Issue 4, 2015

Greening the global phosphorus cycle: how green chemistry can help achieve planetary P sustainability

Abstract

The sustainability of global phosphorus (P) use is emerging as a major societal goal to secure future food, energy, and water security for a growing population. Phosphate rock (PR) is a critical raw material whose inefficiency of use is leading to widespread eutrophication and uncertainties about supplies of affordable fertilizers. Green chemistry and green engineering can be applied to help close the global P cycle by addressing three sustainability challenges: (1) consume less PR and with greater efficiency, (2) minimise P losses and generation of waste P that can no longer be re-used, and (3) set economically, socially and environmentally acceptable P sustainability targets to lower P demand. Greater precision in P use by the agriculture sector (the main P flow) supported by smarter PR mining and processing technology could greatly improve global P use efficiency. Emerging bio-based and green chemical technologies could be more widely applied to enhance first- and second-generation valorization of low-grade PR ores, manures, by-products and residues to provide renewable secondary sources of P and other essential elements and compounds. All sectors of society have the potential to lower their P demands, and all production systems could be redesigned to facilitate recovery and recycling of P. Collectively these ‘green engineering’ actions at sector and regional level can help achieve planetary P sustainability.

Graphical abstract: Greening the global phosphorus cycle: how green chemistry can help achieve planetary P sustainability

Article information

Article type
Perspective
Submitted
15 dec 2014
Accepted
09 mar 2015
First published
09 mar 2015
This article is Open Access
Creative Commons BY license

Green Chem., 2015,17, 2087-2099

Author version available

Greening the global phosphorus cycle: how green chemistry can help achieve planetary P sustainability

P. J. A. Withers, J. J. Elser, J. Hilton, H. Ohtake, W. J. Schipper and K. C. van Dijk, Green Chem., 2015, 17, 2087 DOI: 10.1039/C4GC02445A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements