Issue 22, 2020

Crystal structure and luminescence properties of lead-free metal halides (C6H5CH2NH3)3MBr6 (M = Bi and Sb)

Abstract

Organic–inorganic hybrid metal halides have received extensive attention owing to their versatile structures and optoelectronic properties. Herein, we report two lead-free metal halides, (PMA)3BiBr6 and (PMA)3SbBr6 [PMA+: (C6H5CH2NH3)+, as the abbreviation of phenylmethylammonium], which possess iso-structural zero-dimensional structures and crystallize in the monoclinic space group P21/c. (PMA)3BiBr6 and (PMA)3SbBr6 exhibit optical band gaps of ∼3.50 and 3.40 eV, respectively, and density functional theory calculations reveal their indirect bandgap behaviors. Upon 350 and 425 nm excitation, (PMA)3BiBr6 and (PMA)3SbBr6 exhibit broadband emission peaking at 510 nm and 625 nm with wide full-widths at half-maximum of ∼153 and 175 nm, respectively. The emission mechanism of the metal halides is attributed to self-trapped exciton emission. The relationship between the crystal structure and luminescence intensity is also discussed. Finally, both metal halides have high decomposition temperatures and are stable for long-term storage under ambient conditions, demonstrating their potential for optoelectronic applications.

Graphical abstract: Crystal structure and luminescence properties of lead-free metal halides (C6H5CH2NH3)3MBr6 (M = Bi and Sb)

Supplementary files

Article information

Article type
Paper
Submitted
02 feb 2020
Accepted
17 mar 2020
First published
19 mar 2020

J. Mater. Chem. C, 2020,8, 7322-7329

Author version available

Crystal structure and luminescence properties of lead-free metal halides (C6H5CH2NH3)3MBr6 (M = Bi and Sb)

D. Chen, F. Dai, S. Hao, G. Zhou, Q. Liu, C. Wolverton, J. Zhao and Z. Xia, J. Mater. Chem. C, 2020, 8, 7322 DOI: 10.1039/D0TC00562B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements