Lite Version|Standard version

To gain access to this content please
Log in with your free Royal Society of Chemistry publishing personal account.
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Wearable biosensors are gaining significant attention for their ability to monitor vital health signs remotely, continuously, and non-invasively. Nanomaterials offer transformative potential for next-generation soft wearable sensors, enabling seamless skin integration with enhanced comfort and data accuracy. Wet chemistry provides a scalable, cost-effective approach to producing nanomaterials, transforming rigid sensors into soft, flexible, and stretchable devices for broader wearable applications. This review highlights recent advances in soft wearable biosensors based on wet chemically produced nanomaterials, including metals, carbons, conducting polymers, conductive hydrogels, and liquid metals. It discusses fabrication techniques such as conductive ink formulation, ink delivery, electroless coating, and fiber integration, along with applications in physiological, physical, and biochemical monitoring. The review concludes by addressing challenges and opportunities, emphasizing the potential of these sensors in revolutionizing medical technology and personalized healthcare.

Graphical abstract: Wet chemically produced nanomaterials for soft wearable biosensors

Page: ^ Top