Amphiphilic Block-Random Copolymer Stabilisers: Extension to Other Monomer Types

Abstract

Block-Random Copolymers (BRCs) incorporating acrylics were synthesised using nitroxide-mediated polymerisation (NMP) to form macro-stabilisers for the preparation ofpolymer latexes. These hybrids of block copolymers and random copolymers are traditionally composed of a polystyrene hydrophobic block coupled with a hydrophilic random block of styrene and acrylic acid. Their aqueous dispersions exhibit unique behaviour compared to conventional block copolymers, including being responsible for a unique nucleation mechanism in emulsion polymerisation. However, all previous work has only used styrene as the hydrophobic monomer, and only styrene emulsion polymerizations have been conducted. To explore the versatility of BRCs for the polymerisation of monomers other than styrenics (e.g. acrylates, methacrylates), the BRC library was explored with the introduction of methyl methacrylate (MMA) and n-butyl acrylate (n-BuA) units as the hydrophobic monomers. With blocks composed of one or multiple monomers, all the BRCs were successfully dispersed in water at high concentrations (>100 g.L-1), with similar behaviour compared to previously reported for styrene-based BRCs. Semi-batch emulsion polymerisation of styrene or acrylates latexes was also performed. A hydrophobic block consisting of a n-BuA and styrene copolymer was found to be of the most interest, showing promising stability over the range of latexes polymerised

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
19 nov 2024
Accepted
14 jan 2025
First published
16 jan 2025
This article is Open Access
Creative Commons BY-NC license

Polym. Chem., 2024, Accepted Manuscript

Amphiphilic Block-Random Copolymer Stabilisers: Extension to Other Monomer Types

A. Werner, C. A. Sanders, S. Smeltzer, S. R. George, A. Gernandt, B. Reck and M. F. Cunningham, Polym. Chem., 2024, Accepted Manuscript , DOI: 10.1039/D4PY01321B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements