Issue 12, 2024

Sorption of metal ions onto PET-derived microplastic fibres

Abstract

This study investigated microplastic polyester fibres representative of those shed during laundering as sorbents for metal ions. During sewage distribution and treatment, microplastics are exposed to elevated concentrations of metal ions, typically for several days. Cryogenic milling was used to generate polyethylene terephthalate (PET) fibres. Characterisation using optical microscopy and Raman spectroscopy revealed that milling did not cause significant chemical alteration to the fibres. Milled fibres were subsequently assessed in screening tests for their capacity to retain 12 metal ions—Sb(III), As(III), Cd(II), Cr(VI), Cu(II), Co(II), Pb(II), Hg(II), Mo(VI), Ni(II), V(V) and Zn(II)—at pH 8. All metal ions were sorbed onto PET fibres. The highest distribution coefficient (Kd) was observed for Pb2+ (939 mL g−1), followed by Cd2+ (898 mL g−1), Cu2+ (507 mL g−1), Hg2+ (403 mL g−1), and Zn2+ (235 mL g−1). The extent of sorption is largely explicable by electrostatic interactions between the PET surface (1.95 point of zero net charge) and the predicted metal ion species. The sorption behaviour of Cd2+ and Hg2+ was examined in more detail since both showed high sorption capacity and are highly toxic. Kinetic experiments revealed that the sorption of both elements was relatively fast, with a steady state reached within six hours. Experimental data from isotherm tests fitted well to the Langmuir sorption model and demonstrated that PET fibres had a much greater sorption capacity for Hg2+ (17.3–23.1 μg g−1) than for Cd2+ (4.3–5.3 μg g−1). Overall, the results indicate that retention of metal ions onto PET fibres originating from laundry is expected during full-scale sewage treatment, which facilitates the subsequent transfer of metals into the terrestrial environment, given that sewage sludge is commonly applied to agricultural land.

Graphical abstract: Sorption of metal ions onto PET-derived microplastic fibres

Supplementary files

Article information

Article type
Paper
Submitted
25 jun 2024
Accepted
03 nov 2024
First published
18 nov 2024
This article is Open Access
Creative Commons BY license

Environ. Sci.: Processes Impacts, 2024,26, 2309-2319

Sorption of metal ions onto PET-derived microplastic fibres

H. Frost, T. Bond, T. Sizmur and M. Felipe-Sotelo, Environ. Sci.: Processes Impacts, 2024, 26, 2309 DOI: 10.1039/D4EM00373J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements