A comprehensive review on self-cleaning glass surfaces: durability, mechanisms, and functional applications
Abstract
Self-cleaning glass surfaces have emerged as a focal point in the field of materials science due to their potential to reduce the accumulation of pollutants, enhance transparency, and improve durability. In recent years, significant advancements have been made in self-cleaning technologies based on photocatalysis and wettability regulation, particularly in the development of superhydrophobic and superhydrophilic surfaces. This article provides a systematic review of the research progress in self-cleaning technologies for glass surfaces. It analyzes and summarizes the applicability of self-cleaning effects induced by special properties such as photocatalysis, superhydrophobicity, superhydrophilicity, and omniphobicity on glass surfaces. Subsequently, the article delves into a discussion of the durability of these surface treatment technologies in practical applications, especially their stability and long-term performance under harsh environmental conditions. Furthermore, the paper explores the current status of applications for self-cleaning glass surfaces across various fields and proposes potential solutions and future research directions to address the challenges encountered in the practical application of self-cleaning glass surfaces.
- This article is part of the themed collections: RSC Advances’ Physical Chemistry year in review 2024 and 2024 Reviews in RSC Advances