Issue 1, 2019

Cell refinement of CsPbBr3 perovskite nanoparticles and thin films

Abstract

In this work, we performed a detailed study of the phase transformations and structural unit cell parameters of CsPbBr3 nanoparticles (NPs) and thin films. In situ X-ray diffraction patterns were acquired as a function of temperature, where the positions and widths of the diffraction peaks were systematically tracked upon heating and cooling down to room temperature (RT). Scanning electron microscopy provides physical insight on the CsPbBr3 thin films upon annealing and transmission electron microscopy gives physical and crystallographic information for the CsPbBr3 NPs using electron diffraction. The secondary phase(s) CsPb2Br5 (and CsPb4Br6) are clearly observed in the XRD patterns of both nanoparticles and thin films upon heating to 500 K, whilst from 500 K to 595 K, these phases remain in small amounts and are kept like this upon cooling down to RT. However, in the case of thin films, the CsPb2Br5 secondary phase disappears completely above 580 K and pure cubic CsPbBr3 is observed up to 623 K. The CsPbBr3 phase is then kept upon cooling down to RT, achieving pure CsPbBr3 phase. This study provides detailed understanding of the phase behavior vs. temperature of CsPbBr3 NPs and thin films, which opens the way to pure CsPbBr3 phase, an interesting material for optoelectronic applications.

Graphical abstract: Cell refinement of CsPbBr3 perovskite nanoparticles and thin films

Article information

Article type
Paper
Submitted
01 aug 2018
Accepted
11 sep 2018
First published
12 sep 2018
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2019,1, 147-153

Cell refinement of CsPbBr3 perovskite nanoparticles and thin films

C. Tenailleau, S. Aharon, B. Cohen and L. Etgar, Nanoscale Adv., 2019, 1, 147 DOI: 10.1039/C8NA00122G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements