Issue 35, 2019

Exploring short strong hydrogen bonds engineered in organic acid molecular crystals for temperature dependent proton migration behaviour using single crystal synchrotron X-ray diffraction (SCSXRD)

Abstract

Seven multi-component molecular crystals containing O–H⋯O/O+–H⋯O and N+–H⋯O short strong hydrogen bonds (SSHBs) have been engineered by combining substituted organic acids with hydrogen bond acceptor molecules N,N-dimethylurea and isonicotinamide. In these materials, the shortest of the SSHBs are formed in the N,N-dimethylurea set for the ortho/para nitro-substituted organic acids whilst a twisted molecular approach favours the shorter SSHBs N+–H⋯O in the isonicotinamide set. Temperature dependent proton migration behaviour has been explored in these systems using single crystal synchrotron X-ray diffraction (SCSXRD). By using a protocol which considers a combination of structural information when assessing the hydrogen atom (H-atom) behaviour, including refined H-atom positions alongside heavy atom geometry and Fourier difference maps, temperature dependent proton migration is indicated in two complexes (2: N,N-dimethylurea 2,4-dinitrobenzoic acid 1 : 1 and 5: isonicotinamide phthalic acid 2 : 1). We also implement Hirshfeld atom refinement for further confidence in this observation; this highlights the importance of having corroborating trends when applying the SCSXRD technique in these studies. Further insights into the SSHB donor–acceptor distance limit for temperature dependent proton migration are also revealed. For the O–H⋯O/O+–H⋯O SSHBs, the systems here support the previously proposed maximum limit of 2.45 Å whilst for the charge assisted N+–H⋯O SSHBs, a limit in the region of 2.55 Å may be suggested.

Graphical abstract: Exploring short strong hydrogen bonds engineered in organic acid molecular crystals for temperature dependent proton migration behaviour using single crystal synchrotron X-ray diffraction (SCSXRD)

Supplementary files

Article information

Article type
Paper
Submitted
14 jun 2019
Accepted
29 jul 2019
First published
12 aug 2019
This article is Open Access
Creative Commons BY license

CrystEngComm, 2019,21, 5249-5260

Exploring short strong hydrogen bonds engineered in organic acid molecular crystals for temperature dependent proton migration behaviour using single crystal synchrotron X-ray diffraction (SCSXRD)

L. K. Saunders, H. Nowell, L. E. Hatcher, H. J. Shepherd, S. J. Teat, D. R. Allan, P. R. Raithby and C. C. Wilson, CrystEngComm, 2019, 21, 5249 DOI: 10.1039/C9CE00925F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements