Issue 13, 2022

Oxidative versus basic asynchronous hydrogen atom transfer reactions of Mn(iii)-hydroxo and Mn(iii)-aqua complexes

Abstract

Hydrogen atom transfer (HAT) reactions of metal–oxygen intermediates such as metal-oxo, -hydroxo and -superoxo species have so far been studied extensively. However, HAT reactions of metal-aqua complexes are yet to be studied in comparison with those of the corresponding metal-hydroxo complexes. In this study, a series of Mn(III)-aqua complexes, [(dpaq5R)MnIII(OH2)]2+ (dpaq5R = 2-[bis(pyridin-2-ylmethyl)]amino-N-quinolin-8-yl-acetamidate with a substituent at the 5-position; R = NO2, Cl, H, Me and OMe) were synthesized by protonating the corresponding Mn(III)-hydroxo complexes, [(dpaq5R)MnIII(OH)]+, with trifluoromethanesulfonic acid (HOTf). X-ray crystal structures of both [(dpaq5R)MnIII(OH)]+ and [(dpaq5R)MnIII(OH2)]2+ complexes showed a mononuclear MnIII center in a distorted octahedral environment. The electronic substitution effect of the dpaq ligand on the HAT reactions of [(dpaq5R)MnIII(OH)]+ and [(dpaq5R)MnIII(OH2)]2+ was then examined by determining the rate constants (k2) of the HAT reactions from 4-methoxy-2,6-di-tert-butylphenol to the Mn(III)-hydroxo and -aqua complexes. Hammett plots indicate that HAT from 4-methoxy-2,6-di-tert-butylphenol to [(dpaq5R)MnIII(OH)]+ proceeds via an oxidative asynchronous coupled proton–electron transfer (CPET), whereas HAT from 4-methoxy-2,6-di-tert-butylphenol to [(dpaq5R)MnIII(OH2)]2+ proceeds mainly via a basic asynchronous CPET. The contribution of a stepwise electron transfer (ET)/proton transfer (PT) pathway is discussed by comparing the electronic substitution effect on the rate constants of outer-sphere electron transfer and HAT reactions. This study has provided valuable insights into the asynchronous CPET mechanisms of HAT reactions in which the oxidative vs. basic pathways are determined to exhibit reversed electronic substitution effects on HAT reactions of Mn(III)-hydroxo and Mn(III)-aqua complexes.

Graphical abstract: Oxidative versus basic asynchronous hydrogen atom transfer reactions of Mn(iii)-hydroxo and Mn(iii)-aqua complexes

Supplementary files

Article information

Article type
Research Article
Submitted
06 apr 2022
Accepted
11 maj 2022
First published
13 maj 2022

Inorg. Chem. Front., 2022,9, 3233-3243

Oxidative versus basic asynchronous hydrogen atom transfer reactions of Mn(III)-hydroxo and Mn(III)-aqua complexes

J. Zhang, Y. Lee, M. S. Seo, Y. Kim, E. Lee, S. Fukuzumi and W. Nam, Inorg. Chem. Front., 2022, 9, 3233 DOI: 10.1039/D2QI00741J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements