Sulfurization of transition metal inorganic electrocatalysts in Li–S batteries
Abstract
Lithium–sulfur (Li–S) batteries have garnered significant attention for their exceptional energy density, positioning them as a promising solution for next-generation energy storage. A critical factor in their performance is the use of transition metal inorganic compound electrocatalysts, prized for their distinctive catalytic properties. Recently, increasing interest has focused on the sulfurization of these catalysts in polysulfide-rich environments, a process that holds great potential for enhancing their efficiency. This review analyzes the sulfurization reactions of various transition metal compounds in Li–S batteries and their profound impact on electrochemical performance. By elucidating the sulfurization process with the assistance of advanced characterization techniques, we aim to reveal the true active sites and intrinsic catalytic pathways of sulfur redox electrocatalysts, offering new insights into the design of advanced catalysts for more efficient lithium polysulfide conversion. These findings are expected to accelerate the development of high-performance Li–S battery technologies.
- This article is part of the themed collection: Chemistry for a Sustainable World – Celebrating Our Community Tackling Global Challenges