Volume 253, 2024

Linear ether-based highly concentrated electrolytes for Li–sulfur batteries

Abstract

Li–S batteries have attracted attention as next-generation rechargeable batteries owing to their high theoretical capacity and cost-effectiveness. Sparingly solvating electrolytes hold promise because they suppress the dissolution and shuttling of polysulfide intermediates to increase the coulombic efficiency and extend the cycle life. This study investigated the solubility of polysulfide (Li2S8) in a range of liquid electrolytes, including organic electrolytes, highly concentrated electrolytes, and ionic liquids. The Li2S8 solubility was well correlated with the donor number (DNNMR), estimated via23Na-NMR, and was lower than 100 mM_(elemental sulfur) in electrolytes with DNNMR < 14, regardless of the type of electrolyte. Highly concentrated electrolytes comprising lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) and linear chain dialkyl ethers such as methyl propyl ether (MPE), n-butyl methyl ether (BME), and ethyl propyl ether (EPE) were studied as sparingly solvating electrolytes for Li–S batteries. Monomethyl ethers, such as BME, showed more pronounced Li-ion coordination and higher ionic conductivity, whereas the steric hindrance of the longer alkyl chains in EPE lowered the solvation number, enhanced ion association, and lowered the ionic conductivity despite the solvents having similar dielectric constants. The charge–discharge rate capabilities of Li–S cells with dialkyl ether-based electrolytes were more impressive than those of cells with a localized high-concentration electrolyte using sulfolane (SL) and hydrofluoroether (HFE), [Li(SL)2][TFSA]-2HFE. The higher rate performance was attributed to the superior Li-ion transport properties of the dialkyl ether-based electrolytes. A pouch-type cell using lightweight [Li(BME)3][TFSA] demonstrated an energy density exceeding 300 W h kg−1 under lean electrolyte conditions.

Graphical abstract: Linear ether-based highly concentrated electrolytes for Li–sulfur batteries

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
15 feb 2024
Accepted
22 mar 2024
First published
25 mar 2024

Faraday Discuss., 2024,253, 385-406

Linear ether-based highly concentrated electrolytes for Li–sulfur batteries

T. Ishikawa, S. Haga, K. Shigenobu, T. Sudoh, S. Tsuzuki, W. Shinoda, K. Dokko, M. Watanabe and K. Ueno, Faraday Discuss., 2024, 253, 385 DOI: 10.1039/D4FD00024B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements