1,r2) is the pair correlation function (eqn (3.1.6) in Ref.
8).

The correlation function h(r1,r2) describes the joint probability
to find two solvent particles at r1 and r2 in the inhomogeneous liq-
uid perturbed by solute’s repulsive core. The approximation often
applied in problems of solvation [34,35,53–56] and adopted here is
to replace the inhomogeneous correlation function h(r1,r2) with
the correlation function hss(r12), r12 = r2−r1 of the homogeneous
bulk liquid. The variance of this energy gap can then be writ-
ten in terms of the solute-solvent pair distribution function g0s(r),
ρ(1)(r) = ρg0s(r) and of the solvent-solvent correlation function
hss(r12) as follows

〈(δX)2〉= ρ

∫
dr1g0s(r1)v(r1)

2

+ρ
2
∫

dr1dr2g0s(r1)v(r1)g0s(r2)v(r2)hss(r12),

(22)
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where ρ = N/V is the number density for N solvent molecules
occupying the volume V .

The next goal is to arrive at a representation of the energy-
gap variance in eqn (22) in terms of the structure factor of the
density fluctuations of the liquid for the reason that will become
clear immediately. The difficulty here is that the solute-solvent
pair distribution function g0s(r) enters the first summand in eqn
(22) in the first order, while it enters the second summand in the
second order. To avoid this difficulty, one can define an effective
solute-solvent interaction [29]

u(r) = g1/2
0s (r)v(r), (23)

which allows us to approximate eqn (22) in reciprocal space as

〈(δX)2〉= ρ

∫ dk
(2π)3 S(k)u(k)2, (24)

where u(k) is the Fourier transform of the effective potential in
eqn (23) and S(k) = 1+ ρhss(k) is the density-density structure
factor of the bulk solvent. [8] Its k = 0 value is related to the sol-
vent isothermal compressibility βT

S(0) = kBT ρβT . (25)

The opposite limit of k→ ∞ gives S(k)→ 1.
One can next use eqn (2) to write the reorganization energy of

induction interactions in the following form

λ
ind =

9e4βT

σ5
s

(
ε∞−1
ε∞ +2

)2
gind, (26)

where we have indicated (subscript “ind”) the origin of the re-
organization energy from induction solute-solvent interaction, e
is the elementary charge, and σs is the solvent molecular diam-
eter. The high-frequency dielectric constant ε∞, which for most
applications can be identified with the squared refractive index,
appears in eqn (26) through the Clausius-Mossotti relation [57]

ε∞−1
ε∞ +2

=
4π

3
ρα. (27)

Equation (26) thus implies that λ ind scales quadratically with the
solvent molecular polarizability α.

The last term, gind, in eqn (26) reflects the geometry of the
donor-acceptor complex and the solute-solvent density profile. It
is given by the reciprocal-space integral

gind =
∫

∞

0
F(k)S̃(k)dk. (28)

Here,

F(k) = σ
5
s (k

2/(4eπ)4)〈
∣∣∣(E2

02)k− (E2
01)k

∣∣∣2〉k̂ (29)

and (E2
0i)k is the space Fourier transform of the product of E0i(r)2

with g1/2
0s (r)

(E2
0i)k =

∫
Ω

drE2
0i(r)g

1/2
0s (r)eik·r. (30)

The integral is taken outside of the repulsive core of the donor-
acceptor complex and over the volume Ω occupied by the sol-
vent; 〈. . .〉k̂ in eqn (29) is the average over the directions of the

wavevector k̂ = k/k.

The scaled structure factor S̃(k) = S(k)/S(0) in eqn (28) takes
S(0) (eqn (25)) in front of the k-integral. This representation
is the reason for both the cancellation of kBT from the defini-
tion of the reorganization energy in eqn (2) and (16) and the
appearance of the isothermal compressibility βT in the equation
for λ ind. This definition of λ ind is motivated by the analogous
formulation for the reorganization energy due to dipolar polar-
ization, where the k = 0 limit of the longitudinal structure factor
SL(0) produces the dominant contribution to the k-integral. [38]

Since putting SL(k)' SL(0) in the definition of the reorganization
energy in terms of the corresponding k-integral yields the con-
tinuum result for the reorganization energy in a dipolar liquid,
the success of this approximation is responsible for the success of
dielectric theories in describing polar solvation.

The continuum limit, SL(k) ≈ SL(0), for the fluctuations of
molecular permanent dipoles is a reasonable first-order approx-
imation since the reciprocal-space integral in that case is dom-
inated by the values of wavevector close to k = 0, where SL(k)
is relatively flat (in contrast to the transverse structure factor
ST (k) [21]). In other words, due to the long-ranged, [58,59] ∝ r−3,
character of angular correlations between the liquid dipoles, the
macroscopic FDT, with a temperature-independent (at constant
density) λ , is a reasonable approximation for fluctuations aris-
ing from dipolar rotations. It fails, however, for dipolar transla-
tions. [38]

The question addressed here is whether the picture of macro-
scopic fluctuations used to describe reorganization by permanent
dipoles applies to reorganization by induced dipoles. In mathe-
matical terms, this question is equivalent to asking whether the
continuum limit k ≈ 0 mostly contributes to the integral in eqn
(28). If, on the contrary, large values of k substantially contribute
to the integral, the absence of an explicit dependence on temper-
ature in eqn (26) might be a poor representation of the physics
of short-ranged induction interactions modulated by the thermal
noise. Answering this question is best achieved within an analyt-
ical framework, when the integrals involved can be integrated to
closed-formed expressions, with both the microscopic and macro-
scopic limits following from the same formalism. We, therefore,
consider the half redox reaction [6] of electron transfer to a spher-
ical particle (Fig. 1) as a model for electron transfer in an electro-
chemical setup and for solvation of ions in nonpolar solvents. [60]

We indeed find that the k→ 0 limit is a poor representation for
the integral in eqn (28), which physically means that the response
of induced dipoles is local and short-ranged. As a result, we find
λ ind ∝ 1/T for the induction reorganization energy. The corre-
sponding energy-gap variance σ2 turns out to be nearly constant
when temperature is varied. The expectations of the FDT are not
realized for reorganization of induced dipoles.

4 One-sphere geometry

Consider electron transfer to a single spherical particle changing
its charge from ze in the initial (i = 1, oxidized) state to (z−1)e in
the final (i = 2, reduced) state (Fig. 1). This process corresponds
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α

rj

E0i(j)

j

R

a

zi

Fig. 1 One-sphere configuration of the solute carrying the charge z1 = z
in the oxidized state and z2 = z−1 in the reduced state (eqn (31)); e is
the elementary charge. The solute produces the electric field E0i( j) at
molecule j with the polarizability α. The induction free energy is
−(α/2)E2

0i( j). The solute is viewed as a spherical particle with the
radius R; a = R+σs/2 is the distance of the closest approach of the
solvent molecule, where σs is the solvent hard-sphere diameter.

to the following half redox reaction

Az + e− −→ Az−1. (31)

The charge of the particle is the sole source of the electric field
polarizing the surrounding nonpolar liquid. This simplified repre-
sentation applies to electrode half reactions when the field of the
image charges in the electrode can be neglected. It also applies to
solvation of ions in nonpolar solvents and to trapping energy of
the conduction polaron in conducting conjugated polymers dis-
solved in nonpolar solvents. [61]

In the one-sphere geometry, the instantaneous induction inter-
action in eqn (18) becomes

∆Fe = (2z−1)V, V = ∑
j

αe2

2r4
j
. (32)

The ensemble average in the state with the charge zi at the solute
follows from eqn (15)

〈∆Fe〉i = (2z−1)〈V 〉+
2z2

i
2z−1

λ
ind. (33)

The ensemble average 〈. . .〉i involves the solvent structure altered
by the solute-solvent induction interactions. This effect is ac-
counted for in eqn (33) by the perturbation theory of liquids [52]

in terms of the solute-solvent induction interaction. This pertur-
bation theory is also a part of the standard linear-response for-
mulation of the electron-transfer theory, [38] which requires that
λ does not dependent of the redox state. It should, therefore, be
calculated in zeroth order in the interaction potential altered by
charge transfer, [6] which is the induction solute-solvent interac-
tion here. This implies that the subscript can be dropped from
〈. . .〉i in the definition of the reorganization energy (eqn (16) and
(22))

βλ
ind = 1

2 (2z−1)2〈(βδV )2〉. (34)

This equation was used to specify the second term in eqn (33).
The one-sphere model allows us to analyze the principle pa-

rameters affecting electron transfer in nonpolar liquids since the
function F(k) in eqn (28) and (29) is now well-defined. Consid-
ering more complex geometries requires numerical Fourier trans-
form to calculate F(k) in eqn (29). For one-sphere geometry, one
has

F(k) =
(2z−1)2σ5

s
(4π)2 f 2

3 (k,a), (35)

where
fn(k,a) =

∫
∞

a

dr
rn g1/2

0s (r)sin(kr) (36)

Further, in eqn (35)
a = R+σs/2 (37)

is the radius of the solvent-excluded sphere around the solute
(Fig. 1).

One can first assume the continuum approximation, S̃(k) = 1,
to hold in eqn (28). In this case, one arrives at the closed-form
expression in eqn (26) with the following geometric factor

gind =
(2z−1)2

160π

(
σs

aeff

)5
. (38)

Here, the effective solute radius aeff is given as

a−5
eff = 5

∫
∞

0
(dr/r6)g0s(r). (39)

This integral was tabulated as a polynomial form of 1/a and the
reduced solvent density ρ∗ = ρσ3

s in Ref. 30. It is given for com-
pleteness in the ESI.† In the specific limit of ρ∗ → 0, when the
density structure of the solvent around the solute disappears, one
gets aeff→ a. This is the limit when the solute-solvent radial dis-
tribution function is approximated by a step function

g0s(r)' θ(r−a), (40)

where θ(x) is the Heaviside function. Combined with eqn (26),
the reorganization energy λ ind ∝ (e2/a)2/(KT a3) becomes propor-
tional to the ratio of the squared Coulomb energy e2/a and the
elastic energy KT a3, with KT = β

−1
T being the isothermal bulk

modulus. In other words, this continuum limit suggests that an
incompressible medium does not allow induction reorganization.

One can alternatively assume the opposite limit of large k-
values, when S(k)→ 1, dominates in the k-integral in eqn (28).
Physically, this assumption implies that microscopic fluctuation
at the lengthscale comparable to the size of the solvent molecule
are more important in affecting the solvent reorganization energy
than the macroscopic compressibility of the medium. In this limit,
S̃(k) ≈ S(0)−1 and one obtains gind→ gindS(0)−1. Since S(0)� 1
for dense liquids, this microscopic limit obviously makes the reor-
ganization energy much higher than in the continuum limit.

A continuous transition between the two limits can be achieved
by taking S(k) in an analytical form allowing k-integration in eqn
(28). One can apply the Padé form [38] interpolating between the
k = 0 and k→ ∞ limits

S(k) =
S(0)+Λ2k2

1+Λ2k2 . (41)

In the Percus-Yevick (PY) solution for S(k), [8,52] the correlation
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length of the density fluctuations is Λ = 3ησs/(2+ 4η); [38] η =

(π/6)ρσ3
s is the packing fraction of the solvent. Adopting this

form in the k-integral in eqn (28), one obtains

gind =
(2z−1)2σ5

s
160πS(0)

[
a−5

eff +(S(0)−1)G
]
, (42)

where

G =
5

2Λ

∫
∞

a

dr′

r′3
g1/2

0s (r′)
∫

∞

a

dr′′

r′′3
g1/2

0s (r′′)e−|r
′−r′′|/Λ. (43)

If the correlation length of the density fluctuations is signif-
icantly shorter than the size of the solute aeff, one can put
(2Λ)−1 exp[−|r′− r′′|/Λ] ' δ (r′− r′′) in eqn (43), with the result
G = a−5

eff . One then obtains the continuum limit for gind given by
eqn (38). This derivation shows that the reorganization energy
with no explicit dependence on temperature, as predicted by the
FDT, can indeed be obtained for sufficiently large solutes. We now
show that this limit is not reached when the size of the solute is
comparable with the size of the solvent and, instead, the high-k
limit S(k)→ 1 is a better approximation.

The integral in eqn (28) can be evaluated numerically with S(k)
provided by either numerical simulations or liquid-state theories.
We adopt here a more direct route to calculating λ ind by applying
the PY solution for the density structure factor. [8,52] It is shown
in the ESI† that this approach provides results comparable with
the use of the structure factors from simulations of Lennard-Jones
(LJ) liquids provided that the k = 0 value of the PY structure factor
is adjusted to S(0) of the LJ liquid. This is achieved by altering
the packing fraction η of the HS liquid to match the condition
S(0) = SPY(0), where [52]

SPY(0) = (1−η)4/(1+2η)2. (44)

Since the density structure factors are not available for most
nonpolar solvents of practical interest, we adopt this approach as
a practical means to calculate the induction reorganization energy
in molecular solvents. Specifically, we use the PY structure fac-
tor with the packing fraction adjusted to make SPY(0) in eqn (44)
equal to the experimental S(0) determined by the isothermal com-
pressibility through eqn (25). The result of this approach is pre-
sented in Fig. 2 for a solvent with parameters of CCl4 (σs = 5.54 Å,
η = 0.511, [62] α = 11.2 Å3, [52] βT = 10.94 GPa−1, and ε∞ = 2.1)
and the solute radius R= 3 Å. The packing fraction becomes equal
to η = 0.453 when eqn (44) is applied to the experimental isother-
mal compressibility.

To simplify these illustrative calculations, g0s(r) is taken as a
step function with the radius a = R+σs/2 (eqn (40)). We find
that the continuum limit (eqn (38)) underestimates the numeri-
cal results by a factor of ' 13, while the result based on the k→∞

asymptote of the structure factor S(k)→ 1 overestimates the nu-
merical result by a factor of ' 3. Therefore, in order to preserve
the simple form of the final equations, an empirical factor κ was
introduced to the equation for the induction reorganization en-
ergy

λ
ind =

3βe4(2z−1)2

320η
κ

(
ε∞−1
ε∞ +2

)2
σ3

s
a5 . (45)
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Fig. 2 Induction reorganization energy λ ind vs ε∞ for a model
one-sphere solute with R = 3.0 Å. Calculations are performed for a liquid
with properties of CCl4 (σs = 5.54 Å [62]) and changing ε∞ (polarizability).
The solid line indicates direct numerical integration in eqn (28) with the
Percus-Yevick density-density structure factor [8] and a step-function
g0s(r) (eqn (40)). The continuum limit S(k)→ S(0) in eqn (38) is shown
by the dotted line. The dash-dotted line refers to eqn (45) with κ = 1.
Equation (45) is brought in agreement with the numerical integration by
adopting κ = 0.31.

We find that κ = 0.31 brings the analytical result into agreement
with the numerical integration. This result corresponds to adopt-
ing S(k) = κ in the k-integral. The value of κ is also fairly insen-
sitive to the strength of attraction εLJ in the LJ liquid used in the
simulations presented below: when S(k) from simulations are di-
rectly used in eqn (28), κ changes from 0.3 to 0.27 in the range
βεLJ = 0.125−2.0 (see ESI†).

A complete solution of the problem allowing a continuous tran-
sition between the microscopic and continuum limits requires di-
rect account for the spatial correlations affecting density fluctua-
tions in molecular liquids, such as those introduced through the
Padé form for S(k) in eqn (41). Our goal here is to avoid these
complications and arrive at a practical solution applicable to in-
terpreting experiment. Since an empirical correction parameter κ

has been already introduced to account for the neglect of spatial
density correlations, we have also adopted aeff → a in eq (45).
Direct numerical simulations of nonpolar polarizable fluids pre-
sented below support the analytical form for the reorganization
energy given by eqn (45).

The main result of the calculations presented in Fig. 2 is the
realization that, in contrast to electrostatics of dipolar liquids, the
continuum limit is a poor representation for the fluctuations of
induction interactions. Adopting the k → ∞ limit for the struc-
ture factor overestimates the result, but turns out to be a much
better representation of the numerical integral involving the full
functional form of S(k). The qualitative outcome is the appear-
ance of a hyperbolic ∝ T−1 temperature dependence of the re-
organization energy [34,35] as a general signature of short-ranged
microscopic fluctuations violating the FDT. [13]

The reorganization energy λ ind is found to scale with the in-
verse fifth power of the solute size, in contrast to the inverse first
power for solvation by permanent dipoles. Therefore, when con-
sidering fixed solvent size and increasing solute size, induction re-
organization can be significant only for sufficiently small solutes
or for charges located close to the surface of large solutes. The
solute charge is placed at the center of a spherical solute in the
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Fig. 3 S(k) for Kr at T = 130 K (ρ∗ = 0.81), 169 K (ρ∗ = 0.70), 199 K
(ρ∗ = 0.54), and 218.18 K (ρ∗ = 0.45) from neutron diffraction
(points); [65,66] ρ∗ = ρσ3

s . The solid line indicates the Percus-Yevick [8,52]

(PY) structure factor SPY(k) calculated with the density at T = 130 K and
σs = 3.63 Å. [64] The Lennard-Jones energy for Kr, εLJ/kB = 180 K, [67]

defines the energy scale of solvent-solvent attractions.

Table 1 Induction reorganization energies in Kr calculated from
experimental density structure factors [65,66] assuming
aeff = a = R+σs/2, R = 3 Å (eqn (40)).

T , K ρ∗ βT , 10−10 Pa−1 λ ind, eV
130 0.81 21.6 0.024
169 0.70 52.1 0.020
199 0.54 237.5 0.021

218.18 0.45 988.1 0.030

present calculations. However, what really matters for the mag-
nitude of the reorganization energy is the distance between the
centroid of the electronic density and the polarizable medium.

The PY structure factor SPY(k) for a hard-sphere fluid gives a
reasonable account of the structure of a dense liquid (Fig. 3),
which is mostly affected by packing of the molecular repulsive
cores [63] (also see Fig. S1 in ESI†). It is potentially less reli-
able for modeling temperature effects on the density fluctuations.
However, in a narrow range of temperatures, one can approxi-
mate the temperature dependence of S(0) by eqn (44) in which
the packing fraction η(T ) is given in terms of the isobaric expan-
sivity αp. This calculation (Fig. S3 in ESI†) of λ ind(T ) shows that
λ ind ∝ T−1 holds very well for both the full k-integration and for
the simplified result given by eqn (45).

To assess the effect of temperature on λ ind for more realistic
conditions, we used the structure factors for krypton (α = 2.484
Å3, [52] σs = 3.63 Å [64]) measured by neutron diffraction at T =

130, 169, 199, and 218.18 K. [65,66] The structure factors S(k) are
shown in Fig. 3, and the results of integration with the experi-
mental input in eqn (28) are listed in Table 1. We note that only
T = 130 K with the reduced density ρ∗ = 0.81 is close to the condi-
tions of low-temperature nonpolar solvents at near-standard con-
ditions when ρ∗ ≈ 0.9 is typically found [62] (the LJ energy for the
low-temperature Kr is εLJ/kB = 180 K [67]). Therefore, the range
of densities available for Kr is not typically accessible by standard
solution measurements employing dense molecular solvents.

The PY approximation gives a fair representation of the shape
of S(k) for Kr at T = 130 K, except for the range of small wavevec-
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Fig. 4 Induction reorganization energy calculated from simulations
changing the solute-solvent induction interaction through the molecular
polarizability of the solvent α∗ = α/σ3

s , ρ∗ = 0.8. Three sets of points
indicate different values of the solvent-solvent LJ interaction energy βεLJ
equal to 0.125 (filled squares), 0.25 (open squares), and 1.0 (open
diamonds). The dotted line indicates the reorganization energy in the
continuum limit S̃(k)' 1 given by eqn (26) and (38) (cf. to the dotted line
in Fig. 2). The approximation S(k) = κ leading to eqn (45) is indicated by
the solid line (κ = 0.31) and by the dashed line (κ = 0.22).

tors where its failure is well documented. [64] This region of k-
values does not, however, significantly contribute to λ ind, as we
have discussed in relation to Fig. 2. The situation changes, how-
ever, when approaching the critical point (Tc = 209.29 K and
ρ∗c = ρcσ3

s = 0.31 for Kr [66]), as is seen for S(k) at T = 199 and
218.18 K. The near-critical spike of S(k) at k→ 0 starts to con-
tribute to the k integral in eqn (28), altering the temperature de-
pendence of λ ind (Table 1). Divergence of βT at the critical point
is expected to lead to a spike in λ ind in near-critical fluids. Since
the variance of the vertical energy gap is also responsible for in-
homogeneous broadening of spectral lines, one can anticipate an
enhanced spectral broadening for dyes dissolved in near-critical
nonpolar solvents. Note that λ ind scales quadratically with the
molecular polarizability of the solvent α. Relatively low values of
λ ind in Table 1 compared to those shown in Figs. 2 and 3 for CCl4
are caused by a significantly smaller α = 2.484 Å3 for Kr compared
to α = 11.2 Å3 for CCl4.

5 Monte Carlo simulations
We now turn to numerical simulations modeling the redox half
reaction in eqn (31). To specify the activation parameters of
electron transfer one needs the first and second moments of the
stochastic variable V in eqn (32), for which Monte Carlo (MC)
simulations [47] are employed here. We consider the case of
z1 = z = 1, for which one gets from eqn (33)

〈∆Fe〉1 = 〈V 〉+2λ
ind. (46)

The reorganization energy is given by eqn (34).
Simulations of the hard-sphere solute in the fluid of LJ

molecules were carried out to test the results of the analytical
theory. The solvent diameter is taken to be equal to the LJ di-
ameter σs = σLJ and the simulations were done at the reduced
solvent density ρ∗ = ρσ3

s = 0.8. The solvent molecules are ex-
cluded from the repulsive hard-sphere core of the solute with the
radius a, where a/σs = 1 was adopted in the simulations. The
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Fig. 5 Average induction-induced shift of the electron-transfer energy
gap 〈∆Fe〉1 vs the high-frequency dielectric constant ε∞ calculated from
the molecular polarizability through the Clausius-Mossotti equation (eqn
(27)). Points indicate the results of MC simulation of the hard-sphere
solute in fluids of Lennard-Jones (LJ) polarizable spheres with changing
molecular polarizability α. Three sets of points indicate different values
of the solvent-solvent LJ interaction energy βεLJ equal to 0.125 (filled
squares), 0.25 (open squares), and 1.0 (open diamonds). The dashed
line indicates the zero-order in the solute-solvent interaction term 〈V 〉 in
eqn (46). The solid line indicates both the full eqn (46) with κ = 0.31 in
eqn (45) used to calculate λ ind. The dotted line refers to the same
calculation with κ = 0.22, which fits λ ind for βεLJ = 1.0 in Fig. 4.

polarizability of the solvent is determined by the reduced polar-
izability α∗ = α/σ3

s , which defines the high-frequency dielectric
constant of the solvent through the Clausius-Mossotti equation
(27). One can thus write the average interaction energy 〈V 〉 for
the uncharged solute as follows

〈V 〉= 3
2

ε∞−1
ε∞ +2

e2

a
. (47)

Similarly, one gets eqn (45) for the reorganization energy. It
includes the empirical factor κ accounting for the replacement
S(k) = κ in eqn (28).

The simulation protocol used to produce the results shown in
Figs. 4 and 5 is described in more detail in the ESI.† Here, we
focus only on the results. Figure 4 shows λ ind calculated from
simulations changing α∗ in the induction solute-solvent inter-
action. The solvent polarizability was related to the dielectric
constant ε∞ through the Clausius-Mossotti eqn (27). We found
that the same empirical coefficient κ = 0.31 brings the simula-
tion results for the weakly interacting LJ molecules in agreement
with eqn (45) (solid line in Fig. 4), which is consistent to what
was found in numerical integration with the PY structure fac-
tor of hard-sphere fluids shown in Fig. 2. While density fluctu-
ations of LJ fluids are mostly affected by repulsive interactions
between the molecules, [63] increasing the solvent-solvent attrac-
tion somewhat modifies the density-density structure factor (Fig.
S1 in ESI†) and requires a smaller κ = 0.22 for βεLJ = 1.0 (dotted
line in Fig. 4). From simulations, this empirical parameter can be
related to the LJ energy by the empirical fit κ = 0.31−0.1×βεLJ.
It can be used in combination with LJ energies of molecular sol-
vents tabulated in Ref. 67.

When the parameter κ is used to reproduce the reorganization
energies from simulations, the average induction component of
the electron-transfer energy gap calculated from eqn (46), (47),

and (45) turns out to be in perfect agreement with simulations
(solid and dotted lines in Fig. 5). The dashed line in Fig. 5 shows
the zeroth-order perturbation theory (the first term on the right-
hand-side of eqn (46) given by eqn (47)). It is insufficient to
describe 〈∆Fe〉1, while the combination of two terms in eqn (46)
reproduces simulations.

There is an important distinction between thermodynamics of
solvation by dipolar and induction forces. For dipolar solute-
solvent interactions Vd , the zeroth-order terms 〈Vd〉 vanishes be-
cause the angular-dependent energy term Vd averages to zero
when integrated over the dipolar rotations. Since the term 〈Vd〉
disappears from the averages, the solvation part of the reaction
free energy and the reorganization energy are of the same or-
der of magnitude, and also change with the thermodynamic state
in a similar fashion. For instance, the effect of density fluctua-
tions, modifying the reorganization energy, is equally present in
the reaction free energy producing the corresponding solvation
entropy usually far exceeding the dielectric estimates. For the
scalar induction interaction, 〈V 〉 is non-zero and is a dominant
contribution to 〈∆Fe〉i (Fig. 5). As a result, one gets a substantial
separation in magnitudes between 〈∆Fe〉i and λ ind (cf. Figs. 4 and
5).

6 Discussion
The derivation performed in Sec. 4 involved one solute sphere as
shown in Fig. 1. One can extend this configuration to the reaction
of electron transfer in solution when the donor and acceptor par-
ticles are represented with spheres carrying the charges zD and
zA, respectively. One can assign to them the radii RD and RA and
place them at the distance RDA. The charges change as the result
of electron transfer to zD +1 and zA−1

D(zD)−A(zA)−→ D(zD +1)−A(zA−1). (48)

Since the screening of electrostatic interactions between the
donor and acceptor by induced dipoles can be neglected for short-
ranged induction interactions, eqn (45) transforms to the addi-
tion of the donor and acceptor components separately

λ
ind =

3βe4σ3
s

320η
κ

(
ε∞−1
ε∞ +2

)2
[
(2zD +1)2

a5
D

+
(2zA−1)2

a5
A

]
, (49)

where aD,A = RD,A + σs/2. For an estimate, for RD = RA and a
charge-shift reaction, D−A+→ D+−A, eqn (49) effectively dou-
bles λ ind found for the half reaction. For the configuration with
RD = RA = 3 Å considered in Fig. 2 (CCl4 solvent), one thus antic-
ipates λ ind ' 0.2−0.3 eV.

Recent measurements of the rates of electron attachment of
solvated electrons to naphthalene in isooctane by Holroyd and
Miller [26] produced a large reorganization energy of λ ind ' 0.31
eV. For this reaction, one has zD = −1 and zA = 0 in eqn (48).
Further, the relevant solvent parameters are: σs = 6.539 Å, [68]

ε∞ = 1.935, and η = 0.534. For the naphthalene acceptor (RA =

2.665 [69]) its reorganization component in eqn (49) becomes
λ ind

A ' 0.1 eV. The total reorganization energy strongly depends
on the assigned radius of the solvated electron: assuming that the
solvent is expelled from the radius aD' 5 Å (taken from RD =Re'
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1.6 Å to produce the solvent-expelled radius of hydrated electron
ae ' Re + 1.4 ' 3 Å [70,71]) brings the total λ ind = λ ind

D + λ ind
A to

the observable value of 0.31 eV. This calculation assumes that the
solvated electron is trapped by the solvent and becomes localized.

For the same configuration of two spherical solutes separated
by the distance RDA, the standard Marcus result for the reorgani-
zation energy due to dipolar polarization is

λ
p = e2c0gp, gp =

1
2RD

+
1

2RA
− 1

RDA
. (50)

This result applies to a solid-like medium described as the dielec-
tric continuum. For molecular polar liquids, both orientational
and translational (density) motions of the liquid dipoles become
important. [37] These two types of molecular motions separate
in the total dipolar reorganization energy λ p = λ or + λ dens in
terms of their distinct dependencies on temperature. The stan-
dard Marcus reorganization energy λ or depends on temperature
through the liquid density and, therefore, stays constant at con-
stant density. On the contrary, the reorganization energy from
dipolar translations gains a hyperbolic temperature dependence,
λ dens ∝ T−1, due to the entropic character of the density fluc-
tuations. [13,14,38] Since dipolar and induction interactions carry
different symmetries (angular vs scalar) they decouple in the vari-
ance and add up in the total solvent reorganization energy

λs = λ
or +λ

dens +λ
ind. (51)

The last two summands combine to produce λ dens +λ ind ∝ T−1.
There is also an important and potentially observable distinc-

tion between λ p and λ ind in scaling with the solute charge.
The dipolar reorganization energy in eqn (50) is proportional to
∆z2 = 1 and does not depend on the charge state of the reactant.
In contrast, for a reduction half reaction, the induction reorgani-
zation energy scales as

λ
ind

∝ (2zOx−1)2, (52)

where zOx = z is the charge of the oxidized state (eqn (31)). For
instance, if λ ind

1 characterizes z = 1→ z = 0 reduction in eqn (31),
9λ ind

1 will apply to z = 2→ z = 1 and 25λ ind
1 will apply to z = 3→

z = 2 reactions, respectively.
This result implies that a series of one-electron reduction re-

actions (such as the multielectron reduction of fullerenes [72,73])
should produce different reorganization energies in each reduc-
tion step even if the rest of the solute and solvent parameters
remain equal. Correspondingly, a sequence of reduction reactions
in a nonpolar solvent should lead to a set of different reorganiza-
tion energies. Since the induction reorganization energy is always
a part of the total solvent reorganization energy, this component
will make any chain of sequential electron-transfer reactions de-
pend on the oxidation state. Finally, a strong dependence of the
activation barrier on the reactant charge may be a mechanism for
kinetically prohibiting reactions characterized by high values of
|zOx|.

For non-dipolar solvents, λ p→ 0 and one has to include solvent
quadrupoles to describe fluctuations of the polarization density in
eqn (5). The dipolar reorganization energy λ p in eqn (51) is then

replaced with the quadrupolar reorganization energy [30–33] λ q.
In principle, both components are present, but the dipolar part
dominates for most polar liquids.

The quadrupolar component of the reorganization energy is
given by the following equation [31]

λ
q =

2πe2

15
βρQ2

[
1

a3
D
+

1
a3

A

]
. (53)

Here, similarly to λ ind, the short-range character of charge-
quadrupole interactions leads to λ q ∝ T−1. The quadrupole scalar
Q2 in eqn (53) is the contraction of the 2-rank tensor Qm of the
solvent molecular quadrupole calculated relative to the molec-
ular center of mass [52] Q2 = (2/3)Qm : Qm. The shorter range
of charge-quadrupole interactions also produces a stronger, com-
pared to eqn (50), decay of the reorganization energy with the
solute size

λ
q

∝ ρQ2a−3. (54)

The scaling with the solute size is even stronger for the induc-
tion reorganization energy (eqn (45))

λ
ind

∝ ρα
2a−5. (55)

For most molecular materials α ∝ a3 when a' σs and one obtains

λ
ind

∝ a−2 (56)

since the packing density η = (π/6)ρσ3
s of the material is con-

strained by the closest packing of the repulsive cores. Equation
(56) produces the scaling of λ ind when the sizes of the solute
and the solvent are of close magnitude, a ' σs. In contrast to
the ground-state polarizability, the polarizability of optically ex-
cited semiconductor quantum dots scales with the forth power of
their size, [74] α ∝ a4. The induction reorganization energy be-
comes approximately independent of the solute size in that case.
This change in the scaling points to the possibility that electroni-
cally excited states, such as those used in organic solar cells, can
potentially be highly polarizable, thus altering the solvation ther-
modynamics of induction interactions.

7 Conclusions
We propose that density fluctuations of a nonpolar medium pro-
duce thermal fluctuations of the donor-acceptor energy gap to
drive charge-transfer reactions with the reorganization energy
λ ind ∼ 0.1−0.3 eV. Microscopic density fluctuations at the length-
scale of the molecular size of the solvent contribute the most to
the reorganization energy. The problem thus cannot be reduced
to contraction of the solvent cage upon charge transfer described
by bulk elastic moduli. The short-range character of the density
fluctuations changes the physics of the problem and has an ob-
servable consequence in the hyperbolic scaling of the reorganiza-
tion energy with temperature,

λ
ind

∝ T−1. (57)

The inverse temperature scaling of the induction reorganiza-
tion energy applies only to sufficiently small solutes. It loses its
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explicit temperature dependence and approaches the limit of the
FDT with increasing the solute size. This important macroscopic
limit is therefore reached by the formal theory. However, λ ind also
drops as the inverse fifth power with increasing the solute size
(unless in homogeneous materials with a ' σs) and becomes ir-
relevant in the limit of large solutes. Consequently, in the range of
parameters where induction reorganization affects electron trans-
fer, it violates the FDT.

For the donor and acceptor with their sizes comparable to that
of the solvent, the hyperbolic temperature scaling of λ ind implies
zero activation enthalpy ∆H† ' 0 if temperature is altered at con-
stant density (volume). The entire activation barrier becomes en-
tropic, with a negative activation entropy

∆S†/kB =−〈∆E〉2/(2σ
2) (58)

in eqn (1) and (3). Increasing temperature at constant pressure
will result in solvent expansion, with both the enthalpic and en-
tropic component of the activation barrier present in the kinetics.
However, the dominance of the entropy in the activation barrier
is expected to be preserved.

For most practical problems, reorganization energy from classi-
cal intramolecular degrees of freedom has to be included; quan-
tum intramolecular vibrations lead to the progression of vibronic
transitions included in the corresponding Franck-Condon fac-
tor. [75] If λi is the internal reorganization energy due to classical
intramolecular modes, the overall rate of electron transfer in eqn
(1) becomes distinctly non-Arrhenius since the energy-gap vari-
ance in eqn (2) becomes

σ
2 = 2kBT λi +(σ ind)2, (59)

where (σ ind)2 = 2kBT λ ind does not carry an explicit dependence
on temperature. A linear dependence of σ2 vs kBT follows, pro-
ducing a nonzero intercept equal to (σ ind)2. This type of infor-
mation is accessible from inhomogeneous broadening of optical
spectral lines.

The induction component of the vertical energy gap 〈∆Fe〉i does
not require a specific mode of fluctuations and applies to any po-
larizable medium. This energy-gap component is substantial in
magnitude [76,77] and should be included even for charge trans-
fer in polar liquids where the reorganization energy is dominated
by solvent dipoles. In contrast, the induction reorganization en-
ergy requires translational motions to be present in the medium.
Translations should not only exists to create fluctuations of the
donor-acceptor energy gap, but also be sufficiently fast so that
many fluctuations could occur on the time-scale of the electron
hop. These conditions, typically met for charge transfer in non-
polar molecular liquids, are less applicable to charge transfer in
nonpolar solid media, such as organic semiconductors. Local vari-
ations of the medium density, which can be viewed as frozen-in
density fluctuations, contribute to the energetic disorder affecting
charge conductivity.
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