Peptide macrocyclisation via intramolecular interception of visible-light-mediated desulfurisation†
Abstract
Synthetic methods that enable the macrocyclisation of peptides facilitate the development of effective therapeutic and diagnostic tools. Herein we report a peptide cyclisation strategy based on intramolecular interception of visible-light-mediated cysteine desulfurisation. This method allows cyclisation of unprotected peptides in an aqueous solution via the installation of a hydrocarbon linkage. We explore the limits of this chemistry using a range of model peptides of increasing length and complexity, including peptides of biological/therapeutic relevance. The method is applied to replace the native disulfide of the peptide hormone, oxytocin, with a proteolytically/redox-stable hydrocarbon, and internal macrocyclisation of an MCL-1-binding peptide.
- This article is part of the themed collection: #MyFirstChemSci 2024