Issue 19, 2020

Copper-catalysed photoinduced decarboxylative alkynylation: a combined experimental and computational study

Abstract

Redox-active esters (RAEs) as alkyl radical precursors have demonstrated great advantages for C–C bond formation. A decarboxylative cross-coupling method is described to afford substituted alkynes from various carboxylic acids using copper catalysts CuCl and Cu(acac)2. The photoexcitation of copper acetylides with electron-rich NEt3 as a ligand provides a general strategy to generate a range of alkyl radicals from RAEs of carboxylic acids, which can be readily coupled with a variety of aromatic alkynes. The scope of this cross-coupling reaction can be further expanded to aliphatic alkynes and alkynyl silanes using a catalytic amount of preformed copper-phenylacetylide. In addition, DFT calculations revealed the favorable reaction pathway and that the bidentate acetylacetonate ligand of the copper intermediate plays an important role in inhibiting the homo-coupling of the alkyne.

Graphical abstract: Copper-catalysed photoinduced decarboxylative alkynylation: a combined experimental and computational study

Supplementary files

Article information

Article type
Edge Article
Submitted
20 apr 2020
Accepted
20 apr 2020
First published
29 apr 2020
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2020,11, 4939-4947

Copper-catalysed photoinduced decarboxylative alkynylation: a combined experimental and computational study

Y. Mao, W. Zhao, S. Lu, L. Yu, Y. Wang, Y. Liang, S. Ni and Y. Pan, Chem. Sci., 2020, 11, 4939 DOI: 10.1039/D0SC02213F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements