Volume 199, 2017

Electrochemical plasmonic metamaterials: towards fast electro-tuneable reflecting nanoshutters

Abstract

Self-assembling arrays of metallic nanoparticles at liquid|liquid or liquid|solid interfaces could deliver new platforms for tuneable optical systems. Such systems can switch between very-high and very-low reflectance states upon assembly and disassembly of nanoparticles at the interface, respectively. This encourages creation of electro-variably reversible mirror/window nanoplasmonic devices. However, the response time of these systems is usually limited by the rate-of-diffusion of the nanoparticles in the liquid, towards the interface and back. A large time-constant implies slow switching of the system, challenging the practical viability of such a system. Here we introduce a smart alternative to overcome this issue. We propose obtaining fast switching via electrically-induced rotation of a two-dimensional array of metal nanocuboids tethered to an ITO substrate. By applying potential to the ITO electrode the orientation of nanocuboids can be altered, which results in conversion of a highly-reflective nanoparticle layer into a transparent layer (or vice versa) within sub-second timescales. A theoretical method is developed based on the quasi-static effective-medium approach to analyse the optical response of such arrays, which is verified against full-wave simulations. Further theoretical analysis and estimates based on the potential energy of the nanoparticles in the two orientations corroborate the idea that voltage-controlled switching between the two states of a nanoparticle assembly is a viable option.

Associated articles

Article information

Article type
Paper
Submitted
05 dec 2016
Accepted
12 dec 2016
First published
21 dec 2016

Faraday Discuss., 2017,199, 585-602

Electrochemical plasmonic metamaterials: towards fast electro-tuneable reflecting nanoshutters

D. Sikdar, A. Bucher, C. Zagar and A. A. Kornyshev, Faraday Discuss., 2017, 199, 585 DOI: 10.1039/C6FD00249H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements