Volume 229, 2021

Single catalyst particle diagnostics in a microreactor for performing multiphase hydrogenation reactions

Abstract

Since inter- and intra-particle heterogeneities in catalyst particles are more the rule than the exception, it is advantageous to perform high-throughput screening for the activity of single catalyst particles. A multiphase system (gas/liquid/solid) is developed, where droplet-based microfluidics and optical detection are combined for the analysis of single catalyst particles by safely performing a hydrogenation study on in-house synthesized hollow Pd/SiO2 catalyst microparticles, in a polydimethylsiloxane (PDMS) microreactor. A two-phase segmented flow system of particle-containing droplets is combined with a parallel gas-reactant channel separated from the flow channel by a 50 μm thick gas permeable PDMS wall. In this paper, the developed microreactor system is showcased by monitoring the Pd-catalyzed hydrogenation of methylene blue. A discoloration of blue to brown visualizes the hydrogenation activity happening in a high-throughput fashion on the single Pd/SiO2 spherical catalyst microparticles, which are encapsulated in 50 nL-sized droplets. By measuring the reagent concentration at various spots along the length of the channel the reaction time can be determined, which is proportional to the residence time in the channel. The developed experimental platform opens new possibilities for single catalyst particle diagnostics in a multiphase environment.

Graphical abstract: Single catalyst particle diagnostics in a microreactor for performing multiphase hydrogenation reactions

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
07 jan 2020
Accepted
10 feb 2020
First published
10 feb 2020
This article is Open Access
Creative Commons BY license

Faraday Discuss., 2021,229, 267-280

Single catalyst particle diagnostics in a microreactor for performing multiphase hydrogenation reactions

A. Nieuwelink, J. C. Vollenbroek, A. C. Ferreira de Abreu, Roald M. Tiggelaar, A. van den Berg, M. Odijk and B. M. Weckhuysen, Faraday Discuss., 2021, 229, 267 DOI: 10.1039/D0FD00006J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements